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Emerging paradigms in microwave
imaging technology for biomedical
applications: unleashing the power of
artificial intelligence
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Nazish Khalid1,3, Muhammad Zubair2,3 , Muhammad QasimMehmood1 & Yehia Massoud2

In recent years, microwave imaging (MWI) has emerged as a non-ionizing and cost-effective modality
in healthcare, specifically within medical imaging. Concurrently, advances in artificial intelligence (AI)
have significantly augmented the capabilities of medical imaging tools. This paper explores the
intersection of these two domains, focusing on the integration of AI algorithms intoMWI techniques to
elevate accuracy and overall performance. Within the scope of existing literature, representative prior
works are compared concerning the application of AI in both the “MWI for Healthcare Applications"
and “Artificial Intelligence Assistance In MWI" sections. This comparative analysis sheds light on the
diverse approaches employed to enhance the synergy between AI and MWI. While highlighting the
state-of-the-art technology in MWI and its historical context, this paper delves into the historical
taxonomy of AI-assisted MWI, elucidating the evolution of intelligent systems within this domain.
Moreover, it critically examines prominent works, providing a nuanced understanding of the
advancements and challenges encountered. Addressing the limitations and challenges inherent in
developing AI-assisted MWI systems like Generalization to different conditions, Generalization to
different conditions, etc the paper offers a brief synopsis of these obstacles, emphasizing the
importance of overcoming them for robust and reliable results in actual clinical environments. Finally,
the paper not only underscores the current advancements but also anticipates future innovations and
developments in utilizing AI for MWI applications in healthcare.

We currently find ourselves in the era of algorithms, where Machine
Learning (ML)/Deep Learning (DL) systems have significantly
transformed numerous industries, including development, transpor-
tation, and regulation, as well as healthcare, making them an integral
part of our everyday existence1. The convergence between AI and
healthcare has paved the way for significant medical diagnostics and
treatment progress2. The availability of large datasets and advance-
ments in computational techniques have empowered AI to augment
accuracy and efficiency across diverse medical imaging modalities3.
Within this context, MWI is a cost-effective technology has captured
considerable attention for its prospective applications within biome-
dical imaging4,5.

MWIhas emergedas ahighlypromisingmodality formedical imaging,
attracting considerable focus in recent years due to the development of
imaging algorithms and data-collection hardware5. The implementation of
MWI medical devices has increased researchers’ devotion and they started
significant efforts to investigate this topic extensively. worldwide in the last
two decades6, especially for medical applications7. The MWI methodology
involves solving an electromagnetic inverse scattering problem to recon-
struct the distribution of tissues that possess different electrical properties8.
Medical imaging using MWI has primarily been utilized for breast cancer
screening, diagnosing cerebrovascular diseases, treatment, monitoring, and
the progression of disease i.e. Alzheimer’s disease5. It also aids in other
healthcare applications, including nondestructive testing such as
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Nondestructive Evaluation for inspection of biological bodies9, Non-
invasive analysis, and detailed imaging of biomaterials and biological
tissues10, and thermal therapy systems11.

Due to its unique advantages, MWI differs from traditional imaging
methods such as X-ray, ultrasound, or magnetic resonance imaging (MRI).
It is exemplary because it can effectively penetrate biological tissues, is highly
sensitive to tissue dielectric properties, provides high contrast resolution12,
offers a noninvasive approach to examining functional and pathological
characteristics within soft tissues13, and avoids exposing patients to ionizing
radiation, which can be detrimental to health14. Additionally, the afford-
ability and small size of MWI devices contribute to enhanced accessibility
for various medical facilities12. These inherent qualities make MWI parti-
cularly suitable for different applications such as early-stage cancer detec-
tion, monitoring therapy response, and assessing tissue composition13.

Although MWI techniques have achieved remarkable outcomes,
recent research in this domain has identified several challenges and lim-
itations, such as the limited spatial resolution compared to othermodalities,
which can make it challenging to accurately discern intricate details about
diminutive objects or structures15, diffraction limits imposed on micro-
waves, which make it difficult to identify fine details about small objects or
structures precisely in far-field15, real-time imaging capabilities remain
elusive and need data interpretation as ultimately generates substantial data
requiring accurate analysis and interpretation16.

AI has reshaped the healthcare domain, presenting itself as an influ-
ential force that allows for a thorough examination of complexmedical data
quickly and precisely17. Unprecedented benefits have been observed when
MWI is paired with AI techniques, showing immense potential for the
future. With the intelligent application of AI algorithms, MWI can effec-
tively tackle common obstacles such as noise interference, scattering com-
plications, and restricted spatial resolution, ultimately improving the overall
quality of reconstructed images5. Furthermore, AI technology has emerged
as an invaluable aid in facilitating timely decision-making processes, auto-
mating image interpretation tasks, and delivering essential insights to
clinicians and radiologists. Researchers are actively exploring various AI
techniques encompassingDL18–20,ML21, to bolster theperformanceofMWI.
The successful application of these techniques thus far is evident through
their positive impact on important tasks such as image reconstruction,
feature extraction, and classification. These improvements positively
influence diagnostic accuracy and ultimately lead to better patient
outcomes.

The convergence of two cutting-edge technologies, MWI and AI, has
given birth to an unprecedented transformation in biomedical imaging
research22,23. This amalgamation is paving the way for a remarkable
renaissance in healthcare diagnostics by offering unparalleled prospects for
accurately evaluating different medical conditions through non-invasive
means in real-time. Through this paper, we aim to explore the fascinating
fusion of MWI and AI while illuminating their immense potential to
reshape thefield ofmedical imaging andpropel us toward a groundbreaking
era in healthcare innovation. This study provides a complete literature
reviewofAI-assistedMWI for healthcare applications, focusing on themost
recent MWI and AI methodologies and the areas of overlap between these
two fields. The fundamental goal of this work is to provide readers with a
complete grasp of current state-of-the-art MWI methodologies and the
usage of AI in this sector, along with possible solutions to the difficulties
encountered during this process in the form of implementation. The lack of
research in this area is also discussed. The salient contributions that this
work makes are summarized here.
1. We formulate an overview of diverse literature on the state-of-the-art

MWI techniques in the healthcare domain by categorizing each
technique and its application in healthcare, i.e., passive, active, and
hybrid MWI techniques.

2. We provide a comprehensive overview of the currently available AI-
assisted MWI methodologies, expanding on each method while
keeping the healthcare industry as our primary research focus. The
taxonomy of AI-assisted MWI is broken down in great detail here.

3. Finally, we identify various unresolved research topics that call for
additional inquiry and challenges. Provides in detail limitations and
future directions.

In comparison to related MWI studies, our paper stands out for its
comprehensive exploration of AI-assisted MWI in healthcare. While
existing reviews touch on specific applications such as lung tumor
detection24, breast cancer25, and brain stroke26, our paper uniquely focuses
on healthcare as a whole. We extensively discuss various MWI techniques,
incorporating both ML and DL algorithms. Unlike some reviews that only
partially address AI integration, our paper consistently emphasizes the
application of AI, offering a detailed survey of techniques, challenges, and
future directions. Notably, our work excels in presenting a holistic view of
MWI in medicine, encompassing improved imaging and diverse medical
applications. This breadth of coverage positions our paper as a compre-
hensive guide, providing valuable insights for researchers, practitioners, and
stakeholders interested in the intersection of AI and MWI in healthcare.

Search approach
A comprehensive search was conducted across multiple databases,
including Google Scholar, PubMed, and IEEE Xplore, with no
restrictions on language or time. The focus of the literature search for
detection, and prediction techniques was on the application of
microwave imaging in healthcare and novel methods incorporating
machine learning models. The search criteria utilized the keywords:
“(Neural networks OR deep learning OR artificial intelligence OR
machine learning OR clinical diagnosis OR prediction) AND tumor
detection and treatment." Regarding the utilization of microwave
imaging, the literature search emphasized diagnostic applications.
The search criteria involved the keywords: “(tumor detection, stroke
detection OR microwave imaging OR dielectric properties of tissues
OR tissue classification OR microwave ablation OR microwave
radiometry OR AI-assisted diagnostics) AND microwave imaging in
healthcare." A thorough research, barring any time or language limit
was conducted, on Google Scholar, PubMed, and IEEE Xplore. The
focal point of this scavenge was to identify the application of
Microwave Imaging in healthcare and novel models that incorporate
Machine Learning Algorithms to improve detection and prediction.
The following keywords were used in the search criteria: “(Neural
networks OR deep learning OR artificial intelligence OR machine
learning OR AI assisted Microwave Imaging OR clinical diagnosis
OR prediction) AND tumor detection and treatment." In the context
of microwave imaging applications, the literature search targeted
diagnostic applications. The keywords used in the search were:
“(tumor detection, stroke detection OR microwave imaging OR
dielectric properties of tissues OR tissue classification OR microwave
ablation OR microwave radiometry OR AI-assisted diagnostics) AND
microwave imaging in healthcare."

MWI for healthcare applications
MWI techniques
This section provides a comprehensive overview of the essential techniques
used inMWI for biomedical applications.MWI encompasses three primary
methods, Passive, Active, and Hybrid, each described in detail below.
Figure 1 shows the working principle of MWI techniques27.

PassiveMWI. Passivemicrowave radiometry (MWR) is a technique that
measures natural emissions between 1 to 10 GHz. Cells, proteins, organs,
and even the whole body are all appropriate targets for this method.
What’s particularly interesting is that biochemical and biophysical pro-
cesses determine the strength of the intrinsic emission. In contrast to
infrared thermography (IRT), which can only detect emissions several
microns deep (skin temperature), MWR can detect thermal abnormal-
ities as shallow as several centimeters measure internal/deep tempera-
ture. MWR is a low-cost method that has no negative effects on human

https://doi.org/10.1038/s44303-024-00012-8 Review article

npj Imaging |            (2024) 2:13 2



T
ab

le
1
|S

um
m
ar
y
o
fr
ec

en
t
re
se

ar
ch

in
M
W
Id

o
m
ai
n

R
ef
er
en

ce
Y
ea

r
M
W
IT

ec
hn

iq
ue

M
et
ho

d
o
lo
g
y

P
er
fo
rm

an
ce

T
ar
g
et

ar
ea

79
20

22
P
M
W
I

R
efl

ec
ta
nc

e
m
ea

su
re
m
en

ts
w
er
e
ta
ke

n
us

in
g
90

G
H
z
ra
d
io
m
et
ry

on
tw

o
sa

m
p
le
s.

R
ad

io
m
et
ric

st
ud

ie
s
sh

ow
a
0.
02

–
0.
27

re
fl
ec

ta
nc

e
d
iff
er
en

ce
b
et
w
ee

n
he

al
th
y
an

d
si
ck

sk
in
.

S
ki
n
d
is
ea

se
s

82
20

22
P
M
W
I

P
re
lim

in
ar
y
eg

g
w
hi
te

m
ic
ro
w
av

e
em

is
si
on

in
ve

st
ig
at
io
ns

d
ur
in
g
et
ha

no
l-

in
d
uc

ed
d
en

at
ur
at
io
n.

E
xp

la
in

p
os

tm
or
te
m

m
ic
ro
w
av

e
em

is
si
on

in
cr
ea

se
.T

hi
s
re
se

ar
ch

m
ay

in
sp

ire
ne

w
d
ia
gn

os
tic

m
et
ho

d
s.

S
tr
ok

e
an

d
b
ra
in

d
eg

en
er
at
io
n

78
20

20
P
M
W
I

P
la
ce

d
th
e
M
W
R
se

ns
or

on
th
e
su

p
ra
p
at
el
la
rr
ec

es
s
an

d
an

te
rio

rt
hi
gh

up
p
er

th
ird

.U
ltr
as

ou
nd

an
d
m
ic
ro
w
av

e
ra
d
io
m
et
ry

fo
un

d
fl
ui
d
an

d
sy
no

vi
tis

.
R
efi

ni
ng

th
is
m
et
ho

d
,i
nc

lu
d
in
g
m
ak

in
g
se

ns
or
s
fo
rs

m
al
lj
oi
nt
s,

co
ul
d
le
ad

to
th
e
id
ea

lo
b
je
ct
iv
e
to
ol

fo
rc

lin
ic
al
,s

ub
cl
in
ic
al

sy
no

vi
tis

d
et
ec

tio
n.

R
he

um
at
oi
d
ar
th
rit
is
an

d
sp

on
d
yl
oa

rt
hr
iti
s

80
20

22
M
W
T

Fo
rM

W
T
im

ag
e
re
co

ns
tr
uc

tio
n,

th
e
M
W
Ip

ro
to
ty
p
e
an

d
d
is
to
rt
ed

B
or
n

ite
ra
tiv

e
ap

p
ro
ac

h
al
go

rit
hm

s
w
er
e
p
ro
p
os

ed
.

Tr
ac

ke
d
b
on

e
he

al
th
.

H
um

an
ca

lc
an

eu
s
b
on

e

81
20

22
M
W
T

P
ro
p
os

ed
a
p
or
ta
b
le

el
ec

tr
om

ag
ne

tic
to
m
og

ra
p
hy

b
ra
in

sc
an

ne
rp

ro
to
ty
p
e

fo
rc

lin
ic
al

tr
ia
ls
.T

he
sc

an
ne

rw
as

sa
fe

fo
rc

lin
ic
al

re
se

ar
ch

.
Th

e
sc

an
ne

rw
as

sh
ow

n
to

b
e
ha

rm
le
ss

an
d
fu
nc

tio
na

li
n
b
ot
h
he

al
th
y

vo
lu
nt
ee

rs
an

d
ac

tu
al

p
at
ie
nt
s,

an
d
it
d
em

on
st
ra
te
d
ea

rly
ev

id
en

ce
of

id
en

tif
yi
ng

b
ra
in

d
is
ea

se
in

st
ro
ke

p
at
ie
nt
s.

B
ra
in

st
ro
ke

77
20

21
M
W
T

U
si
ng

th
e
M
R
Ir
ec

on
st
ru
ct
io
n,

d
ev

el
op

th
e
hu

m
an

b
on

e
re
p
re
se

nt
at
io
ns

of
d
iff
er
en

tt
hi
ck

ne
ss
es

.
P
ro
vi
d
es

hi
gh

-q
ua

lit
y
im

ag
es

fr
om

no
n-
io
ni
zi
ng

ra
d
ia
tio

n.
H
um

an
b
on

e

87
20

21
M
W
T

2-
D
d
is
cr
et
e
d
ip
ol
e
ap

p
ro
xi
m
at
io
n
fo
rM

W
T
im

ag
e
re
co

ns
tr
uc

tio
n.

Th
e
fo
rw

ar
d
so

lv
er

re
b
ui
ld
s
th
e
im

ag
e
in

6
se

co
nd

s.
B
re
as

tC
an

ce
r

83
20

20
R
B
M
W
I

C
on

fo
ca

lR
B
M
W
Ii
s
us

ed
to

co
ns

tr
uc

tt
he

im
ag

e
fr
om

th
e
si
gn

al
s
co

lle
ct
ed

us
in
g
th
e
V
iv
al
d
ia

nt
en

na
.

Th
e
an

te
nn

a
d
es

ig
ne

d
fo
rt
he

sy
st
em

gi
ve

s
b
et
te
r
re
su

lts
.

B
ra
in

st
ro
ke

88
20

22
R
B
M
W
I

U
W
B
b
re
as

tt
um

or
d
et
ec

tio
n
us

in
g
m
on

os
ta
tic

w
as

si
m
ul
at
ed

an
d
te
st
ed

us
in
g
a
re
ct
an

gl
e
d
ie
le
ct
ric

re
so

na
to
r
an

te
nn

a
w
ith

fr
ac

ta
l-
d
ef
ec

te
d
gr
ou

nd
co

ns
tr
uc

tio
n
d
es

ig
ne

d
b
y
S
ie
rp
in
sk

i.

1.
02

an
d
1.
13

W
/K
g,

sa
fe

fo
rh

um
an

ex
p
os

ur
e
an

d
ef
fi
ci
en

tw
ith

na
tu
ra
l

d
ie
le
ct
ric

p
ro
p
er
tie

s.
B
re
as

tC
an

ce
r

89
20

21
R
B
M
W
I

M
W
Iu

se
s
10

80
-i
m
p
ed

an
ce

-b
an

d
b
ac

ks
ca

tt
er
ed

si
gn

al
s.

Th
e
an

te
nn

a’
s

ar
tifi

ci
al

b
re
as

tm
im

ic
ve

rifi
es

th
e
re
su

lts
.

M
A
TL

A
B
d
ig
iti
ze

s
si
gn

al
s
to

d
et
ec

tb
re
as

tc
an

ce
r.
D
A
S
d
et
ec

ts
th
e
b
re
as

t
tu
m
or
,w

hi
le

D
M
A
S
si
ze

s
it.

B
re
as

tC
an

ce
r

84
20

22
H
B
M
W
I

Fu
ll-
w
av

ef
or
m

au
to
fo
cu

s
in
ve

rs
io
n
th
er
m
oa

co
us

tic
im

ag
e
re
co

ns
tr
uc

tio
n
fo
r

no
n-
co

nt
ac

tr
ad

ia
tio

n.
S
im

ul
at
io
ns

an
d
m
ea

su
re
m
en

ts
up

d
at
e
a
so

un
d
sp

ee
d
d
is
tr
ib
ut
io
n.

S
tr
ok

e
d
ia
gn

os
is

85
20

22
H
B
M
W
I

P
ul
se

d
m
ic
ro
w
av

e-
in
d
uc

ed
th
er
m
oa

co
us

tic
(M

TA
)t
he

ra
p
y
th
at

co
ul
d
p
re
-

ci
se

ly
an

d
ef
fe
ct
iv
el
y
er
ad

ic
at
e.

M
ic
ro
w
av

es
’
d
ee

p
tis

su
e
p
en

et
ra
tio

n
an

d
ul
tr
as

on
ic

sh
oc

kw
av

e’
s
ra
p
id

d
ec

ay
m
ak

e
M
TA

th
er
ap

y
fo
rg

lio
b
la
st
om

a
w
ith

in
ta
ct

sk
in

an
d
sk

ul
l

p
ro
m
is
in
g.

O
rt
ho

tr
op

ic
gl
io
b
la
st
om

a

90
20

22
H
B
M
W
I

U
ltr
as

ou
nd

-g
ui
d
ed

m
ic
ro
w
av

e
ab

la
tio

n
(M

W
A
)r
es

ea
rc
h
fo
rn

on
-p
ue

rp
er
al

m
as

tit
is
.

M
W
A
w
ith

in
ci
si
on

an
d
d
ra
in
ag

e
he

lp
ed

la
rg
er

tu
m
or
s
in

tw
o
or

m
or
e

q
ua

d
ra
nt
s.
M
W
A
tr
ea

tm
en

to
fN

P
M

is
p
ro
m
is
in
g
fo
rr
es

ea
rc
h
an

d
tr
ea

tm
en

t.
N
on

-p
ue

rp
er
al

m
as

tit
is

86
20

20
H
B
M
W
I

A
hy

b
rid

M
W
Im

et
ho

d
co

m
b
in
es

fa
st

q
ua

lit
at
iv
e
p
ro
ce

ss
w
ith

ac
cu

ra
te

b
ra
in

d
ie
le
ct
ric

p
ro
p
er
ty

to
m
og

ra
p
hy

.
Th

re
e-
d
im

en
si
on

al
,r
ea

lis
tic

st
ro
ke

-a
ff
ec

te
d
he

ad
m
od

el
s
an

d
si
m
p
lifi
ed

cy
lin
d
ric

al
p
ha

nt
om

s
va

lid
at
ed

th
e
ap

p
ro
ac

h
nu

m
er
ic
al
ly
an

d
ex

p
er
im

en
ta
lly
.

B
ra
in

91
20

21
H
B
M
W
I

Th
re
e-
d
im

en
si
on

al
,r
ea

lis
tic

st
ro
ke

-a
ff
ec

te
d
he

ad
m
od

el
s
an

d
si
m
p
lifi
ed

cy
lin
d
ric

al
p
ha

nt
om

s
va

lid
at
ed

th
e
ap

p
ro
ac

h
nu

m
er
ic
al
ly
an

d
ex

p
er
im

en
ta
lly
.

Th
is
m
et
ho

d
cr
ea

te
s
m
ic
ro
w
av

e
im

ag
es

fr
om

si
m
ul
at
io
ns

an
d
ex

p
er
im

en
ts
.

Th
re
e-
d
im

en
si
on

al
,r
ea

lis
tic

st
ro
ke

-a
ff
ec

te
d
he

ad
m
od

el
s
an

d
si
m
p
lifi
ed

cy
lin
d
ric

al
p
ha

nt
om

s
va

lid
at
ed

th
e
ap

p
ro
ac

h
nu

m
er
ic
al
ly
an

d
ex

p
er
im

en
ta
lly
.

H
ea

d
tis

su
e

75
20

23
H
B
M
W
I

A
co

m
p
ac

ta
nd

lo
w
-c
om

p
le
xi
ty

d
ev

ic
e
fo
rc

er
eb

ro
va

sc
ul
ar

d
is
ea

se
d
et
ec

tio
n

an
d
m
on

ito
rin

g
vi
a
m
ic
ro
w
av

e
te
ch

no
lo
gy

.
A
cc

ur
at
e
lo
ca

liz
at
io
n
an

d
m
on

ito
rin

g
of

he
m
or
rh
ag

e
an

d
is
ch

em
ia

zo
ne

s
w
ith

ce
nt
im

et
ric

sp
at
ia
lr
es

ol
ut
io
n.

H
ea

d
Im

ag
in
g

P
M
W
IP

as
si
ve

M
W
I,
M
W
T
M
ic
ro
w
av

e
To

m
og

ra
p
hy

,R
B
M
W
IR

ad
ar

B
as

ed
M
W
I,
H
B
M
W
IH

yb
rid

M
W
I.

https://doi.org/10.1038/s44303-024-00012-8 Review article

npj Imaging |            (2024) 2:13 3



T
ab

le
2
|R

ec
en

t
te
ch

ni
q
ue

s
o
fA

I-
as

si
st
ed

M
W
I

R
ef
er
en

ce
Y
ea

r
A
It
ec

hn
iq
ue

M
W
It
ec

hn
iq
ue

M
et
ho

d
o
lo
g
y

A
IC

o
nt
ri
b
ut
io
n

T
ar
g
et

ar
ea

M
L

D
L

14
6

20
23

✓
✗

A
si
m
p
lifi
ed

ye
tr
ea

lis
tic

he
ad

m
od

el
co

ns
is
tin

g
of

tw
o
ho

m
og

en
eo

us
tis

su
es

is
us

ed
in

th
e

ap
p
ro
ac

h.

A
U
-N

et
ne

ur
al

ne
tw

or
k
to

p
re
d
ic
ti
nn

er
b
ou

nd
ar
ie
s
b
as

ed
on

q
ua

lit
at
iv
e
im

ag
es

ob
ta
in
ed

us
in
g
tr
un

ca
te
d
si
ng

ul
ar

va
lu
e

d
ec

om
p
os

iti
on

,t
he

p
er
m
itt
iv
iti
es

of
th
e
in
te
rn
al

d
om

ai
ns

ar
e
ite

ra
tiv

el
y
es

tim
at
ed

us
in
g
th
e

d
is
to
rt
ed

B
or
n
ite

ra
tiv

e
m
et
ho

d
.

D
L
to

en
ha

nc
e
M
W
If
or

es
tim

at
in
g
tis

su
e
p
er
-

m
itt
iv
iti
es

w
ith

in
th
e
he

ad
,r
el
yi
ng

so
le
ly
on

kn
ow

le
d
ge

of
th
e
ou

te
r
he

ad
b
ou

nd
ar
y.

B
ra
in

st
ro
ke

16
8

20
23

✗
✓

Th
e
st
ud

y
ut
ili
ze

d
U
M
-B

M
ID

as
an

op
en

-s
ou

rc
e

ex
p
er
im

en
ta
ld

at
ab

as
e

O
b
je
ct
iv
e
w
as

to
d
ev

el
op

an
ap

p
lic
at
io
n
us

in
g

M
A
TL

A
B
fo
rb

re
as

tt
um

or
d
et
ec

tio
n
an

d
d
et
er
-

m
in
at
io
n
th
ro
ug

h
im

ag
e
p
ro
ce

ss
in
g.

S
V
M

is
em

p
lo
ye

d
fo
rb

re
as

tc
an

ce
r
d
et
ec

tio
n

us
in
g
M
W
I,
im

p
ro
vi
ng

ac
cu

ra
cy

an
d
re
d
uc

in
g

fa
ls
e
p
os

iti
ve

s
an

d
ne

ga
tiv

es
.

B
re
as

tc
an

ce
r

5
20

23
✓

✗
P
ro
p
os

ed
a
no

ve
la

p
p
ro
ac

h
fo
rs

ol
vi
ng

th
e

in
ve

rs
e
sc

at
te
rin

g
p
ro
b
le
m

re
lia
b
ly
an

d
au

to
m
at
ic
al
ly
.

Th
is
ap

p
ro
ac

h
co

m
b
in
es

q
ua

lit
at
iv
e
im

ag
in
g

te
ch

ni
q
ue

s
an

d
D
L
in

a
tw

o-
st
ep

fr
am

ew
or
k.

A
ne

ur
al

ne
tw

or
k
re
tr
ie
ve

s
th
e
ex

ac
tt
ar
ge

t
sh

ap
e
an

d
co

nt
ra
st

va
lu
e
b
y
tr
ea

tin
g
th
e
ta
sk

as
im

ag
e
se

gm
en

ta
tio

n.

B
ra
in

st
ro
ke

14
0

20
22

✓
✗

A
d
at
ab

as
e
of

nu
m
er
ic
al

b
re
as

tp
ha

nt
om

s
ha

s
b
ee

n
cr
ea

te
d
us

in
g
a
re
al
is
tic

p
ha

nt
om

ge
n-

er
at
or
,w

hi
ch

ac
cu

ra
te
ly
si
m
ul
at
es

va
rio

us
b
re
as

tt
is
su

e
p
ro
p
er
tie

s
an

d
st
ru
ct
ur
es

.

Th
e
m
et
ho

d
ol
og

ic
al

an
al
ys
is
of

th
e
p
ro
p
os

ed
ap

p
ro
ac

h
fo
cu

se
s
on

tw
o
m
ai
n
ar
ea

s:
th
e
d
efi

-
ni
tio

n
an

d
ge

ne
ra
tio

n
of

a
p
ro
p
er

d
at
ab

as
e
fo
r

ne
ur
al

ne
tw

or
k
tr
ai
ni
ng

an
d
th
e
d
es

ig
n
an

d
an

al
ys
is
of

d
iff
er
en

tn
eu

ra
ln

et
w
or
k

ar
ch

ite
ct
ur
es

.

Th
e
A
N
N
ap

p
ro
ac

h
w
as

no
is
e-
re
si
st
an

t
an

d
p
ro
m
is
in
g
en

ou
gh

to
us

e
on

re
al
is
tic

an
th
ro
-

p
om

or
p
hi
c
b
re
as

tp
ha

nt
om

s
an

d
p
os

si
b
ly

ex
p
er
im

en
ta
ld

at
a.

B
re
as

tC
an

ce
r

13
9

20
22

✓
✗

A
la
b
el
ed

sy
nt
he

tic
d
at
as

et
ov

er
a
ra
ng

e
of

p
os

si
b
le

ad
ip
os

e
an

d
fi
b
ro
gl
an

d
ul
ar

re
gi
on

s
is

ge
ne

ra
te
d
us

in
g1

69
ap

p
ro
ac

h.

Th
e
d
at
as

et
is
co

lle
ct
ed

b
y
re
p
lic
at
in
g
th
e1

69

ha
rd
w
ar
e.

U
se

d
th
e
d
at
a
to

tr
ai
n
ne

ur
al

ne
t-

w
or
ks

to
ge

tp
rio

ri
nf
or
m
at
io
n
ab

ou
tt
he

sy
st
em

lik
e
ge

om
et
ry
,s

ha
p
e,

et
c.

D
es

ig
ne

d
ne

ur
al

ne
tw

or
k
no

to
nl
y
p
re
d
ic
ts

th
e

ge
om

et
ry

an
d
av

er
ag

e
co

m
p
le
x-
va

lu
ed

p
er
-

m
itt
iv
ity

b
ut

al
so

d
et
ec

ts
th
e
ge

om
et
ry

co
nv

ex
hu

ll
of

th
e
p
ha

nt
om

.

B
re
as

tC
an

ce
r

13
8

20
22

✓
✗

P
ro
vi
d
e
so

lu
tio

ns
to

M
W
Ip

ro
b
le
m
s.

G
ra
p
h
fo
r-

m
ul
at
io
n
of

th
e
M
W
Ia

rr
ay

,a
d
d
re
ss
in
g
th
e

ch
al
le
ng

e
of

in
co

rp
or
at
in
g
th
e
p
hy

si
ca

ls
et
up

in
to

ne
tw

or
k
st
ru
ct
ur
es

.

Th
e
ge

om
et
ric

ne
tw

or
k
G
A
T
us

es
sy
st
em

to
p
ol
og

y
to

p
ro
ce

ss
th
e
d
at
a
m
os

te
ff
ec

tiv
el
y

w
hi
le

b
ei
ng

lig
ht
w
ei
gh

t.

A
si
m
p
le
m
od

el
w
ith

on
ly
24

32
p
ar
am

et
er
s
w
as

en
ou

gh
to

re
co

ns
tr
uc

ti
m
ag

es
w
ith

ac
ce

p
ta
b
le

p
er
fo
rm

an
ce

.

B
re
as

tC
an

ce
r

14
5

20
22

✓
✗

C
on

st
ru
ct
s
a
m
ob

ile
-b
as

ed
M
W
Ih

ea
d
sy
st
em

Th
e
co

ns
tr
uc

te
d
M
W
H
Is

ys
te
m

ca
p
tu
re
s
40

0
R
M
W

im
ag

e
sa

m
p
le
s,

en
co

m
p
as

si
ng

he
al
th
y

tis
su

e
an

d
tu
m
or
(s
)i
n
va

rio
us

an
at
om

ic
al

si
te
s.

Th
e
Y
O
LO

is
ap

p
lie
d
fo
rd

et
ec

tio
n.

Th
e
fi
na

lr
es

ul
ts

sh
ow

96
%

ac
cu

ra
cy

.
H
ea

d
Im

ag
in
g

17
0

20
22

✓
✗

M
ic
ro
w
av

e
in
d
uc

ed
th
er
m
o-
ac

ou
st
ic

to
m
o-

gr
ap

hy
(T
A
T)

us
es

ci
rc
ul
ar

sc
an

ni
ng

se
ns

or
ar
ra
ys

fo
rs

ig
na

la
cq

ui
si
tio

n.

D
L-
b
as

ed
m
et
ho

d
to

p
ro
ce

ss
tim

e-
re
ve

rs
ed

(T
R
)T

A
im

ag
es

.A
fu
lly

d
en

se
U
-N

et
(F
D
U
-N

et
)

is
im

p
le
m
en

te
d
.

E
xp

er
im

en
ta
li
m
ag

es
p
ro
ve

d
at
a
au

gm
en

te
d

FD
U
-N

et
w
or
ks

.
M
ed

ic
al

Im
ag

in
g

13
4

20
22

✓
✗

M
ic
ro
w
av

e-
in
d
uc

ed
th
er
m
oa

co
us

tic
to
m
o-

gr
ap

hy
(M

IT
A
T)

is
us

ed
fo
rd

at
a
co

lle
ct
io
n.

P
ro
p
os

es
a
ne

w
D
L-
en

ab
le
d
M
IT
A
T
(D
L-
M
IT
A
T)

m
od

al
ity

fo
rs

p
ar
se

d
at
a
re
co

ns
tr
uc

tio
n.

FP
N
et

+
R
es

U
-N

et
is
th
e
d
om

ai
n
tr
an

sf
or
m

ne
tw

or
k
us

ed
.N

et
w
or
k
d
es

ig
n
an

d
im

p
le
m
en

ta
tio

n.

In
ex

vi
vo

ex
p
er
im

en
ts
,o

nl
y
15

m
ea

su
re
m
en

ts
ca

n
re
lia
b
ly
im

ag
e
th
e
b
re
as

tt
um

or
in

fu
ll-
vi
ew

an
d
lim

ite
d
-v
ie
w

co
nfi

gu
ra
tio

ns
.

B
re
as

tC
an

ce
r

14
3

20
22

✗
✗

A
te
ch

ni
q
ue

to
jo
in

M
L
w
ith

M
W
If
or

th
e
cl
as

si
-

fi
ca

tio
n
ta
sk

fo
cu

si
ng

.T
he

au
th
or

so
lv
ed

th
e

d
at
a
co

lle
ct
io
n
ch

al
le
ng

e
b
y
us

in
g
si
m
ul
at
ed

an
d
m
ea

su
re
d
d
at
a.

Th
e
al
go

rit
hm

us
ed

is
M
LP

fo
rt
he

cl
as

si
fi
ca

tio
n

ta
sk

an
d
fo
rt
he

tr
ai
ni
ng

of
th
e
m
od

el
us

ed
,a

lin
ea

r
in
te
gr
al

op
er
at
or

th
at

re
d
uc

es
th
e
d
at
a

ge
ne

ra
tio

n
tim

e
co

nc
er
ni
ng

th
e
st
an

d
ar
d

fu
ll
w
av

e.

Th
e
ac

tiv
at
io
n
fu
nc

tio
n
is
a
hy

p
er
b
ol
ic

ta
ng

en
t

w
ith

th
e
re
gu

la
riz

at
io
n
te
rm

eq
ua

lt
o
0.
05

.T
he

ac
cu

ra
cy

re
p
or
te
d
is
99

%
,a
nd

al
lt
he

ev
al
ua

tio
n

m
et
ric

s
ar
e
cl
os

e
to

on
e.

B
ra
in

st
ro
ke

13
3

20
22

✓
✗

M
W
R
d
et
ec

ts
b
re
as

tc
an

ce
rb

y
m
ea

su
rin

g
tis

-
su

e
th
er
m
al

p
ro
p
er
tie

s.
U
si
ng

th
e
b
i-
p
op

ul
at
io
n
co

va
ria

nc
e
m
at
rix

ad
ap

tio
n
ev

ol
ut
io
n
te
ch

ni
q
ue

,t
he

w
ei
gh

ts
of

th
e
w
ei
gh

t-
ag

no
st
ic

ne
ur
al

ne
tw

or
k
w
er
e
op

ti-
m
iz
ed

(B
IP
O
P
-C

M
A
-E

S
).

W
ei
gh

t-
ag

no
st
ic

B
IP
O
P
-C

M
A
-E
S
p
er
fo
rm

ed
b
es

t.
It
ha

d
16

3
co

nn
ec

tio
ns

,0
.9
33

F1
-s
co

re
,

0.
93

2
ac

cu
ra
cy

,0
.9
29

p
re
ci
si
on

,a
nd

0.
94

2
re
ca

ll.

B
re
as

tC
an

ce
r

https://doi.org/10.1038/s44303-024-00012-8 Review article

npj Imaging |            (2024) 2:13 4



T
ab

le
2
(c
o
nt
in
ue

d
)|

R
ec

en
t
te
ch

ni
q
ue

s
o
fA

I-
as

si
st
ed

M
W
I

R
ef
er
en

ce
Y
ea

r
A
It
ec

hn
iq
ue

M
W
It
ec

hn
iq
ue

M
et
ho

d
o
lo
g
y

A
IC

o
nt
ri
b
ut
io
n

T
ar
g
et

ar
ea

M
L

D
L

13
2

20
22

✓
✗

Q
ua

nt
ita

tiv
e
M
W
IA

N
N
ap

p
ro
ac

h
in

re
al

tim
e.

It
re
co

m
m
en

d
s
nu

m
er
ic
al

st
ud

ie
s
to

op
tim

iz
e
th
e

ne
tw

or
k
d
es

ig
n
an

d
in
cr
ea

se
re
co

ve
ry

p
er
fo
r-

m
an

ce
an

d
p
ro
ce

ss
in
g
tim

e
in

th
e
M
W
If
ra
m
e-

w
or
k,

an
im

p
or
ta
nt

st
ep

to
w
ar
d
b
ui
ld
in
g
fu
tu
re

d
ia
gn

os
tic

ap
p
lic
at
io
ns

.

Tw
o
ke

y
as

p
ec

ts
of

th
e
su

gg
es

te
d
m
et
ho

d
ol
-

og
y
ar
e
d
efi

ni
ng

an
d
p
ro
d
uc

in
g
a
un

ifi
ed

d
at
a-

b
as

e
fo
rt
ra
in
in
g
ne

ur
al
ne

tw
or
ks

an
d
d
es

ig
ni
ng

an
d
an

al
yz
in
g
va

rio
us

ne
ur
al

ne
tw

or
k

to
p
ol
og

ie
s.

R
es

ul
ts

ar
e
p
ro
m
is
in
g
in

q
ua

lit
at
iv
e
an

d
q
ua

n-
tit
at
iv
e
co

m
p
ar
is
on

s
to

st
an

d
ar
d
no

nl
in
ea

r
in
ve

rs
e
sc

at
te
rin

g
te
ch

ni
q
ue

s.

B
re
as

tC
an

ce
r

12
5

20
22

✗
✓

M
od

el
s
of

b
re
as

tt
um

or
s
th
at

ar
e
an

at
om

ic
al
ly

ac
cu

ra
te

en
ou

gh
fo
rM

W
Ih

av
e
b
ee

n
d
ev

el
op

ed
in

p
re
lim

in
ar
y
st
ud

ie
s.

P
re
lim

in
ar
y
re
se

ar
ch

on
th
re
e
cl
as

si
fi
er
s,

LD
A
,

S
V
M
,a

nd
K
N
N
,f
or

id
en

tif
yi
ng

ca
nc

er
ou

s
an

d
no

nc
an

ce
ro
us

tu
m
or
s.

C
om

p
ar
ed

to
th
e
ot
he

r
cl
as

si
fi
er
s,

K
N
N
p
er
-

fo
rm

ed
b
es

ti
n
te
rm

s
of

ac
cu

ra
cy

(8
7.
5%

),
se

ns
iti
vi
ty

(8
3.
3%

),
an

d
sp

ec
ifi
ci
ty

(9
1.
7%

).

B
re
as

tC
an

ce
r

12
9

20
21

✗
✓

Th
e
el
ec

tr
ic

fi
el
d
am

p
lit
ud

e
of

va
rio

us
sa

m
p
le
s

is
co

lle
ct
ed

as
th
e
ex

p
er
im

en
td

at
a
b
y
si
m
ul
at
-

in
g
th
e
hu

m
an

b
re
as

ti
n
C
O
M
S
O
L
M
ul
tip

hy
si
cs

.

M
ic
ro
w
av

e
si
gn

al
an

al
ys
is
us

in
g
S
V
M

is
us

ed
to

d
iff
er
en

tia
te

b
et
w
ee

n
b
en

ig
n
an

d
m
al
ig
na

nt
b
re
as

tt
um

or
s

D
T
an

d
R
F
ar
e
co

m
p
ar
ed

to
on

e
an

ot
he

r
to

d
et
er
m
in
e
w
hi
ch

ha
s
su

p
er
io
r
cl
as

si
fi
ca

tio
n

ca
p
ab

ili
tie

s
an

d
re
lia
b
ili
ty
.

B
re
as

tC
an

ce
r

13
0

20
21

✗
✓

To
p
re
d
ic
tb

re
as

tl
es

io
ns

fr
om

m
ic
ro
w
av

e
si
g-

na
ls
,a

q
ui
ck

an
d
p
re
ci
se

M
L
al
go

rit
hm

is
p
ro
p
os

ed
.

R
aw

b
ac

ks
ca

tt
er
ed

si
gn

al
d
at
a
is
us

ed
to

tr
ai
n

an
d
te
st

an
S
V
M

al
go

rit
hm

w
ith

a
lin
ea

ra
nd

p
ol
yn

om
ia
lk
er
ne

l.

S
V
M

us
in
g
a
th
ird

-d
eg

re
e
p
ol
yn

om
ia
lk
er
ne

l
ou

tp
er
fo
rm

ed
st
at
e-
of
-t
he

-a
rt
cl
as

si
ca

lM
L

b
in
ar
y
cl
as

si
fi
ca

tio
n
te
ch

ni
q
ue

s,
ac

hi
ev

in
g

99
.7
%

ac
cu

ra
cy

.

B
re
as

tC
an

ce
r

14
2

20
21

✗
✓

Th
e
C
S
T
si
m
ul
at
or

m
od

el
s
a
m
ul
til
ay

er
he

ad
p
ha

nt
om

an
d
a
1
cm

sp
he

ric
al

ta
rg
et

re
p
re
-

se
nt
in
g
an

in
tr
ac

ra
ni
al
he

m
or
rh
ag

e
to

si
m
ul
at
e
a

ci
rc
ul
ar

ar
ra
y-
b
as

ed
M
IS
.

Fi
lte

rin
g,

ed
ge

-d
et
ec

tio
n-
b
as

ed
se

gm
en

ta
tio

n,
K
-M

ea
ns

,a
nd

fu
zz
y
cl
us

te
rin

g
re
ve

al
in
tr
ac

ra
-

ni
al

he
m
or
rh
ag

e
ar
ea

s
fr
om

re
co

ns
tr
uc

te
d

im
ag

es
.

Th
e
p
ro
p
os

ed
m
et
ho

d
ac

hi
ev

es
97

%
ac

cu
ra
cy

.
S
tr
ok

e

12
4

20
21

✗
✓

Th
e
op

en
-s
ou

rc
e
U
ni
ve

rs
ity

of
M
an

ito
b
a-
B
M
I

d
at
as

et
us

es
b
re
as

tp
ha

nt
om

s
in

a
p
re
-c
lin
ic
al

B
M
Is
ys
te
m

(U
M
-B

M
ID
).

E
xp

lo
re

th
e
d
at
as

et
’s

us
ab

ili
ty
,i
m
p
le
m
en

td
if-

fe
re
nt

M
L
cl
as

si
fi
ca

tio
n
al
go

rit
hm

s
fo
rt
um

or
d
et
ec

tio
n
on

U
M
-B

M
ID
,a

nd
co

m
p
ar
e
th
e

re
su

lts
to

p
re
vi
ou

s
p
ub

lic
at
io
ns

.

M
L
in

b
re
as

tM
W
Ih

as
gr
ea

tp
ot
en

tia
lw

ith
a

m
ax

im
um

ac
cu

ra
cy

of
94

%
us

in
g
R
F.

B
re
as

tC
an

ce
r

13
5

20
21

✓
✗

U
ni
ve

rs
ity

of
M
an

ito
b
a
d
at
as

et
w
as

us
ed

fo
r

ap
p
ly
in
g
th
e
A
Ia

lg
or
ith

m
s.

D
ee

p
an

d
C
on

vo
lu
tio

na
lN

eu
ra
lN

et
w
or
ks

ar
e

us
ed

to
lo
ca

liz
e,

cl
as

si
fy
,a

nd
d
et
ec

tt
he

tu
m
or
.

Th
e
re
su

lts
ou

tp
er
fo
rm

ex
is
tin

g
w
or
k
on

th
is

d
at
as

et
.T

he
R
2
sc

or
e
is
0.
33

,a
nd

F1
-s
co

re
fo
r

cl
as

si
fi
ca

tio
n
an

d
ch

ar
ac

te
riz

at
io
n
is
m
or
e

th
an

0.
9.

B
re
as

tC
an

ce
r

18
20

21
✓

✗
N
o
m
aj
or

M
ic
ro
w
av

e
te
ch

ni
q
ue

.B
ut

im
p
or
ta
nt

to
re
vo

lu
tio

ni
ze

its
re
su

lts
.

U
se

d
G
A
N
to

ge
ne

ra
te

sy
nt
he

tic
d
at
a
si
m
ila
rt
o

M
W
It
o
p
ro
ve

th
e
cl
as

si
fi
ca

tio
n
ef
fi
ci
en

cy
.

Th
e
ge

ne
ra
te
d
d
at
a
ar
e
of

hi
gh

q
ua

lit
y
an

d
ac

cu
ra
te
ly
re
p
re
se

nt
th
e
d
is
tr
ib
ut
io
n
of

th
e
or
i-

gi
na

ld
at
a.

B
ra
in

st
ro
ke

14
4

20
20

✓
✗

M
W
I3

D
im

ag
es

of
b
re
as

tc
om

p
le
x-
va

lu
ed

p
er
-

m
itt
iv
ity

ar
e
en

ha
nc

ed
us

in
g
D
L.

A
U
-N

et
-b
as

ed
3D

C
on

vo
lu
tio

na
lN

eu
ra
lN

et
-

w
or
k
to

p
ro
d
uc

e
th
e
tr
ue

3D
p
er
m
itt
iv
ity

im
ag

e
fr
om

C
S
I3

D
im

ag
es

.

Th
e
re
su

lts
sh

ow
th
at

th
e
ne

tw
or
k
p
er
fo
rm

ed
w
el
lw

ith
sy
nt
he

tic
an

d
ex

p
er
im

en
ta
ld

at
a

d
es

p
ite

b
ei
ng

tr
ai
ne

d
on

ly
on

sy
nt
he

tic
d
at
a.

B
re
as

tc
an

ce
r

12
6

20
20

✗
✓

U
til
iz
e
si
gn

al
s
ga

th
er
ed

fr
om

a
m
on

os
ta
tic

ul
tr
a

w
id
eb

an
d
ra
d
ar

M
W
Ip

ro
to
ty
p
e
sy
st
em

to
ca

te
go

riz
e
b
re
as

tt
um

or
m
od

el
s
in

a
va

rie
ty

of
si
ze

s
an

d
fo
rm

s.

M
L
al
go

rit
hm

s
ar
e
ta
ilo

re
d
to

d
et
ec

tt
he

tu
m
or
.

K
N
N
,N

B
,a

nd
D
T
ar
e
us

ed
to

cl
as

si
fy
.

O
n
a
ho

m
og

en
eo

us
b
re
as

tp
ha

nt
om

,K
N
N

ac
hi
ev

ed
96

.2
%

cl
as

si
fi
ca

tio
n
ac

cu
ra
cy

,h
ig
he

r
th
an

D
T
an

d
N
B
M
L
cl
as

si
fi
er
s.

B
re
as

tl
es

io
ns

14
1

20
20

✗
✓

A
fu
ll
he

ad
p
ha

nt
om

is
su

rr
ou

nd
ed

b
y
si
xt
ee

n
vi
rt
ua

le
le
m
en

ts
of

m
od

ifi
ed

b
ow

tie
an

te
nn

as
in

a
ci
rc
ul
ar

ar
ra
y
to

cr
ea

te
an

M
W
Is

ys
te
m
.

D
W
T
an

d
P
C
A
ar
e
tw

o
ne

w
m
et
ho

d
s
in
M
L
th
at

he
lp

w
ith

fe
at
ur
e
ex

tr
ac

tio
n
an

d
fe
at
ur
e
re
d
uc

-
tio

n.
Th

e
re
co

ns
tr
uc

te
d
im

ag
es

ar
e
th
en

se
g-

m
en

te
d
an

d
cl
us

te
re
d
to

lo
ok

fo
rs

ig
ns

of
he

m
or
rh
ag

e
an

d
st
ro
ke

us
in
g
S
V
M
.

Th
e
ex

p
er
im

en
tr
es

ul
ts

ho
w
s
th
e
ke

rn
el

S
V
M

co
ul
d
cl
as

si
fy

th
e
16

im
ag

es
w
ith

an
ac

cu
ra
cy

gr
ea

te
r
th
an

95
%
.

B
ra
in

st
ro
ke

https://doi.org/10.1038/s44303-024-00012-8 Review article

npj Imaging |            (2024) 2:13 5



health. Ionizing radiation or any other form of radiation and fluorescent
or radioactive tagging is neither required nor necessary. MWR can be
useful in preclinical and clinical research and the early stages of the drug
discovery process28.

Active MWI. Active MWI techniques involve inundating the area to be
inspected with electromagnetic signals operating at microwave fre-
quencies, sensing and collecting the energy reflected or scattered by the
part, and then using this data to form images. Tomography and radar-
based imaging are the two main types of active MWI.

MWI tomography. Microwave tomography (MWT) provides two-
dimensional slices or images of an object of interest (OI) using its
dielectric properties by measuring the changes in the electromagnetic
field. In most MWT techniques, antennas surround the OI in an
imaging chamber. Filling the imaging chamber with a substance that
connects the majority of the microwave electromagnetic energy to the
affected region increases the performance of the system.While testing,
every antenna will emit clockwise electromagnetic signals of one or
more frequencies. Due to dielectric property differences between the
OI and the matching medium and inside the OI, additional non-
transmitting antennas measure electromagnetic fields. The data is
processed into specialized algorithms, which provide 2D visualiza-
tions of the dielectric characteristics29.

Radar-based MWI (RBMWI). The radar-based MWI uses the reflected
signals collected due to the sudden variations in the electrical properties
of the OI material to construct the image. The MWT, on the other hand,
quantifies signals resulting from the overall OI material change30. There
are currently five categories that can describe developed radar-based
MWI systems31, namely: Confocal MWI (CMI)32, Multi-static adaptive
(MSA) system33–35, Tissue-sensing adaptive radar36,37, MWI via space-
time (MIST) beamforming38, and Holographic MWI (HMI)39.

HybridMWI. The goal of the design process for hybrid techniques is to
combine the benefits of multiple MWI approaches into a single
solution. Fundamentally, it’s based on combining two different
methods to achieve better outcomes. Some famous hybrid techniques
are explained herein.

History of MWI in healthcare contribution in clinical techniques
The contribution of E. Larsen and J.H. Jacobi in the 80’s can be seen as the
catalyst for a significant research and development endeavor focused on
near-field MWI techniques related to Industrial, Scientific, and Medical
applications. The initial work of this domain is the construction of
remarkable images of isolated perfused dog kidneys introducing a fresh
perspective on microwave imagery, which had previously been primarily
directed toward far-field radar target imaging40. In the 1980s, Rosen dis-
cusses 6 Giga Hertz (GHz); microwave thermography used to detect breast
cancer.An evaluationof the antennapower patternwasdone, and it showed
that almost all the energy received at 6GHz originates within the 3mm skin
layer overlying the breast. Second, that resolution is likely to be limitedmore
by examination time than by the intrinsic power pattern of the antenna41. In
the 1980s, the MWI applications in healthcare increased like diagnostic42,
and medical applications43. In the 1990s, MWI has undergone significant
advancement. Embracing both microwave tomography and radar-based
imaging. Moreover, extensive research and clinical trials have been con-
ducted to enhance the precision and dependability of microwave breast
imaging.

Computer-aided detection (CAD) systems have also been introduced
to facilitate interpreting MWI results. The noticeable work in that decade
includes tissue blood content changes44, tissue assessment45, newapproaches
for breast cancer detection46–48, ex vivo breast cancer experiments with
MWI49, MWI camera for image reconstruction for biomedical
applications50, microwave tomographic scanner51. In the 2000s, breast
cancer detection, ongoing progress, and MWI technology enhancement
were observed. Numerous clinical studies and trials have been conducted to
evaluate the efficacy and safety of microwave breast imaging thoroughly.
Furthermore, researchers are exploring the potential applications of MWI
for other important areas, as seen in the 1990s. In 2000 for the first time, an
active clinical MWI-based prototype was designed to report that a clinical
prototype of an MWI system had been developed. Using a 16-element
transceiving monopole antenna array of 300–1000MHz this system illu-
minates the breast52.

In this score years, much work has been done for MWI applications,
such as breast cancer detection. New and better approaches are proposed,
like MWI for breast cancer detection and 3-dimensional tumor
localization53, MWI for breast cancer detection via space-time54,
3-dimensional MWI breast cancer screening55, Active 3-dimensional MWI

Fig. 1 | Working principle of MWI techniques.
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prototype and experiment setup56. Not only breast cancer but researchers
also move to other organ imaging like the brain for stroke detection and
heart imaging. Semenov et al.57 investigate whether alterations in dielectric
properties could indicate physiological changes in the myocardium of
canines resulting from a reduction in coronary blood flow, infarction, and
ischemia. Semenov et al.58 conducted a study on the dielectric properties of
canine myocardium during acute ischemia and hypoxia.

The feasibility of microwave tomography for detecting myocardial
infarction is being evaluated by examining the variations in dielectric
properties between normal and infarcted tissues. Images were obtained
from excised canine hearts that had experienced myocardial infarction for
two weeks59. Also, other applications, like conducting a research study in
developing microwave tomography for functional cardiac imaging60, three-
dimensional MWI for biomedical applications61, microwave tomography
for bone imaging62, 3-dimensional Bone imaging63,64, neoadjuvant che-
motherapy monitoring65, Differential MWI for brain stroke66, lung detec-
tion using frequency MWI67, lungs’ detection using MWI68, and human
Forearms: Pilot Study and Image Enhancement using MWI69. Many
improvedMWI-based biomedical equipment has beendesigned to advance
themedical care system in the lastfive years. Islam et al.70 developed a novel,
efficient, and affordable MWI system for breast imaging. To enhance the
performance of this system, the author has employed an iterative enhancing
technique. Furthermore, the author has designed a compact side-slotted
tapered slot antenna specifically forMWI. SAFE (ScanAndFindEarly) is an
MWI device designed specifically to screen and detect breast cancer at its
early stages. By utilizing completely safe electromagnetic waves, SAFE offers
valuable preliminary diagnostic information. Eliminating the need for
X-rays71. Moloney et al.72 proposed the first-in-human clinical investigation
of the Wavelia System72.

The use ofMWI to detect fractures in superficial bones such as the tibia
using a straightforward and practical setup is worth considering due to its
feasibility73. The validation of an experimental MWI system for real-time
monitoring of brain stroke in the post-acute stage is necessary74. The main
objective is to develop, implement, and verify a comprehensive device for
detecting and monitoring cerebrovascular diseases through microwave
technology. The created system is a compact and simple prototype with a
wearable antenna array of twenty-two elements. This array enables con-
tinuous real-time monitoring of the progression of a brain stroke75. Santos
et al.76 offer a systematic assessment of the efficacy of an air-operatedMWI
system in detecting thin fractures in superficial bones such as the tibia.
Moreover, it introduces a novel-conveniently sized setup featuring a single
Vivaldi antenna that conducts a semi-cylindrical scan of the limb. Ongoing
research efforts by scientists involve investigating advanced imaging algo-
rithms and refining hardware designs for improved accuracy, resolution,
and clinical applicability in MWI. Furthermore, there is a focus on inte-
grating this technology with other modalities used for medical imaging
purposes. The successful integration of MWI into routine medical practice
would vastly enhance personalized patient care through its potential ben-
efits. Figure 2 shows the taxonomy of the prominent history of the MWI
technique’s contribution to the healthcare domain.

State of Art MWI techniques for disease detection
Bones. Alkhodari et al.77 proposed human bone density monitoring
using MWT. Using the reconstruction approach, the human bone
representations of different thicknesses were developed. Based on the
results of this research, MWT shows its excellent potential as a bone
imagingmodality because it employs non-ionizing radiations to produce
high-quality images. Laskar et al.78 study’s overarching goal was to
determine not joint temperatures recorded using the quick and simple
MWR technique may indicate inflammation without obvious clinical
symptoms. In evaluating individuals with rheumatoid arthritis and
spondyloarthritis, the author expected that MWR might prove useful.
Subclinical and overt inflammation is reflected in elevatedMWR-derived
joint temperature, suggesting its potential use as a biomarker in arthritis.
Goryanin et al.28 explain in detail the biomedical applications of MWR.

Skin. Owda et al.79 presented using millimeter-wave (MMW) passive
radiometry as a non-contact sensor that could detect skin diseases and
disorders without requiring invasive procedures. The author used
90 GHz radiometry to measure the reflectance of two groups of people:
one group of 60 people with healthy skin, with an equal ratio ofmales and
females, and another group of 60 people with skin ailments and diseases
such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC),
burn wounds, and eczema. Radiometry studies demonstrate a con-
siderable difference in reflectance comparing fine and afflicted skin,
ranging from 0.02 to 0.27. Based on these results, non-contact sensing
techniques like radiometry may detect and differentiate between healthy
and diseased skin. MWR could be utilized to detect skin diseases and
anomalies without causing any harm to the patient.

Brain. Amin et al.80 proposed experimental phantoms of healthy and
diseased human calcaneus bones that were used to collect data. The
research focuses on the distorted born iterative method (DBIM) algo-
rithm and its application in monitoring skeletal health. This research is
the first technique to employ MWI for imaging bone health. Henriksson
et al.81 proposed a portable electromagnetic tomography brain scanner
prototype for human clinical studies. The scanner was reliable and safe
enough for use in a clinical investigation. The preliminary study invol-
ving healthy participants and stroke patients who underwent testing with
a mobile electromagnetic scanner was successful. The study aimed to
demonstrate the technology’s clinical safety and effectiveness in identi-
fying ischemic from hemorrhagic strokes. The scanner’s efficacy and
safety were confirmed in non-healthy and healthy patients, with pre-
liminary research suggesting it can spot brain damage in stroke victims.
Goryanin et al.82 proposed preliminary egg white microwave emission
investigations during ethanol-induced denaturation. The author dis-
covered that microwave emissions changed without changing water
thermodynamic temperature. Thermodynamic temperatures and
microwave emissions showed remarkable differences. Thus, contrary to
popular opinion, these two processes are not connected. Diseases like
stroke and brain degeneration cause increased microwave emissions.
Protein denaturation, not thermodynamic temperature, causes this
phenomenon. The author’s research may explain the postmortem
microwave emission increase. These research findings could inspire new
diagnostic methods. Alagee et al. proposed83 VIVALDI antenna having a
6.62 dB gain at 2.33 to 7.09 GHz. U-shaped antenna slots boost perfor-
mance. Etching U-shaped slots improves return loss, bandwidth, and
gain by 35.28%, 2.7%, and 10%. The Computer Simulation Technology
(CST) package created a four-layer spherical head phantom to test the
MWI antenna. The confocal RBMWI is used to reconstruct the image
from the scattering parameters collected from the designed antenna for
brain stroke detection. Rodr et al.75 proposed a compact and low-
complexity device for cerebrovascular disease detection and monitoring
via microwave technology. The device features a wearable antenna array
with twenty-two elements and enables real-time tracking of brain stroke
evolution. The imaging algorithm utilizes a differential scheme, recon-
structing three-dimensional images using scatteringmatrices collected at
two different time points. The system is validated through numerical and
experimental testing, demonstrating accurate localization and monitor-
ing of hemorrhage and ischemia zones with centimetric spatial resolu-
tion. Liu et al.84 proposed full-waveform autofocus inversion
thermoacoustic image reconstruction for non-contact, radiation-free
stroke diagnosis. Simulations and measurements update a sound speed
distribution-numerical simulation of a human brain model and experi-
mental validation of transcranial thermoacoustic detection in the clinic.
Li et al.85 proposed orthotopic glioblastoma in vivo could be eradicated
precisely and effectively with a pulsed microwave-induced thermo-
acoustic therapy (MTA). Fedeli et al.86 introduce a hybrid MWI method
that combines fast qualitative processing with accurate brain dielectric
property tomography. This method creates microwave images from
simulations and experiments. Three-dimensional, realistic stroke-
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affected head models and simplified cylindrical phantoms validated the
approach numerically and experimentally. The proposed method may
lead to a functional clinical imaging prototype in both settings.

Breast. Hosseinzadegan et al.87 proposed two dimensional (2D) discrete
dipole approximation (DDA) for rapid MWT reconstruction. Recon-
structing images from synthetic finite element-based solver data and
experimentalMWIdata validates the technique. Thismethod reproduces
a 2D cylinder phantomplane in this study. Rebuilding an image takes less
than 6 s using the author-proposed forward solver and the nodal adjoint

method for calculating the Jacobian matrix. Kaur et al.88 proposed a
monostatic RBMWI system using a rectangular dielectric resonator
antenna (DRA) with a Sierpinski fractal-defected ground structure,
which has been simulated and experimentally tested for ultrawideband
(UWB) operation to detect breast tumors. High-peak gain fractal DRA
covers UWB ranging from 5.6 to 14.2 GHz, having 5.8 dB gain. Breast
phantomS-parametermeasurements detect tumors. The fractal DRAhas
rotated 10° in elevation and azimuth in front of the phantom to collect
backscattered signals (with/without tumor). Gelatin (skin), petroleum
jelly (fat), and wheat flour (tumor) breast phantoms validate

Fig. 2 | Taxonomy of Evolution ofMWI techniques in Biomedical Domain. Legends : 197940, 198041, 198342, 198643, 199144, 199447, 199645, 199948, 200052-57, 200258, 200359,
200460,61, 200856, 200955, 201162, 201263, 201365,69, 201567, 201668, 201864, 2019–202370–76.

Fig. 3 | A topology of the general working principle of ML and DL techniques.
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S-parameters. MATLAB reconstructs 2D breast tumor images using
delay-add-sum with coherence factor and delay-multiply-add-sum with
coherence factor from reflection parameters. The breast phantom’s
simulated specific absorption rate of the proposed DRA at 6.1 and
13.9 GHz was 1.02 and 1.13W/Kg, safe for human exposure and efficient
with natural dielectric properties. Finally, the monostatic radar-based
confocal MWI algorithm located the tumor in the phantom. MATLAB
created the tumor image from CST data.

Kaur et al.89 proposed a monostatic RBMWI system for breast cancer
detection. In RBMWI, the designed DRA is placed parallel to the breast
phantom and rotated around it at 10° elevation and azimuthal, first without
and then with the tumor. MWI uses 1080 impedance band backscattered
signals. The fabricated antenna revolves around an artificial breast that
mimics the original properties to verify results.Wheat flour, petroleum jelly
(fat), and gelatin simulate breast tissue (tumor). The vector network ana-
lyzer (VNA) recorded backscattered signals from the artificial breast
phantomwith andwithout tumors at variouspositions and times.Delay and
sum (DAS) andDelaymultiply and sum (DMAS) beamforming algorithms
processed S-parameters. MATLAB digitizes these signals to detect breast
cancer. DMAS detects and characterizes the size of the breast tumor, while
DAS detects it. Zhou et al.90 proposed studies on ultrasound-guided
microwave ablation (MWA) for non-puerperal mastitis (NPM). MWA
treatment is effective for NPM with tiny lesions in one quadrant. Larger
tumors in two or more quadrants benefited from MWA with incision and
drainage. The use of MWA in the study and treatment of NPM shows
promising results. Rodriguez et al.91 presented a novel MWI device cali-
bration method using real-world measurements and synthetic simulations.
The suggested method corrects manufacturing tolerances and positioning-
induced antenna array differences from the nominal electromagnetic (EM)
scenario. Adult head tissue MWI is measured virtually and experimentally.
Full-wave virtual EM analysis software employs the finite element method
and accurate three-dimensional computer-aided design models.

Lungs
Emilov et al.92 aims to assess the MWR’s efficacy in identifying pneumonia
with complications in individuals afflicted with COVID-19. The MWR
showcases an impressive prediction ability, boasting a sensitivity of 98.6%
and a specificity of 84.0%. In cases where chest CTmay not be accessible or
practical, the MWR of the lungs proves to be an effective substitute for
diagnosingpneumonia inCOVID-19patients. Table 1 summarizes the state
of the art in the application of MWI for disease detection.

Artificial intelligence assistance in MWI: techniques
and healthcare applications
Microwaves benefit from integrating AI algorithms and techniques as AI
enables advanced data processing, image reconstruction, and analysis93,94.
This integration enhances the accuracy and efficiency ofMWI in healthcare
applications by leveraging AI95. MWI can provide improved diagnostic
capabilities and support the development of innovative healthcare
solutions96.

AI algorithms
ML and DL are two subsets of AI. They employ algorithms to empower
computers in learning andmaking predictions based on data. However,ML
and DL possess certain similarities. They also diverge in terms of archi-
tecture, complexity, and application. Table 2 shows a summary of some
significant works recent in this domain. Figure 3 explains the basic tax-
onomy ofAI algorithms and also details the difference betweenML andDL.

ML algorithms. ML algorithms are created to learn patterns and make
predictions through training on either labeled or unlabeled data. ML
algorithms often employ feature engineering, which involves human
experts manually extracting important features from the data to train the
model. CommonML algorithms include linear regression, decision trees,
support vector machines, and random forests97. These algorithms are

generally easier to interpret, demand fewer computational resources, and
apply to tasks with restricted data orwell-defined problemdomains.Here
are the famous ML algorithms used in MWI.
a. K-nearest Neighbour (KNN): The KNN works on the principle that

similar data points tend to cluster together; hence items should be in
the same class. For the selected value ofK, the algorithms find theKNN
of the unseen data basedon the distance between the existing point and
the new one. Distance metrics can be Euclidean, Manhattan, or
Minkowski. A similar approach is used for regression despite the class
target value being selected98.

b. K-means Clustering: algorithm performs a series of iterative centroid
calculations until the optimal centroid is found. As an outcome, the
entire number of clusters has already been determined. Flat clustering
is another name for this approach. The term “K-means" describes the
maximum number of clusters obtained from a dataset using this
method. Then assigning data points to clusters, this method uses a
distance measure that minimizes the sum of squared differences
between each data point and the cluster centroid. There will be more
occurrences of identical data points inside the same cluster if there is
less variation between clusters99.

c. Support Vector Machine (SVM): To classify data points, SVM algo-
rithms typically explore for a hyperplane in N-dimensional space (N
being the number of characteristics). The closer data points of a
support vector canmodify the locationandorientationof ahyperplane.
These helper vectors maximize the classifier margin. Removing
support vectors shifts the plane’s coordinates. These factors underpin
SVM100.

d. DecisionTree (DT): Classification is themost common use ofDTs. It’s
a tree-shaped classifier with internal nodes for dataset features,
branches for decision rules, and leaf nodes for results. Decision trees
have a decision and leaf nodes. Decision nodes make decisions, while
leaf nodes show the results of previous decisions. Decisions and tests
are based on dataset features101.

e. RandomForest (RF): A random forest algorithm comprises numerous
DTs. The ‘forest’ generated by the random forest algorithm is trained
using bagging or bootstrap aggregation. The goal of the meta-
algorithm known as “bagging" is to increase the accuracy of ML
algorithm ensembles. Following the predictions made by the decision
trees, the algorithm (random forest) makes a call. It makes predictions
by taking the mean of the outputs of multiple trees. As more trees are
added, the prediction becomes more precise. A random forest lifts the
limitations of a DT algorithm. It improves precision by lowering the
propensity to overfit data102.

f. Extreme Gradient Boosting (XGBoost): In terms of regression,
classification, and ranking, this parallel tree-boosting library is
unrivaled. Some ML algorithms needed for XGBoost are
supervised learning, decision trees, ensemble learning, gradient
boosting, etc. Supervised ML can predict unlabeled features in a
new dataset using the labels and features used to train a model. By
dominating the structured data competitions onKaggle, XGBoost
quickly rose to prominence. These implementations have
popularized XGBoost103.

DL algorithms. DL algorithms, a subfield of ML, draw inspiration from
the intricate structure and functioning of the human brain. These algo-
rithms employ artificial neural networks with multiple layers to acquire
intricate data representations automatically by doing so. They can learn
directly from raw data and remove the necessity for explicit feature
engineering within various domains like computer vision, natural lan-
guage processing, andmore. Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) are popular DL architectures. DL
algorithms excel in tasks demanding extensive data processing and have
achieved impressive state-of-the-art outcomes in areas such as image and
speech recognition, natural language understanding, and generative
modeling. However, it is important to note that DL models often require
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significant computational resources and vast amounts of labeled data to
train effectively104.
a. Artificial Neural Network (ANN): These networks mimic their bio-

logical counterparts by borrowing critical concepts fromhumanneural
systems. An ANN model’s specific function is to simulate the brain’s
and nervous system’s electrical activity. AnANN’s node layers include
an input layer, a hidden layer(s), and an output layer(s). Each “node" is
an artificial neuron that interacts with one another via weight and
threshold linkages. If a node’s output exceeds the set threshold, it
becomesactive andpasses its data on to the next network layer. If this is
not the case, no information is passed to the lower layer of the
network105.

b. Convolutional Neural Networks (CNN): In AI, a CNN is a network
optimized for processing data with a grid-like topology, such as an
image. Visual information is encoded in a binary format known as a
digital image. There are several squares, or pixels, laid out in a grid, and
those squares have numbers associated with them that indicate the
intensity and color of the pixels they represent106.

c. Autoencoders: are feedforward neural network subtypes with identical
input and output. They reduce the number of dimensions of the input
and use that representation to reconstruct the output. Latent-space
representation is a compressed version of the input107.

d. Generative Adversarial Neural Network (GAN): Two NNs in a DL
model, a GAN, use a competitive learning process to improve their
predictive abilities. GANs typically operate unsupervised in their
learning process and employ a cooperative zero-sum game structure.
GANs are composed of two neural networks, the generator, and the
discriminator. The discriminator and the generator both use NNs, but
the generator uses a deconvolutional NN, while the discriminator uses
a convolutionalNN. The outputs produced by the generator aremeant
to be so realistic that they may be mistaken for actual data. The
discriminator’s job is to determine which inputs it receives
manufactured by the generator. In a nutshell, GANs generate their
datasets to learn from.The generatorwill start producingbetter-quality
output, and the discriminator will get better at identifying falsely
generated data, so long as the feedback loop between the adversarial
networks is running108.

e. Graph Attention Network (GAT): To overcome the limitations of
current systems based on graph convolutions or their approximations,
GAT proposes a novel NN architecture that can operate on graph-
structured data. By stacking layers in which nodes can attend over the
characteristics of their neighborhoods, a GAT enables implicitly
identifying distinct weights for various nodes in a neighborhood
without requiring any costly matrix operation (such as inversion) or
having to rely on prior knowledge of the graph structure109.

History of AI-assisted MWI in clinical setting and research
Wang et al.110 presented a neural network-based approach for MWI in
medical diagnosis for the first time. Themain objective is to reconstruct the
complex permittivity of biological tissues illuminated by transverse mag-
netic (TM) incident waves. To address the challenge of the ill-posed nature
of the inverse scatteringproblem,we introduce a stochastic process basedon
Markov randomfield and prior knowledge. Our proposed solution involves
a coupled gradient neural network that can effectively handle the mixed-
variable problem. The reconstructed dielectric permittivities are continuous
complex variables, while the line processes preserve the reconstructed
image’s edges are binary variables. Rekanos et al.19 proposed using radial
basis function neural networks (RBFNNs) in the inverse-scattering problem
for microwave medical imaging. The aim is to estimate tissues’ geometric
and electromagnetic properties by analyzing scattered-field measurements
obtained during electromagnetic wave illumination of the body. The
RBFNNs are trained using the orthogonal least-squares algorithm, allowing
for straightforward network construction and determination of free para-
meter values. The methodology is applied to detect and monitor leukemia
by estimating the position and size of proliferated marrow within a bone.

Kerhet et al.111 proposed a3-DapproachbasedonanSVMclassifier todetect
tumor locations using confocal MWI. Instead of solving the computation-
ally intensive inverse scattering problem, the SVM classifier transforms its
output into a posteriori probability of tumor presence. Microwave data,
including noisy environments, are generated using the finite element
method with impedance boundary conditions. The resulting probability
maps effectively highlight the region surrounding the tumor location, dis-
tinguishing it from the background of overall probability values.

Woten et al.112 explored using micromachined antennas operating at
microwave frequencies and anANNdetection tool for preprocessing tumor
detection. The antennas were designed to be compact, enabling an array to
be placed around the breast to concentrate the beam on the tumor. The
ANNoffered a statistical assessment of tumorpresencebyutilizing scattered
fields from the tumor. The network’s accuracy relied heavily on the training
procedure investigated in this research. Abbosh et al.113 employed a feed-
forward back-propagation neural network to detect and locate early breast
cancer using scattered signals from a three-dimensional breast model. The
proposed method achieves promising results, with 100% success in tumor
detection and 95% success in localization using the neural networks and
electromagnetic simulator. Yahya et al.114 proposed a combination of
wavelet transform and neural networks investigated for early breast cancer
detection and diagnosis. Using a three-dimensional breast model, the pro-
posed algorithm achieves promising results, with 100% success in tumor
detection. Themethod also demonstrates a high correct recognition rate for
tumor size, ranging from 65.52% to 100%, depending on the tumor radius.
Hahn et al.115 a systematic approach is introduced for designing phantoms
that closely resemble breast tissues in terms of dielectric properties and
realistic physicalmodels. The approach utilizes a regressionmodel tomatch
the dielectric properties of the phantoms with those of breast tissues. This
method can be applied to create phantoms for various tissue types using
measured dielectric properties, enabling the development of accurate
benchmarking phantoms for testing MWI algorithms.

Persson et al.116 utilized a head-worn antenna system to perform
microwave scattering measurements. The clinical objective of the project
was to enable early diagnosis and treatment of ischemic stroke patients, as
microwave systemshave the potential for prehospital use, allowing for faster
intervention compared to currentmethods. Themethod involves twomain
parts: image processing techniques are applied to prepare mammography
images for feature and pattern extraction, followed by the utilization of the
extracted features as inputs for supervised learning models such as Back
Propagation Neural Network (BPNN) and Logistic Regression (LR)117.
Gerazov et al.118 proposed that DL on a small dataset can improve tumor
classification in breast MWI simulations. The hybrid system achieved the
best results when DL feature embedding was combined with a standard
SVM classifier. The dataset was obtained from numerical simulations of
tumormodels embedded in homogenous breast adipose tissue in the Finite
Difference TimeDomain (FDTD). The accuracy obtained is 93.44%, which
outperforms already existing conventional ML techniques. Guo et al.119

offered a system for localization and classification using microwaves for
brain stroke aid. The MWI technique implemented is MWT, and the ML
algorithms that aid the system are k-means clustering and SVM. The Born
iterative approach feeds k-means clustering, used for feature extraction of
the brain’s dielectric profile’s amplitude. Clusters are feature vectors for
SVM creation and evaluation. For classification, MRI-derived realistic head
phantoms with varying signal-to-noise ratios are employed. The receiver
operating characteristic curve (ROC) is used to evaluate the efficiency of the
proposed framework. 2D categorization results show 91% sensitivity and
87% specificity. A DL approach is used to accurately estimate the total
electric field by leveraging a Born-approximated solution. The learned field
is further utilized to estimate the permittivity and conductivity, demon-
strating the method’s effectiveness in a 2D breast MWI problem120. Rana
et al.121 first use of the KNN classifier to detect breast cancer in MWI data.
The classifier predicts using only hyperspace feature proximity without
assuming anything about the data distribution. The author compared
neighboring feature vectors usingEuclideandistance.K = 1,whichuses 40%
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of training data, outperforms other NNs. Testing showed 0.608 (60.8%)
accuracy and 0.541 (54.1%) sensitivity. It correctly identified lesions in
66.77%of patients by using an SVM to develop a smart classification system
for helping doctors spot breast lesions using the MWI system. Statistical
measures and careful analysis revealed that the breast data might be clas-
sified using the quadratic kernel of SVM with a high degree of accuracy of
98%. Figure 4 shows the taxonomy of AI-assisted MWI in healthcare

State-of-Art techniques of AI-assisted MWI in disease diagnosis
Phlebology. Levsinskii et al.122 proposed a novel AI model, using MWR
data, has been developed for predicting the disease status of phlebology
patients. The model utilizes both MWR and infrared (skin temperature)
data from the lower extremities to create a feature space and build a
classification algorithm. This approach achieves a sensitivity exceeding
0.8 and a specificity surpassing 0.7. Additionally, the model delivers
advisory results presented in amanner comprehensible to clinicians. The
author’s objective of this research is to propose a model that dynamically
characterizes the condition of patients with venous system diseases based
on MWR and Infrared (IR) data. This initiative seeks to establish the
groundwork for an AI diagnostic system mechanism.

Bones. Beyraghi et al.123 investigate the viability of employing a deep
neural network (DNN) for diagnosing bone fractures by utilizing non-
invasive radio frequency wave propagation. In contrast to previous
methods relying on X-ray images, this approach involves training the
DNN with S-parameters profiles to circumvent labeling and data col-
lection challenges. This developed network can concurrently categorize
various intricate fracture types (normal, transverse, oblique, and com-
minuted) while estimating crack lengths. This system holds potential as a
portable device for swift preliminary diagnosis in emergency scenarios,

such as ambulances, retirement houses, and low-income settings where
expert radiologists may not be readily available. The datasets are gener-
ated by accurately modeling the human body and adjusting tissue dia-
meters to simulate diverse anatomical regions. Numerical results indicate
the successful training of the DNN without overfitting. To validate these
findings, the author conducted experiments on sheep femur bones cov-
ered by a liquid phantom, revealing that fracture types can be accurately
classified without resorting to potentially harmful and ionizing X-rays.
AI-aided diagnostic bone fracture detection system helps to gain
autonomy of the system by using DNN for classification and length
estimation of the bone crack without the need for an expert radiologist.
Moreover, the system’s portability makes it suitable for remote areas and
the problem of the dataset collection and labeling will be easily resolved
using an AI-based system.

Breast. Patel et al.124 conducted research to explore the working effi-
ciency of the breast cancer detection dataset collected by theUniversity of
Manitoba using ML algorithms. Different experimental conditions and
data manipulations have resulted in multiple dataset versions namely
generation one and generation two. The author uses a pre-processed
version of this dataset to train high-quality ML models, alleviating some
of the models’ computational burdens. Once a dataset has been assem-
bled, it is immediately put through a train-test split so separate data sets
can be used for training and testing models. This method was applied to
testing multiple models, and the important metrics for comparing them
were extracted. Maximum accuracy for DT was 84%. Using random
forest, the author obtained 94% accuracy. Obtained 84% using XGBoost
on the Breast Cancer dataset using MWI setup for data collection. The
results show the promising contribution of ML in the detection of breast
cancer.

Fig. 4 | Evolution of AI-assisted MWI in biomedical applications.

https://doi.org/10.1038/s44303-024-00012-8 Review article

npj Imaging |            (2024) 2:13 11



Peli et al.125 classify tumors inmagnetic resonance images asmalignant
or benign based on theirmorphological features; a preliminary investigation
was conducted using three classifiers where KNN outperforms with the
accuracy of 85% than linear discriminant analysis (LDA) and support vector
machine (SVM).

Conceiccao et al.126 proposed a monostatic MWI prototype system for
tumor-filled breast phantoms at 1–6 GHz. These tumor replicas were
implanted into one of two breast phantoms, one with a uniform cellular
structure for breast homogeneity and the other with groups of fibro
glandular resembling tissueproperties forheterogeneity.TunedNaiveBayes
(NB)127, Decision Trees (DT)101, Principal Component Analysis (PCA)128,
andKNNclassifierswereused toclassify cancerous cells fromhealthy one in
the breast phantoms.KNNclassified tumormodels in breast phantomswith
a 96.2% accuracy in the classification task. The KNN algorithm out-
performed the DT and NB classifiers in global classification.

Chen et al.129 demonstrate that dividing breast tumors into benign and
malignant types based on their dielectric properties is a viable option. By
modeling the human breast in COMSOL Multiphysics, the author gets
experimental data by measuring the electric field amplitude of several
samples. Microwave signal analysis using SVM differentiates between
benign andmalignant breast cancers. Sami et al.130 implemented both linear
and polynomial kernels to evaluate SVM’s efficacy. The model is examined
using feature extraction and dimensionality reduction. For dimensionality
reduction, the author used PCA. On MWI’s dataset, SVM’s specificity and
sensitivitywere assessed.Testing datawas 94%accurate. Polynomial kernels
used second- and third-degree polynomials. SVM training used 75% of the
data. SVMs with polynomial kernels have 99.7% accuracy on K-fold cross-
validation131.

Ambrosan et al.132 proposed an ANN real-time quantitative MWI
strategy. The author suggests improving recovery performance and time
processing using numerical studies by optimizing neural networks focusing
on MWI in breast analysis. This is an essential step in future diagnostic
applications. The twomain steps are defining and creating a neural network
training database and designing and analyzing neural network topologies.
The approachwas evaluated in numerically noisy settingswith varying SNR
values, demonstrating its robustness against noise. The outcomes of quali-
tative andquantitative comparisons to standardnonlinear inverse scattering
techniques are extremely encouraging. Employing quantitative MWI and
NN can be a viable alternative to traditional medical imaging procedures
because they are less expensive, safer, faster, and quantitative, and ideal for
assisting medical decision-making.

Li et al.133 explored newways to automate the search for optimal neural
architecture to boost classification performance. After determining the
network architecture, the author explored improving the weights of the
weight-agnostic neural network with the bi-population covariance matrix
adaptation evolution strategy (BIPOP-CMA-ES). Results: The experimental
subjects were 4912 patients with known breast cancer risk profiles. The best
overall performance was found in the weight-neutral BIPOP-CMA-ES
model. It achieved an F1 score of 0.933, 97.32% accuracy, 97.29% precision,
94.42% recall, and 163 associations. The model’s results show promise for
MWR as a diagnostic tool for cancer diagnosis based on neural networks.
The total performance can be enhanced by decoupling the topology search
from weight training.

Zhang et al.134 for sparse data reconstruction and breast cancer
detection proposes DL-enabled microwave-induced thermo-acoustic
tomography (DL-MITAT). FPNet+ResU-Net is the network for trans-
forming domains. Explanation of the design and implementation of the
network. The DL-MITATmethod is evaluated via computermodeling and
ex vivo breast phantom experiments. The trained network outperforms
conventional imaging algorithms by using fewer artifacts and producing
higher-quality images. A breast tumor image can be reliably recovered from
15 measurements in ex vivo experiments.

Alkhatib et al.135 proposedDL frameworks comprised of convolutional
layers in deep NNs (DNN) to aid tumor detection, localization, and char-
acterization using scattering parameters and metadata characteristics.

Compared to existing methods in the literature, the created DL framework
provides state-of-the-art tumor detection, localization, and characterization
results. These encouraging findings show the possibility and advantages of
using DNNs trained on real-world scattering parameter observations to
perform breast MWI.

Shao et al.18 proposed a neural network that can translate measured
microwave signals received froma24 × 24antennaarrayoperatingat 4 GHz
into an image of 128 × 128 pixels. To lessen the difficulty of training, the
author first created an autoencoder that represented high-resolution images
128 × 128 as 256 × 1 vectors; then created a second neural network that
mapped microwave signals to the compressed features 256 × 1 vectors.
When both NNs are effectively built, they can be joined to form a complete
network for reconstruction. The two-stage training technique makes it
easier to train DL networks (DLNs) for inverse reconstruction. Simulated
instances and experimental data verify the proposed NN, including objects
of various forms and sizes, locations, and dielectric constants ranging
from 2 to 6.

Ekblom et al.136 aim to investigate the feasibility of using a GAN to
generatemicrowavedata to supplement the current dataset and improve the
effectiveness of a stroke detection algorithm.The research’smain difficulties
stem from the limited data set size and the complex nature of the samples.
To generate the data, a ConditionalWassersteinGANwas used. The author
also decided to look into the effects of including DeLiGAN137 because of the
low data regime. The methods for assessing GAN-generated data are also
discussed in this paper. A separate classifier network is used to assess the
generated data’s accuracy. Classification problem evaluations and dis-
tribution coverage visualizations show that the generated data are of high
quality and accurately represent the distribution of the original data.
Nonetheless, the findings also demonstrate that the generated data is not a
perfect substitute for the real data and is judged to be lacking in somequality
measures. Nevertheless, the paper results are encouraging, and it is con-
cluded that it is possible to generate microwave data that will be used for
stroke detection, with great scope for further improvements.

AlSaffar et al.138 proposed a graph model formulation solution to the
MWI problem. The geometric network uses system topology to process the
data most effectively while being lightweight. It was discovered that a basic
model with only 2432 parameters was sufficient to reconstruct images with
satisfactory performance. Because node-level computation only generates
partial solutions, the model cannot see the final solution until it is aggre-
gated. The model’s ignorance of the overall answer was advantageous in
several ways, including that it automatically allows the model to generalize
since the sum of any number of partial solutions can equal any number of
total solutions. For the same reason, it inevitably implies that the model is
immune to overfitting.

Edward et al.139 demonstrated the impressive ability of a neural net-
work, trained using synthetic data, to analyze experimental data through
parametric inversion accurately. This neural network effectively extracted
relevant prior knowledge, such as the geometry andaverage complex-valued
permittivity,whichare crucial for understanding thefibroglandular tissue in
a simplifiedmodel of the human breast. The neural network can also detect
the geometry of the convex hull of the phantom. Ambrosanio et al.132

proposed an ANN approach for efficient and real-time quantitative
microwave breast imaging. The work includes numerical analyses to opti-
mize the network architecture, enhance recovery performance, and reduce
processing time within the microwave breast imaging framework.

Albaaj et al.140 objective was to develop an application using
MATLAB for breast tumor detection and determination through
image processing. The study utilized UM-BMID as an open-source
experimental database. The paper focuses on template design, algo-
rithm formation, and key features such as image acquisition, noise
reduction, tumor region identification, and marking. A Graphical
User Interface (GUI) is incorporated for user-friendly interaction,
providing information on tumor severity and necessary steps for
treatment. SVM is employed for breast cancer detection using MWI,
improving accuracy and reducing false positives and negatives.
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Brain. Ojaroudi et al.141 propose a unique ML-based post-processing
method for detecting brain hemorrhage stroke utilizingMWI equipment.
MWI uses a circular array of sixteen modified bowtie antennas around a
head phantom in CST medium-a novel ML method using the feature
extracting discrete wavelet transform and reduction inducing PCA. After
SVM segmentation and clustering, a reconstructed image is used to
identify bleeding strokes. The simulations showed the method could
accurately locate and categorize bleeding targets.

Roohi et al.142 proposed an MWI-based method for detecting and
classifying intracranial hemorrhage strokes using ML techniques. Sixteen
modified bow-tie antenna elements are arranged in a circle around a mul-
tilayer head phantom serving as an intracranial hemorrhage target. The
system is modeled in the CST simulator. K-means and fuzzy clustering,
edge-detection-based segmentation, and filtering algorithms are just some
of the new compound KNN approaches used to discern between healthy
and diseased brain structures from rebuilt images.

Mariano et al.143 proposed a technique to join ML with MWI for the
classification task focussing on brain stroke application. The author solved
the data collection challenge by using simulated and measured data. The
algorithm used is MLP for the classification task. He used a linear integral
operator for the model’s training that reduced the data generation time
concerning the standard full wave simulation. The dataset consists of nine
classes based on the kind and location of stroke in the brain. The total
samples are 4500, and the dataset is divided into 80% for training and 20%
for testing of the MLP. At the same time, the MLP is designed so that it has
four layers having 1000, 500, 250, and 100 neurons, respectively.

Khoshdel et al.144 proposed a 3D CNN U-Net trained with images
obtained via Contrast-Source Inversion (CSI) to reconstruct the real 3D
permittivity. To reconstruct CSI, the author synthesized the scattered
microwave field using 3D CSI images and true numerical phantom images.
Hossain et al.145, introducing a DL-based YOLOV5 object detection model
in the mobile head imaging system (MWHI) for automatically classifying
and detecting human brain disorders. The models are trained with 80% of
the images and then tested with 20%. Later, 20% the dataset is used to
validate the models once they’ve been trained on the remaining 80%. The
detection and classification outcomes are evaluated utilizing the YOLOv5
model in its three versions: YOLOv5s, YOLOv5m, and YOLOv5l. The
YOLOv5l model is more effective than its forerunners, YOLOv5s and
YOLOv5m, and the state-of-the-art object identification algorithms avail-
able today. For the YOLOv5l model, the final results were 96.32% accuracy.

Yago et al.5 proposed anovel approach for solving the inverse scattering
problem reliably and automatically. This approach combines qualitative
imaging techniques and DL in a two-step framework. In the first step, the
orthogonality sampling method processes scattered field measurements
into an image, providing an estimate of target shapes and encoding infor-
mation on their contrast values. In the second step, a neural network
retrieves the exact target shape and contrast value by treating the task as
image segmentation. The approach is validated using synthetic and
experimental data, including comparisons with existing literature, and its
potential for biomedical imaging is demonstrated through a numerical
example in microwave brain stroke diagnosis.

Ninković et al.146 a DL enhanced MWI approach for permittivity
estimation of head tissues in brain stroke diagnostics. The proposedmethod
leverages a U-Net neural network to predict inner boundaries based on
qualitative images obtained using truncated singular value decomposition.
Subsequently, the permittivities of the internal domains are iteratively
estimated using the distorted Born iterative method. The approach is
evaluated using a simplified but realistic head model comprising two
homogeneous tissues, demonstrating its potential for accurate permittivity
reconstruction in MWI applications.

Benefits of AI-assisted MWI systems
The recent literature review on the integration of Artificial Intelligence (AI)
into Microwave Imaging (MWI) systems underscores several potential
advantages. Machine Learning (ML) and Deep Learning (DL) techniques

enable AI to significantly enhance diagnostic accuracy by discerning subtle
patterns and anomalies inMWIdata,whichmaypose challenges for human
interpretation95. Moreover, AI contributes to the automation of repetitive
tasks within MWI analysis, alleviating the burden on healthcare profes-
sionals and potentially expediting the diagnostic process. Additionally, AI-
assisted MWI systems exhibit the capacity to improve both sensitivity and
specificity in disease detection, achieving a balance that minimizes false
positives and false negatives122. Furthermore, the continuous learning and
adaptation capabilities of AI models, informed by new data, result in
improved performance over time and ensure alignment with evolving
understandings of MWI patterns and diagnostic criteria.

Insights and pitfalls
Recent research advances in AI-assisted MWI systems have shown pro-
mising results, paving the way for developing clinically intelligent technol-
ogies with user-friendly features. However, several limitations must be
overcome before creating a sophisticated, seamlessly integrated solution
miming human capabilities.

Limited training data
AI models need a significant amount of high-quality training data to learn
patterns and generate accurate predictions effectively147. A significant con-
straint in AI lies in its capacity to make decisions when faced with incom-
plete or restricted information. Despite the capability of AI algorithms to
scrutinize extensive data sets and recognize patterns, they cannot compre-
hend context and formulate decisions guidedby intuitionor common sense.
Consequently, in scenarios marked by ambiguity or uncertainty, AI may
struggle to arrive at optimal decisions. Furthermore, the learning process of
AI systems is contingent upon the data they are exposed to. Consequently, if
the data harbors biases or exhibits gaps, the AI system might generate
decisions influenced by these biases, potentially resulting in inaccurate or
unjust outcomes. Nevertheless, it can be quite challenging to acquire diverse
and annotatedMWI datasets as only limited open-sourceMWIdatasets are
present. Researchers are currently dedicated to constructing comprehensive
and explainable curated datasets to enhance the performance and gen-
eralizability of AI models in the field of MWI148.

Generalization to different conditions
AI models dedicated to specific MWI datasets may struggle to achieve
robust generalization across a wide range of imaging situations, patient
groups, or hardware differences. The complexities of medical imaging
include a wide range of variables, such as varied imaging methods, patient
demographics, and various device configurations. As a result, the nuances
contained in the training datamay not fully represent the range of probable
events experienced in real-world medical applications. As a result, when
confronted with unexpected conditions or populations that were not well
represented during the training phase, the flexibility and generalizability of
such AI models may be jeopardized. This constraint highlights the impor-
tance of tactics that increase the inclusion and diversity of training datasets,
allowing for the development of AI models capable of performing
increasingly complex tasks149.

Interpretability and transparency
The lack of interpretability and transparency in AI models can be a lim-
itation in healthcare settings. In healthcare, it’s a big challenge when AI
models operate like mysterious “black boxes." This means their decision-
making is unclear, making it tough for healthcare professionals to grasp the
reasoning behind specific suggestions or predictions. This lack of trans-
parency makes it hard to build trust in AI systems, which is crucial for
seamlessly integrating them into healthcare practices. In the medical field,
where decisions directly impact patients, understanding AI outputs is
essential. Clear and transparent AI models not only foster better teamwork
between healthcare providers and AI but also help identify and address
potential biases or errors, ensuring the safe and effective use of AI in
healthcare150.
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Real-time processing
The imperative for real-timeprocessing in clinical settingsunderscores a key
challenge in the application of AI-assisted MWI, particularly when
employing DLmodels. While DLmodels exhibit remarkable capabilities in
discerning intricate patterns and generating insightful predictions from
voluminous data, their computational intensity can result in prolonged
processing times. The developed network architectures and the computa-
tions involved in DL can demand substantial computational resources,
potentially impeding the swift processing essential in clinical environments
where timely decisions are critical. Balancing the formidable computational
demands of DL models with the imperative for real-time applications
becomes a pivotal consideration in harnessing the full potential of AI-
assisted MWI within clinical settings. Striking this balance requires inno-
vations inhardware capabilities, optimization techniques, or the exploration
of alternativemodel architectures to ensure that the computational intensity
inherent in DL does not compromise the timely delivery of insights in
healthcare scenarios151.

Ethical considerations
The integration of AI technology introduces a myriad of ethical con-
siderations, prompting scrutiny and deliberation. Among the foremost
concerns are issues related to privacy, data security, and bias, which col-
lectively shape the ethical dimensions of AI in healthcare. The utilization of
AI in healthcare often involves the processing and analysis of sensitive
patient data, raising profound questions about the protection of individual
privacy. AsAI systems draw insights from vast datasets containing personal
health information, there is a compelling need to establish robust frame-
works that ensure the confidentiality and protection of patient data. Data
security emerges as another critical ethical facet, as the susceptibility of
healthcare systems to cyber threats poses a potential risk to the integrity and
accessibility of patient information. Security against unauthorized access
and breaches becomes imperative to maintain the trust and integrity of
healthcare AI applications152.

Validation and regulatory approval
Clinical practicemandates ameticulous process of validation and regulatory
approval, emphasizing the imperative of robust clinical trials. The essential
undertaking of clinical trials is integral to comprehensively assess the per-
formance of AI models, substantiate their safety, gauge their efficacy, and
ascertain their overall reliability in healthcare applications. These trials serve
as a pivotal mechanism to validate the clinical utility and suitability of AI-
assisted MWI, providing empirical evidence that informs regulatory
decision-making. Rigorous evaluation not only ensures the alignment of AI
models with established standards of medical practice but also patient well-
being by affirming the accuracy and dependability of these technologies.
Regulatory approval processes, often overseen by health authorities, play a
crucial role in validating the scientific merit and clinical validity of AI
applications, instilling confidence in healthcare professionals, and the
responsible deployment of AI-assisted MWI in diverse clinical settings.
Consequently, the convergence of systematic clinical trials and regulatory
scrutiny establishes a foundation for the ethical, safe, and effective inte-
gration ofAI technologies, reaffirming their credibility and utilitywithin the
rigorous framework of clinical practice153.

Integration with existing workflows
The seamless integration of AI-assisted MWI into extant healthcare
workflows emerges as a pivotal determinant for its practical adoption. This
underscores the necessity for the compactenss of AI technologies within the
established structures and processes of healthcare delivery. Practical adop-
tion hinges upon the ability of AI-assisted MWI to align with and enhance
existing workflows rather than imposing disruptive alterations. Achieving
this cohesion demands a nuanced understanding of healthcare processes,
workflow dynamics, and the specific needs of healthcare professionals.
Moreover, it underscores the importance of developing AI applications that
are intuitive, interoperable, and capable of seamlessly interfacing with

prevalent healthcare systems. The practical adoption of AI-assisted MWI
further necessitates considerations of user experience, addressing the
usability concerns of healthcare practitioners, and minimizing potential
disruptions to clinical routines. Human-centric design principles play a
crucial role in this context, ensuring thatAI technologies become supportive
tools rather than sources of additional complexity154.

Future directions
The future directions are discussed here in detail. Figure 5 shows the future
directions for AI-assisted MWI efficient development.

Intelligent fusion of modalities
Researchers are working on the fusion of different medical imaging mod-
alities and has been successful155. Similarly, AI-assistedMWI integrates with
other imagingmodalities, such asMRI, ultrasound, orX-ray, by intelligently
fusing complementary information frommultiplemodalities156. In that case,
clinicians can benefit from a comprehensive and synergistic imaging
approach, enhancing diagnostic accuracy and enabling personalized treat-
ment planning.

Real-time processing infrastructure
TinyML has the potential to significantly impact the development of a real-
time processing infrastructure for AI-assisted MWI (MWI), by optimizing
and compressing deep learningmodels. TinyML enables on-device analysis
of MWI data. This eliminates the requirement for extensive computational
resources and reduces latency. As a result, actionable insights can be gen-
erated immediately at the point of care enabling on-the-spot diagnosis,
treatment guidance, and surgical interventions. The compact and power-
efficient nature of TinyML allows for seamless and efficient delivery of real-
time decision support in AI-assisted MWI157.

Large language model in medical imaging
In medical imaging, large language models (LLMs) offer valuable con-
tributions, particularly in image captioning and radiology reporting. These
models excel at generating descriptive and contextually relevant text based
onmedical images, aiding healthcare professionals in the interpretation and
communication of intricate diagnostic information. This not only enhances
the efficiency of radiologists but also improves the clarity of reports for
referringphysicians.Additionally, LLMsplay a crucial role in supporting the
creation of comprehensivemedical knowledge bases, providingquick access
to pertinent information for healthcare practitioners. Their aptitude for
understanding and generating text facilitates the extraction and

Fig. 5 | Future directions for AI-assisted MWI efficient development.
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summarization of medical literature, ensuring that healthcare professionals
stay abreast of the latest research and developments. While LLMs may not
directly analyze medical images, their integration into healthcare systems
enhances natural language interfaces, automates documentation processes,
and elevates overall communication and information accessibility in med-
ical modalities158.

Adaptation from diverse imaging modalities
By analyzing how AI is effectively utilized in diverse imaging mod-
alities such as radiology, pathology, and diagnostic imaging, we aim to
extract valuable insights that can inform and potentially enhance the
development of AI-assisted MWI. Understanding the methodologies
and successes in these analogous imaging domains provides a foun-
dation for identifying commonalities, addressing challenges, and
discerning best practices. For instance, the deployment of AI in
radiology for tasks like image segmentation, detection, and classifi-
cation has demonstrated noteworthy advancements159. Analyzing
these applications offers a wealth of knowledge that can be applied to
optimize the adaptability, performance, and efficacy of AI algorithms
in the unique context of MWI. The integration of AI holds immense
potential for advancing MWI across multiple dimensions. AI algo-
rithms can substantially enhance the signal-to-noise ratio (SNR) and
contrast-to-noise ratio (CNR), contributing to heightened image
quality inMWI as they do in the case of CT angiography160 and PET161.
Furthermore, AI-driven feature extraction techniques can refine the
identification of relevant anatomical and pathological structures,
fostering more accurate diagnostic information. Predicting gold
standard parameters becomes more robust through AI, offering
clinicians valuable insights for precise medical assessments as it does
for other modalities162. Super-resolution and image reconstruction
benefit fromAI algorithms, enabling the generation of high-resolution
images with enhanced clarity. In terms of speed and dynamics, AI
optimization facilitates real-time data processing and can elevate
MWI’s applicability in dynamic clinical environments like in next-
generation healthcare and biomedical platforms163. Intelligent algo-
rithms can also contribute to hardware improvements, making effi-
cient use of existing resources and potentially obviating the need for
costly upgrades. AI-driven personalization, particularly through
prognosis prediction, empowers tailored healthcare solutions by
considering individual patient characteristics164, thereby promising a
transformative impact on the future landscape of MWI applications.

Explainable AI for enhanced trust
Ensuring the successful integration of AI-assisted MWI systems within
clinical settings is necessitated. A comprehensible AI framework that instills
confidence amongdoctors andpatients alike. The solution lies in harnessing
explainable AI technology, which empowers AI models to provide insight
into their purpose, intended consequences, and inherent biases. Decision
aids driven by AI facilitate the assessment of model precision, fairness,
transparency, and desired outcomes. For an organization to gain trust and
confidence in putting AI models into production, explainable AI is
necessary165.

Need of hybrid systems
As was previously mentioned, the researchers are attempting to develop
hybrid systems. The hybrid technique helps MWI by employing several
different methods to address the method’s shortcomings. Hybrid systems
allow for enhanced performance in clinical settings like superior diagnostic
accuracy through the integration of multiple technologies, enabling perso-
nalized treatment and real-timemonitoring for optimized patient care. The
researchers are currently working to make even more progress in this area

Portable AI-assisted MWI
Given the advantages of mobile imaging equipment for quality care and
clinical readiness in natural catastrophes, creating portable MWI devices is

an emerging field166. Portal AI-assisted systems can reduce the number of
modalities per year. However, for implementing AI models on portal
devices, the need for tinyML came so that a compressed-size model can
work fine on a small setup.

Development privacy-aware systems
Data privacy and security have become central concerns in modern life.
They deal with people’s private information rights, especially where AI is
involved. It can be beneficial for creating ML/DL-based apps that deal with
private information, like those in the healthcare, biometrics, and financial
sectors. By keeping user data private,MLmodels can guarantee the system’s
smooth operation and win over users’ confidence. As a result, AI-assisted
MWI systems that respect users’ confidentiality need to be created167.

Conclusion
In conclusion, the dynamicMWI andAI represent a transformative force in
modernhealthcare. The paper systematically navigated the landscape of this
synergy, emphasizing the pivotal role played by AI algorithms in advancing
the capabilities ofMWI techniques. The comparative analysis of priorworks
showcased the multifaceted applications of AI in both MWI for healthcare
and the broader context of AI assistance in MWI. This comprehensive
exploration not only highlighted the current state-of-the-art technology in
MWI but also illuminated its historical evolution, providing a contextual
backdrop for understanding the trajectory of intelligent systems within this
domain. As we delve into the extensive examination of prominent works, it
becomes evident that while substantial progress has been made, challenges
persist. The critical evaluation of these challenges, such as generalization to
diverse conditions, underscores the need for robust solutions to ensure the
reliability of AI-assisted MWI systems in varied clinical environments.
Recognizing these obstacles as opportunities for improvement, the paper
advocates for continued research and innovation to overcome the existing
limitations and pave the way for more resilient and adaptable systems.
Looking ahead, the paper not only celebrates the current advancements but
also ventures into the realm of future possibilities. In essence, the intersec-
tionofMWIandAInotonly signifies thepresent state of innovationbut also
holds the promise of a continually evolving and improved healthcare
paradigm.
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