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   Abstract: Background: In genetic association studies with quantitative trait loci (QTL), 
the association between a candidate genetic marker and the trait of interest is commonly 
examined by the omnibus F test or by the t-test corresponding to a given genetic model or 
mode of inheritance. It is known that the t-test with a correct model specification is more 
powerful than the F test. However, since the underlying genetic model is rarely known in 
practice, the use of a model-specific t-test may incur substantial power loss. Robust-
efficient tests, such as the Maximin Efficiency Robust Test (MERT) and MAX3 have 
been proposed in the literature.  

Methods: In this paper, we propose a novel two-step robust-efficient approach, namely, 
the genetic model selection (GMS) method for quantitative trait analysis. GMS selects a 
genetic model by testing Hardy-Weinberg disequilibrium (HWD) with extremal samples 
of the population in the first step and then applies the corresponding genetic model-
specific t-test in the second step. 

Results: Simulations show that GMS is not only more efficient than MERT and MAX3, 
but also has comparable power to the optimal t-test when the genetic model is known. 

Conclusion: Application to the data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
cohort demonstrates that the proposed approach can identify meaningful biological SNPs on 
chromosome 19.  
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1. INTRODUCTION 

The clinical importance and health relevance of many 
quantitative traits, such as diabetes, obesity, cholesterol level 
and blood pressure, has been recognized. Although quantita-
tive trait data is widely used in genetic association studies [1, 
2], there are relatively few studies on robust-efficient meth-
ods in this area. For genetic association studies with a quan-
titative trait locus (QTL), a linear regression model can be 
used to link the genotypic value and the phenotypic value 
and an omnibus F-test is applied to test the null hypothesis 
that the QTL is unliked. When the genetic model (or mode of 
inheritance) is known, the genotypic value can be coded ac-
cording to the underlying genetic model and effectively, the 
number of interesting parameters is reduced. This results 
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in a t-test for the null hypothesis, which is more powerful 
than the omnibus F-test due to the inclusion of extra infor-
mation on the mode of inheritance. However, it is also wide-
ly known that misspecification of genetic model may lead to 
substantial power loss of the t-test. Therefore, powerful tests 
that are robust to model misspecification, referred to as ro-
bust-efficient tests, are desired. 

Robust-efficient procedures have been well studied for 
qualitative trait analysis in case-control design. Common 
robust-efficient approaches to test the association between a 
qualitative trait and a candidate marker include the Pearson’s 
chi-square test with 2 degrees of freedom, Maximin Effi-
ciency Robust Test, MAX3 and genetic model selection [3-
6]. The last three methods are based on the Cochran-
Armitage’s trend test (CATT) [6-10]. The CATT is derived 
for a specified genetic model or mode of inheritance and is 
proved to be optimal in power when the genetic model is 
correctly specified. However, the CATT suffers from sub-
stantial power loss when the genetic model is misspecified, 
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especially when the dominant model is misspecified as a 
recessive model or vice versa. Maximin Efficiency Robust 
Test (MERT) linearly combines the extreme pair of CATT 
by considering the correlation between CATTs and has the 
highest minimum efficiency relative to the optimal test [11, 
12] among all linear combinations of the normally distribut-
ed optimal test statistics. MAX3 takes the maximum over the 
CATTs under dominant, additive and recessive models. The 
third type of robust approach is a two-step procedure known 
as genetic model selection (GMS). Hardy-Weinberg disequi-
librium coefficient has been examined and used to test asso-
ciation for the case-control design [13, 14]. It has been 
shown that the Hardy-Weinberg disequilibrium (HWD) con-
tains the genetic model information and can be used to esti-
mate the underlying genetic model for case-control design. 
The GMS test applies an adaptive procedure to select a ge-
netic model before applying an appropriate CATT. The 
MERT, MAX3 and GMS are shown to have good power 
performance across the common genetic models. 

However, there are relatively few studies on robust-
efficient methods in QTL study. Deng et al. [15] proposed a 
QTL mapping method by measuring and testing for Hardy-
Weinberg and linkage disequilibrium at a series of linked 
marker loci in extreme samples of populations. Inspired by 
how the genetic model information is extraction from data 
based on HWD in case-control design, we propose a GMS 
procedure, which is a two-step procedure similar to the GMS 
method in case control study.  In the first step, we estimate 
the genetic model by using the HWD calculated from ex-
treme individuals as in the study by Deng et al. [15]. In the 
second step, we apply the t-test corresponding to the genetic 
model estimated in the first step. We derive the asymptotic 
correlation between the t-test for recessive model and domi-
nant model. We also derive and adjust the asymptotic corre-
lation between HWD test and t-tests for different genetic 
models so that the GMS has approximately correct size. 
MERT and MAX3 for quantitative trait are another two can-
didate choices, which can be readily used for testing associa-
tion for a quantitative trait once the model-specific t-test 
statistics are obtained. Extensive simulation studies are con-
ducted to compare the GMS procedure with existing ap-
proaches. Real data analysis is also performed to illustrate 
the proposed approach. 

The rest of this paper is organized as follows. Section 2 
introduces notations, models and the theoretical results. Ex-
tensive simulation studies are implemented to examine the 
performance of the proposed methods in Section 3. In Sec-
tion 4, we apply the proposed methods to real data from a 
subsample of the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI). Conclusions and discussions are given in the 
last section. 

2. METHODS 

2.1. Notations and Models 

Consider a QTL with two alleles: A1 and A2. Allele A1 is 
assumed to be the risk allele and A2 is the reference allele. 
Allele A2 may also be regarded as all of the non- A1 alleles 
with similar genetic effects. Let p be the frequency of the 
allele A1 and q = 1 − p be the frequency of allele A2. Denote 

the three genotypes A1A1, A1A2 and A2A2 by gi, i = 0, 1, 2 re-
spectively. Let µ0 be the mean (genotypic value) for individu-
als with genotype A1A1 and µ1 and µ2 be the genotypic value 
of individuals with A1A2 and A2A2, respectively. The null 
hypothesis is established that there is no association between 
the locus and the trait, i.e. H0: µ0 = µ1 = µ2. The alternative 
hypothesis is H1: µ0 ≥ µ1 ≥ µ2 and at least one inequality 
holds. If we can determine the underlying genetic model, the 
H1 will reduced to two-dimensional plane, i.e., Hd: µ0 = µ1 > 
µ2 under the dominant model; Hr: µ0 > µ1 = µ2 under the 
recessive model; Ha: 2µ1 = µ0 + µ2, µ0 > µ2 under the addi-
tive model. 

The general linear model for a QTL is described as fol-
lows [16]. The phenotypic value of the jth individual with 
genotype gi in the population yij = µ + Gi + sij, i = 0, 1, 2, j 
= 1, 2, · · ·, ni.  µ is the mean baseline of the quantitative trait, 
Gi is the genotypic value at the QTL for the ith genotype, and 
sij represents a random variable for the combined effects of 
all the rest of the polymorphic QTLs and all random envi-
ronmental effects. Without loss of generality, we assume that 
µ = 0. Thus the genotypic value for the ith genotype is equal 
to µ0, µ1 and µ2, respectively, for genotypes A1A1, A1A2, and 
A2A2. We also assume that sij follows a normal 
tion  ! 0,!!! . 

2.2. Common Test Statistics 

To test the association between the candidate genetic 
marker and a quantitative trait, we can either use the F test 
with the alternative hypothesis H1 or t-test t.r, t.a, t.d for a 
given genetic model with alternative hypothesis Hr, Ha or Hd, 
respectively. The F test is derived by calculating the ratio of 
between-group variance and within-group variance, that is, 

! = !!(!!!!)!/!!
!!!

!!"!!!
!
/(!!!)!!

!!!
!
!!!

 (2.1) 

Under the null hypothesis, the F test follows an F distribu-
tion with degrees of freedom 2 and n − 3. When the genetic 
model is specified as one of the dominant, additive and reces-
sive models, the corresponding t-test can be derived as fol-
lows. 
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Under the null hypothesis, t.r, t.a, t.d follow the t distribu-

tion with degrees of freedom n−2. When the sample size is 
sufficiently large, we can use a standard normal distribution to 
approximate the t distribution. It is obvious that t.r, t.a, t.d 
are the correspondingly optimal tests for a known genetic 
model. As the above tests incorporate risk trend in the geno-
typic value, we call them trend tests as that in case control 
studies. In practice, the underlying genetic model is rarely 
known and the use of the trend test specified for a certain 
model could suffer from substantial loss of power if the genet-
ic model is misspecified. Therefore, it is essential to consider 
efficiency robust methods to protect against genetic model 
mis-specifications. The F test, MERT and MAX3 are three 
common robust tests. MERT linearly combines t.r and t.d by 
taking into account the correlation between them. The corre-
lation efficient between t.r and t.d denoted as ρrd equals 
!!!!/((!! + !!)(!! + !!)) asymptotically. Therefore, 

The MERT can be derived as follows, 

!!"#$ =
!.!!!.!
!(!!!!")

 (2.5) 

The MAX3, taking the maximum of three optimal 
tests under different genetic models, is given by, 

!!"# = max{|!. !|, |!. !|, |!. !|} (2.6) 

Thresholds to control type I error at level α for Zmert and 
Zmax are determined through equations PH0 (|Zmert| > cmert) = 
α and PH0 (Zmax > cmax) = α respectively. As Zmert is asymp-
totically normal distributed, we can use the theoretical quan-
tile as the threshold when sample size is large enough. How-
ever, it is hard to obtain the asymptotical distribution of Zmax. 
In this article, we will use Monto-Carlo method to obtain all 
these thresholds. 

2.3. Genetic Model Selection and Related Robust Test 

We assume that HWE is present in the population. The 
quantitative trait in the population then follows a mixture 
distribution of three normal distributions, each of which is 
weighted by the respective genotype frequencies in the popula-
tion. The probability density function is 
!(!) = !!!(! , !! , !!!) + 2!"#(! , !! , !!!) + !!!(! , !! , !!!) 
where !(!, !, !!) is the density function for the normal 
random variable with mean µ and σ2. 

For a given upper threshold U, extreme individuals are 
defined as those people with phenotype greater than U, 
that is y > U. Denote !!! = !(! > !|!!!!),   !!" = !(! >
!|!!!!),   !!! = !(! > !|!!!!)  be the probabilities to ob-
tain an extreme sample conditioning on the  genotypes, then: 

 
!!! = !(!!!!

!!
),!!" = !(!!!!

!!
),!!! = !(!!!!

!!
),        (2.7) 

where !(!,!,!!)  is the cumulative probability func-
tion for the normal random variable with mean µ and σ2. 
The proportion of the extreme individuals denoted as !!, 
can be computed as follows: 

!(! > !) = !!!(
!! − !
!!

) + !!"!(
!! − !
!!

)

+ !!!(
!! − !
!!

)

= !!!!! + !!"!!" + !!!!!. 

Similarly, for a lower threshold T, we can compute the 
proportion of the population with y < T by using the fol-
lowing relationship, 

!! = !(! < !) =

!!Φ(!!!!
!!

) + 2!"Φ(!!!!
!!

) + !!Φ(!!!!
!!

). 

It can be easily shown that the probabilities of a cer-
tain genotype and the risk allele given that the individual 
comes from the extreme population with y > U are re-
spectively, 
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= !!!!!
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and 

      ! !! ! > ! = ! !!! !! ! !!
! !!!

  

= !" !!! !!!! ! !!!! !! !!" !!! !!!! ! !!!! !!
! !!!

    (2.9) 

= !!!!!!!"!!"
!!

.  

The Hardy-Weinberg disequilibrium coefficient in the 
extreme population can be defined by the difference be-
tween the genotype frequency and the allele as follows, 

!!!!!|{!!!} = !(!!!!|! > !) − !!(!!|! >

!) = !!!!(!!!!!!!!!"! )
!!
! . (2.10) 

When the null hypothesis is true, i.e., !! = !! = !!, 
!!! = !!" = !!!, we have !!!!!! − !!"! = 0. When the 
underlying genetic model is dominant, i.e.,  !! = !! >
!!,!!! = !!" > !!! , thus !!!!!! − !!"! = !!"(!!! −
!!!) < 0. When the underlying genetic model is recessive, 
i.e., !! = !! < !!, !!" = !!! < !!! and !!!!!! − !!"! =
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!!!(!!! − !!!) > 0. When the genetic model is additive 
model, i.e.,  2!! = !! + !!, then 
!!!!!! − !!"! = Φ(!!!!

!!
)Φ(!!!!

!!
) − (Φ(!!!!

!!
))! can either 

be positive or negative and is close to 0 if both !! and  !! are 
close to zero (small or moderate effects). The signs of 
!!!!!|{!!!} under the dominant and recessive are opposite, 
indicating that !!!!!|{!!!} can be used to select a genetic 
model. 

Denote !! = !!"
!!
!!! , then !! follows a normal distribu-

tion with mean !! and variance !!!/!!, i = 0, 1, 2. We use 
!! = !! to estimate !!. The allele frequency of !! can be 
estimated by ! = (2!! + !!)/(2!! + 2!! + 2!!). Denote 
! = 1 − !. !!!, !!", !!!, !! are defined by estimating the 
unknown parameters !! , i = 0, 1, 2 and p in the expressions 
of !!!,  !!", !!! and !! by !!, i = 0, 1, 2 and ! respective-
ly. Therefore, Hardy-Weinberg disequilibrium coefficient 
!!!!!|{!!!} can be estimated by, 

!!!!!|{!!!} =
!!!!(!!!!!! −!!"! )

!!
. 

The Hardy-Weinberg disequilibrium test can be con-
structed by standardizing the disequilibrium coefficient as 
follows, 

!!!" =
!!!!!|{!!!}!!!!(!!!!!|{!!!})

!!!!!(!!!!!|{!!!})
.      (2.11) 

Under the null hypothesis, !!!(!!!!!|{!!!}) = 0 and 
!!!!!(!!!!!|{!!!}) can be calculated by the delta method. 
Details are provided in the Appendix (A1). The expectation 
of !!!" has the same sign as the Hardy-Weinberg disequilib-
rium coefficient !!!!!|{!!!}, therefore, we select the reces-
sive model if !!!" > !!; the dominant model if !!!" < !! 
and additive model otherwise. The thresholds !! and !! are 
two constants, which can be either prespecified or deter-
mined based on the data. Once the underlying model is de-
termined,  

the correspondingly optimal trend test could be applied. 
Such procedure is a two-step method, which extracts the 
model information from the data and cooperates them into 
the association test.  This data driven procedure is referred 
the GMS in this article. The choice of thresholds of  !! and 
!!  affects the accuracy of model selection. For example, if 
!! is relatively large and !! is relatively small, it is more 
likely to select the dominant (recessive) model as the reces-
sive (dominant) model, which is the situation we should al-
ways avoid. Therefore, one needs to choose  !! and !! care-
fully when applying the GMS method.  In this paper, we 
propose to determine the thresholds  !! and !!  by a data 
driven method. The main idea of the data driven procedure is 
to calculate the mean of the HWD statistics under different 
assumptions and use the midpoints as the thresholds to dis-
tinguish different genetic models. Denote, 

!(!,!, !) =

!((!!!!!!!!!!!)/!!!!!
)(!(!!!!!

)!(!!!!!
)!(!(!!!!!

))!)

!!
!!((!!!!!!!!!!!)/!!!!!

) !
!!
! !
!!
! !
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 (2.12) 

where 

!! =

(!!!!!!
!!

)!!(!!!
!!
)+ (!!!!!!)(!!!!!!)

!!!
!(!!!

!!
)+

(!!!!!!
!!

)!!(!!!
!!
).  

For a given genotypic value  !, it is obvious 
that  !(!, !, !), !(!, !,−!), !(!, 0,−!) and !(!,−!,−!) are 
the asymptotic mean of !!!" under the null hypothesis and 
three different genetic models. Estimators of these four val-
ues are denoted by !!"##, !!"#, !!"" and !!"# respectively. It 
is easy to show that !!"# < !!"" < !!"#. Therefore, thresh-
olds for model selection can be sensibly determined as the 
midpoints of points !!"# and !!"", of points !!"" and !!"# 
respectively. Specifically, !! = (!!"# + !!"")/2 and 
!! = (!!"" + !!"#)/2. To control type I error at level !, we 
need to find the threshold !! under !! such that: 

!!!(!!!" > !!, !.! > !!)+ !!!(!!!" < !!, !. !
> !!)+ !!!(!! < !!!" < !!, !.! > !!)
= !  

The threshold !! can be obtained analytically by the delta 
method and the asymptotic joint multivariate normal distri-
bution of !!!" and t.r, t.d or t.a when the sample size is 
moderately large (details to derive the expression of the cor-
relations between !!!" and the trend tests t.r, (t.a, t.d) are 
provided in Appendix A2). Our simulations generate 10000 
independent datasets under the null hypothesis by 
resampling method and using the empirical quantile as the 
critical value. 

3. RESULTS 

3.1. Simulation 

We first evaluate the accuracy of the model selection 
procedure under various scenarios. We also check the per-
formance of the GMS and compare it with the other meth-
ods, including the F test in (2.1) (denoted by F in the figures 
and tables), the trend tests in (2.2), MERT, !!"#$ in (2.5) 
and the MAX3 test, !!"# in (2.6). Data are generated under 
54 simulation settings. The population allele frequency p is 
taken to be0.1, 0.3, or 0.5. Sample size is set at n = 200, 500, 
or 1000. The genotypic value is µ = 0.1, 0.5, or 1. Three 
genetic models are considered in the simulation: the domi-
nant (DOM), the additive (ADD) and the recessive (REC). 
Effective sample proportion (ESP) defined as the proportion 
of extreme individuals is ! = 5%, or 10%. Each simulation 
is replicated 10000 times. Simulation results show that the 
model selection accuracy increases with the allele frequency, 
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the genotypic value, the sample size and effective sample 
size proportion (Fig. 1).  

Table 1 reports the accuracy of the genetic model selec-
tion for a moderate allele frequency and sample size, i.e. p 
= 0.3 and n = 500 for different genotypic values. From 
Table 1 we can see the model selection accuracy is high 
for a moderate genotypic value. For example, when the 
genotypic value µ = 0.5, the probabilities of selecting the 
true model are about 92%, 76% and 98%, respectively.  

Type I error rates are provided in Table 2. All of the sev-
en methods can control type I error rate well at the nominal 
level 0.05. Power comparisons are presented in Fig. (2). The 
trend tests (i.e., t.d, t.a, and t.r) are sensitive to the model 
assumption. For example, when the true model is recessive, 
the dominant trend test td is least powerful among all the 
tests. Compared to the trend tests, the three robust-efficient 
procedures are generally more robust against model misspec-
ification with a higher power. In addition, the proposed 
method, GMS, is generally more powerful than MAX3 and 
MERT, indicating superior power and efficiency of GMS 
under different genetic models. We also compared the per-
formance of seven different methods in the case of rare vari-
ants (results are provided in Appendix A3). When the allele 
frequency is low (i.e., p=0.01, 0.05, 0.1), the genetic effect is 
moderate (µ = 0.2) and the effective sample size is small 

(i.e., 100), the powers of all tests are less than 50%. When 
the sample size is gradually increased to 4000 (effective 
sample size 400), the powers of robust tests, GMS, MERT 
and MAX3, can reach the power of more than 80%. For ex-
ample, when the genetic model is DOM and p = 0.05, the 
powers of these tests are 83.53% (MERT), 89.50% (MAX3) 
and 95.34% (GMS) respectively and the corresponding op-
timal power is 97.76% (t.d). The simulation results under 
rare variants scenarios show that GMS, MERT and  MAX3  
tests  can  find  statistical  differences when the sample size 
is sufficiently large. Whether it is common variants or rare 
variants, GMS always has the highest power among these 
three methods and is comparable to the optimal test. 

3.2. Application 

We applied our method to the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database. The data was 
downloaded from the Alzheimer's Disease Neuroimaging 
Initiative (ADNI) database (www.loni.usc.edu/ 
ADNI). The ADNI is an ongoing longitudinal multicenter 
study aimed at detecting and monitoring the early stage of 
AD by investigating magnetic resonance imaging, positron 
emission tomography, genetic, biochemical biomarkers, and 
neuropsychological and clinical assessment. The ADNI data 
collected 2074 observations and 113 variables, including 
clinical outcomes and biomarker variables for

 
Fig. (1). Relationship between accuracy and p, n, ESP, µ when other parameters are fixed (allele frequency p = 0.3, effective sample propor-
tion ESP = 0.05, sample size n = 500, genotypic value µ = 0.5). (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article). 

 



368    Current Genomics, 2021, Vol. 22, No. 5 Yang et al. 

Table 1. Proportion of selecting of different genetic models (p=0.3 n=500, ESP=0.05). 

- True Model 
Selected Model 

REC ADD DOM 

µ = 0.1 

NULL 0.4933 0.2702 0.2365 

REC 0.6581 0.3068 0.0351 

ADD 0.3265 0.4742 0.1993 

DOM 0.0933 0.2288 0.6779 

µ = 0.5 

NULL 0.3477 0.3170 0.3353 

REC 0.9158 0.0842 0.0000 

ADD 0.0345 0.7582 0.2073 

DOM 0.0000 0.0179 0.9821 

µ = 1 

NULL 0.2353 0.6985 0.0662 

REC 0.9495 0.0505 0.0000 

ADD 0.0007 0.9993 0.0000 

DOM 0.0000 0.0009 0.9991 

µ = 2 

NULL 0.3417 0.6472 0.0111 

REC 1.0000 0.0000 0.0000 

ADD 0.0000 1.0000 0.0000 

DOM 0.0000 0.0002 0.9998 
 

Table 2. Type I error rate of the seven methods with various parameters.  

ESP p n 
Seven Methods 

t.d t.a t.r F MERT MAX3 GMS 

0.05 

0.1 

200 0.0487 0.0503 0.0492 0.0500 0.0493 0.0500 0.0489 

500 0.0514  0.0519  0.0492  0.0500  0.0514  0.0500  0.0437 

1000 0.0505  0.0505  0.0501 0.0500  0.0503  0.0500 0.0517 

0.3 

200 0.0495 0.0498 0.0502 0.0500 0.0502 0.0499 0.0480 

500 0.0496  0.0515  0.0461 0.0500  0.0514  0.0500  0.0498 

1000 0.0514  0.0539  0.0530  0.0501  0.0501  0.0500  0.0476 

0.5 

200 0.0502 0.0495 0.0511 0.0500 0.0493 0.0500 0.0472 

500 0.0540 0.0520 0.0523  0.0500  0.0517  0.0500  0.0456 

1000 0.0477  0.0492  0.0500  0.0500  0.0477  0.0500  0.0498 

0.1 

0.1 

200 0.0501 0.0506 0.0491 0.0500 0.0506 0.0500 0.0488 

500 0.0542  0.0482  0.0520  0.0500  0.0484  0.0500  0.0461 

1000 0.0520  0.0509  0.0502  0.0500 0.0509  0.0502  0.0485 

0.3 

200 0.0491 0.0498 0.0498 0.0500 0.0498 0.0500 0.0491 

500 0.0504  0.0499  0.0493  0.0498  0.0500  0.0500  0.0509 

1000 0.0496  0.0476  0.0505  0.0500 0.0473  0.0505  0.0505 

0.5 

200 0.0496 0.0497 0.0498 0.0500 0.0499 0.0500 0.0478 

500 0.0477  0.0489  0.0468  0.0500  0.0490  0.0500  0.0513 

1000 0.0505  0.0481  0.0540  0.0500 0.0479  0.0500  0.0466 
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Fig. (2). The power comparison among seven methods with p = 0.3, n = 1000, ESP=0.1 under (a) dominant model; (b) additive 
model and (c) recessive model. t.a, t.d, and t.r: trend tests corresponding to additive, dominant, recessive genetic models. F: F-
test; MERT: !!"#$ in (2.5); MAX3: the MAX3 test !!"# in (2.6); GMS: two step approach by estimating genetic model with 
!!"# in (2.11) and corresponding trend test in (2.2)-(2.4). (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article). 

 
Fig. (3). Manhattan plot for all p-values (on –log 10 scale) of seven methods for all 10683 SNPs on chromosome 19. t.a, t.d, and t.r: 
trend tests corresponding to additive, dominant, recessive genetic models. F: F-test; MERT: !!"#$ in (2.5); MAX3: the MAX3 test !!"# in 
(2.6); GMS: two step approach by estimating genetic model with !!!" in (2.11) and corresponding trend test in (2.2)-(2.4). (A higher resolu-
tion / colour version of this figure is available in the electronic copy of the article). 
 

Alzheimer’s Disease (AD) for 784 individuals. In this 
section, we used baseline Rey's Auditory Verbal Learning 
Test (RAVLT) score as the response variable to examine 
the association between SNPs on chromosome 19 and 
AD. The RAVLT is a powerful neuropsychological tool 
for testing episodic memory, which is widely used for 
cognitive assessment in dementia and pre-dementia condi-
tions [17]. Several studies have shown that impairment in 
RAVLT scores reflects well the underlying pathology 
caused by Alzheimer's disease (AD), thus making 
RAVLT an effective early marker to detect AD in persons 
with memory complaints [18].  The higher score indicates 
the severity of the auditory verbal learning ability im-
pairment. We selected individuals with RAVLT score 
greater than 4 as the extreme samples (i.e., U>4). After 
quality control, missing values are removed and 783 indi-
viduals genotyped at 10683 SNPs on chromosome 19 are 
included in the analysis. 

We apply the proposed GMS method to the ADNI data 
and compare it with the other six methods. We permuted 
data 10,000 times to determine the thresholds of the 
MAX3 and GMS. Thresholds for the other 5 methods are 
determined by the asymptotic normal distribution. After 
FDR correction, we find 282 significant SNPs at signifi-
cance level α = 0.05. Manhattan plot for the ADNI data is 
presented in Fig. (3), which shows the p-values of all 
SNPs with seven methods on the –log10 scale.  In Table 3, 
we report the top 10 significant SNPs selected by GMS, as 
well as p-values of the other six methods. All three robust 
methods (MERT, MAX3 and GMS) exhibit robustness to 
genetic model specification. For ADNI data, it seems that 
MERT and GMS have comparable power, while MAX3 is 
slightly less powerful than MERT and GMS with relative-
ly large p-values. Existing studies have shown that zinc 
plays an important role in the development of Alz-
heimer’s disease [19, 20]. Among the 10 significant 
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SNPs, five SNPs (rs143663113, rs113397810, 
rs7258002, rs10409896, rs117810408) are screened and 
reported to be related to zinc finger protein 578 (Gene 
ZNF578), and two SNPs (rs143663113, rs111321022) be 
related to Gene ZNF808.  

CONCLUSION 

In this article, we proposed a two-step procedure to 
test the genetic association between an SNP and a quanti-
tative trait. The underlying genetic model is determined in 
the first step based on the difference of HWD coefficients 
under different genetic models using extreme individuals, 
and in the second step, the t-test corresponding to the ge-
netic model selected in the first step is then applied to test 
the association between the SNP and the trait. 

The proposed method is shown to be more efficient 
than the previously reported approaches (MERT and 
MAX3) by simulation studies. Under three genetic mod-
els, GMS method has similar power to the t-test corre-
sponding to the true model with a well-controlled type I 
error rate at the given significant level. In our study, we 
used a data-driven threshold in selecting genetic model. 
Simulation results show that this method works well in 
selecting the underlying genetic model. We would like to 
mention that in the literature of QTL, robustness often 
refers to nonparametric methods that are robust to distri-
bution specification of the error term in linear models [21, 
22]. Robustness in this work refers to the insensitivity of 
the tests to genetic model specification.  

The proposed GMS has high efficiency in power for 
common variants. For the rare variants with low allele 
frequency, even the best test has very low power. Howev-
er, GMS is the closest to the optimal test among the exist-
ing robust methods for either common or rare variants. In 
practical applications, higher efficiency could be achieved 
by increasing the sample size for rare variants.  
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APPENDIX 

Appendix A1: Derivation of the estimated variance of 
(!!!!!! −!!"! )/!!. 
Let !(!!,!!,!!) = (!!!!!! −!!"

! )/!!, because 
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Table 3. The p-value of significant SNPs selected by GMS. 

SNP t.r* t.a* t.d* F* MERT* MAX* GMS* 

rs143663113 2.06e-04 2.30e-06 2.53e-04 7.09e-04 1.80e-05 4.09e-04 5.81e-06 

rs62131791 3.01e-06 5.15e-06 1.45e-02 1.69e-04 8.76e-05 3.14e-04 7.45e-06 

rs73026154 1.10e-05 6.07e-06 6.46e-03 1.21e-04 2.61e-05 1.21e-05 8.95e-06 

rs71839901 5.26e-06 9.11e-05 1.49e-03 1.69e-04 8.76e-05 5.07e-05 9.14e-06 

rs111321022 6.30e-05 1.73e-05 3.42e-04 6.58e-04 1.67e-05 3.14e-04 1.07e-05 

rs113397810 2.74e-05 6.02e-06 2.64e-05 3.40e-04 7.97e-06 1.48e-04 1.09e-05 

rs7258002 4.34e-04 1.17e-05 2.53e-04 2.68e-04 6.20e-06 2.10e-05 1.20e-05 

rs10409896 1.44e-03 6.06e-06 2.81e-05 2.67e-04 6.20e-06 1.62e-04 1.37e-05 

rs7257286 1.82e-03 1.02e-05 1.07e-06 5.52e-05 1.15e-06 8.23e-05 1.65e-05 

rs117810408 7.40e-04 1.58e-05 2.62e-03 3.14e-04 7.31e-06 1.84e-04 2.15e-05 

*t.a, t.d, and t.r: trend tests corresponding to additive, dominant, recessive genetic models. F: F-test; MERT: !!"#$ in (2.5); MAX3: the MAX3 test !!"# in (2.6); 
GMS: two step approach by estimating genetic model with !!"# in (2.11) and corresponding trend test in (2.2)-(2.4). 
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Therefore, by applying the delta-method, we have, 
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When the null hypothesis is true, !! = !! = !! =

!∗, !!! = !!" = !!! = ! ≜ !∗ =!(!
∗!!
!!
) and 

!!!!
!!!

= !!!"
!!!

= !!!!
!!!

= !
!!
!(!

∗!!
!!
), further we have  

∂!
∂!!

|!! =
1
!∗

1
!!
!

!∗ −!
!!

, 

∂!
∂!!

|!! = −
2
!∗

1
!!
!

!∗ −!
!!

, 

!"
!!!

|!! =
1
!∗

1
!!
!

!∗ −!
!!

.  

Therefore  

 !"!!!!(!!,!!,!!) = (
! !∗!!

!!

! !∗!!
!!

)! !
!!
+ !

!!
+ !

!!
, 

and 

 !!!!!!(!!,!!,!!) = (
! !!!

!!
! !!!

!!

)! !
!!
+ !

!!
+ !

!!
, 

where ! = !!"!,! /!. 

Appendix A2: Details to derive the expression of the 
expectation of the Hardy-Weinberg disequilibrium test  
!!"# and the correlations between !!"# and the trend 
tests !.!(!.!, !.!) respectively. 

 
The Hardy-Weinberg disequilibrium test !!"# is 
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Under specific genetic model,  !!! =!(!!!!
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),  !!" =
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!!
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), ! = (!!! +!!)/!", 

! = !− !, ! = (!!!! +!!!! +!!!!)/!, so!!!"# =

!(!!,!!,!!). Under the null hypothesis and three differ-

ent genetic models, !!!"# equal to!(!,!,!),! !,!,−! , 

!(!,!,−!) and ! !,−!,−! .   We also calculate the cor-

relation between !!"# and !.!  (!.!, !.!) by delta method. 
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Appendix A3: 
Table A1: Powers with different allele frequencies (sample size: 4000; ! = 0.2; ESP=10%). 

 
p t.d t.a t.r F MERT MAX3 GMS 

DOM 

0.01 0.8189 0.8098 0.0695 0.6825 0.6136 0.7465 0.7688 

0.05 0.9775 0.9689 0.1213 0.8936 0.8352 0.8950 0.9534 

0.1 0.9898 0.9803 0.4966 0.9351 0.9180 0.9465 0.9634 

ADD 

0.01 0.4183 0.4242 0.0687 0.3306 0.3027 0.3424 0.3725 

0.05 0.7697 0.7709 0.1335 0.7433 0.6864 0.7520 0.7560 

0.1 0.8992 0.9294 0.5889 0.8884 0.8972 0.9089 0.9193 

REC 

0.01 0.0520 0.0532 0.0683 0.0622 0.0602 0.0618 0.0784 

0.05 0.0512 0.0548 0.1445 0.1159 0.1050 0.1133 0.1451 

0.1 0.0758 0.1664 0.6741 0.5644 0.4585 0.5730 0.6389 
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