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Crystallizing highly-likely 
subspaces that contain an unknown 
quantum state of light
Yong Siah Teo1,2, Dmitri Mogilevtsev3, Alexander Mikhalychev3, Jaroslav Řeháček2 & 
Zdeněk Hradil2

In continuous-variable tomography, with finite data and limited computation resources, reconstruction 
of a quantum state of light is performed on a finite-dimensional subspace. In principle, the data 
themselves encode all information about the relevant subspace that physically contains the state. We 
provide a straightforward and numerically feasible procedure to uniquely determine the appropriate 
reconstruction subspace by extracting this information directly from the data for any given unknown 
quantum state of light and measurement scheme. This procedure makes use of the celebrated 
statistical principle of maximum likelihood, along with other validation tools, to grow an appropriate 
seed subspace into the optimal reconstruction subspace, much like the nucleation of a seed into a 
crystal. Apart from using the available measurement data, no other assumptions about the source or 
preconceived parametric model subspaces are invoked. This ensures that no spurious reconstruction 
artifacts are present in state reconstruction as a result of inappropriate choices of the reconstruction 
subspace. The procedure can be understood as the maximum-likelihood reconstruction for quantum 
subspaces, which is an analog to, and fully compatible with that for quantum states.

One of the scientifically established tenets in quantum mechanics is the ability to reconstruct any quantum state 
of an arbitrary quantum source1,2. Maturation of theoretical and experimental techniques in quantum tomogra-
phy for continuous-variable (CV) measurements is of top priority for practical certifications in optical quantum 
cryptography3–7, optomechanics8,9, quantum metrology10,11 and other quantum computation protocols12–17.

Since measurement data and computation resources are always finite, the reconstruction of any quantum 
state of light, which in principle resides in an infinite-dimensional Hilbert space, is always performed on a 
finite-dimensional subspace. An unsolved problem in CV tomography is an objective systematic search for the 
appropriate reconstruction subspace. Ideally, an observer would hope for an analytical reasoning that leads to the 
optimal reconstruction subspace that minimizes some sort of tomographic accuracy measure. This thinking is, 
in some sense, naive as such an optimal subspace would always depend on the measurement scheme and the true 
quantum state of the source, an element that is certainly unknown to the observer. Furthermore, the positivity 
constraint on quantum states forbids any straightforward analysis on the problem.

Despite the aforementioned difficulties, there exist numerous studies on alternative solutions to this problem. 
These studies, nonetheless, involve making some assumptions about the source. If the observer knows, usually 
with low to moderate levels of confidence, that the source emits no more than Drec photons, then in principle, 
she can prepare a set of CV measurement outcomes that is informationally complete on the Drec-dimensional 
Hilbert subspace18. The maximum-likelihood (ML) method19,20, for instance, can be used to reconstruct the state 
on this subspace based on the measurement data. However, in refs 21 and 22 it was shown that such a simple 
approach often gives estimators that are far away from the true state ρtrue, especially when there are features in 
high-dimensional sectors that are not obvious from simple deductions with mean photon numbers. In the same 
articles, the technique of maximum-likelihood-maximum-entropy (MLME) was used to reconstruct states on 
subspaces larger than the tomographic coverage of the measurement outcomes to reveal genuine quantum-state 
features and reduce reconstruction artifacts on average.
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Recently, methods employed in classical statistical-model selection were used to localize the signal (see, for 
example, refs 23–28). These methods involve the consideration of the popular Akaike criterion and the Bayesian 
information criterion to penalize the likelihood function for the problem and restrict models for up to a certain 
number of parameters. These strategies depend on the parametric models selected (which in our case corresponds  
to some pre-chosen reconstruction subspace) to optimize the signal locations, the accuracy of which depend 
heavily on the correctness of the chosen models. An average of these models may be carried out over the quan-
tum state space to mitigate possible model inaccuracies29. Other methods of choosing reconstruction subspaces 
include the utilization of other prior knowledge about the source and assigning a partial dependence of the sub-
space dimension Drec on the number of measurement settings or groups of outcomes30.

In what follows, we shall present a systematic and practical procedure to locate subspaces that highly-likely 
contain a given unknown quantum state of light that is completely free of model (preconceived subspace) con-
siderations and hard-to-justify assumptions about the source. This strategy converges to the appropriate “model” 
subspace based on information encoded in the collected measurement data alone. In a nutshell, the procedure 
makes use of the ML strategy to define an initial reconstruction subspace of low-dimension and gradually evolve 
the seed subspace to a reconstruction subspace of a stipulated dimension Drec—much like a typical nucleation 
process in the formation of crystals. The termination of the ML nucleation process, and the subsequent determi-
nation of Drec, is governed by the procedure of cross-validation, which is a prototypical statistical validation tool 
that ensures the reliability and predictive power of the resulting ML state estimator. This numerical nucleation 
process, which is naturally compatible with ML state estimation1,2, makes use of only the acquired measurement 
data in an experiment. The underlying physical reason is that all encoded information in the data reflects the 
features of the unknown quantum state, albeit with some statistical fluctuation, and can thus be systematically 
extracted to obtain the optimal reconstruction subspace and state estimator.

Without loss of generality, we shall assume here that the data associated with the continuous-variable quan-
tum measurement, although finite, are sufficiently large enough such that statistical fluctuation is minimized 
within typical experimental means. In this situation, the relevant reconstruction error of interest is primarily 
influenced by the choice of reconstruction subspace.

Results
The ML subspace nucleation process.  Suppose that the observer chooses to reconstruct the true quan-
tum state ρtrue of the source using the ML method from a set of data. In CV tomography, the data are event occur-
rences ∑ =n Nj j  of N sampling events (say voltage detection) collected with a measurement described by a set 
of probability operator measurement (POM) ∑ Π == 1j

M
j1  consisting of M outcomes Π j ≥ 0. In this scenario, it is 

natural to consider an assignment of the reconstruction subspace that is compatible with the ML principle. 
Clearly, if the desired ML estimator ρ̂ML is the one that maximizes the log-likelihood function of ρ for the data,

 ∑ρ ρ= = Π
=
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j j j j
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the reconstruction subspace should then be a subspace of a certain dimension Drec that optimizes this 
log-likelihood function. The problem now reduces to deciding the appropriate value of Drec ≥  2 and searching for 
the optimal subspace of this dimension.

In real situations where detection losses are present, such that the efficiency of the overall quantum detection 
is less than unity, there exist many ways to cope with this additional detail depending on specific experimental 
situations. The complete likelihood is now one that accounts for both the detected and missing copies of quantum 
systems, with the sum of the measured probabilities ∑ <′ ′p 1j j . If the source (usually photonic in this case) has a 
known Poissonian prior distribution for the total number of quantum systems (photons), then an effective likeli-
hood function for the measured sampling events may be defined as an average of the complete likelihood over the 
missing quantum systems because of losses with this known prior distribution. Alternatively, we may carry on the 
maximum-likelihood philosophy and instead maximize the complete likelihood over the missing copies, and the 
result is an effective log-likelihood function of the form in Eq. (1) with pj replaced by ∑ ′ ′p p/j j j

1,21. In any case, the 
effective log-likelihood function is now the proper log-likelihood function for subsequent optimizations.

Since all we have are the measurement data {nj}, the most straightforward way to carry out the subspace search 
is subspace nucleation. Such a numerical nucleation process involves the surveillance of all possible d-dimensional 
discrete subspaces of some large Hilbert space of dimension Dlim that defines some limit for the state reconstruc-
tion. All the =







L D

d
lim  subspaces can be represented by a set of L projectors 

=
S{ }l d l

L
, 1

 that are diagonal in the 

computational basis and consist of Dlim −  d zeros and d ones. For any given operator A, its suboperator Al,d in the 
lth subspace is conveniently expressed as Al,d =  Sl,dASl,d. Analogous to nucleation in crystal formation, subspace 
nucleation begins with a seed subspace of a certain smallest pre-chosen dimension d. For the purpose of illustra-
tion, we take d =  2. The qubit subspace S2

(ML) appropriate for seeding the nucleation process is the one correspond-
ing to the two- dimensional ρ̂ML of the largest maximal log-likelihood out of all possible projectors Sl,2. The 
subspace begins to grow along the trajectory of largest likelihood increment. The next optimal subspace to choose 
would be the subspace = +S S S4

(ML)
2
(ML)

2, where S2 is the optimal orthogonal subspace to S2
(ML), such that the 

corresponding four-dimensional ρ̂ML yields the largest maximal log-likelihood. Nucleation continues, this time 
establishing the next larger optimal subspace = +S S S6

(ML)
4
(ML)

2 such that, again, =S S 02 4
(ML)  and the corre-

sponding six-dimensional ρ̂ML gives the largest maximal log-likelihood, and so on.
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In this way, the reconstruction subspace matures in the direction of maximal sequential increase in the 
log-likelihood. Since the process evaluates the (log-)likelihood and maximizes it over subspaces, this process 
is entirely equivalent to a ML subspace estimation, which is fully analogous to a ML state estimation. The data 
alone contain all hidden signatures of the relevant subspace segments and the structures thereon, all of which are 
revealed by nothing else but the log-likelihood function. In the limit of large N of sampling events, which is an 
achievable commodity in homodyne tomography, for instance, these signatures accurately reflect those of ρtrue. 
This function thus serves as the only important objective function following which subspace crystallization takes 
place. No additional parametric model selection or spurious assumptions about the source are necessary. We 
have therefore established a fully objective numerical procedure for assigning reconstruction subspaces that is 
compliant with ML state estimation.

Computationally, the ML subspace nucleation process is a continuous iteration of the following simple numer-
ical steps over k, starting with the smallest optimal d-dimensional seed subspace defined by Sd

(ML) at k =  1 and 
proceeding till k =  κ that defines the final reconstruction-subspace dimension Drec:

1. In the kth step, look for the full set of operators =⊥ S{ }l d,  that are orthogonal to Skd
(ML).

2. Set = ++S S Sk d kd d( 1)
(ML) (ML)  with ∈ ⊥Sd  that maximizes ρ̂nlog ({ }; )j ML , where ρ̂ML resides in the subspace 

defined by +S k d( 1)
(ML) .

The Methods section provides more explicit details on the numerical procedure.

Criterion for nucleation termination.  The final task is now to decide on the reasonable value of Drec. 
Various statistical tools are available for this purpose, the choice of which depends on the application of the sta-
tistical operator ρ̂ML. Typically, the estimator ρ̂ML is used for statistical prediction of probability distributions for 
future measurement schemes. Some measure of predictive power for the estimator is hence necessary to judge if 
the related subspace acquired from the nucleation process is sufficiently accurate in data prediction. Physically, 
the reconstruction subspace that best predicts data should be the largest possible subspace that tomographically 
covers all the possible datasets (infinite-dimensional in principle). In practice, however, all resources are finite and 
some sort of statistical certification is necessary to judge if the estimator of finite data that resides in a finite sub-
space is predictive enough.

Cross-validation31–33 (and a simplified variant discussed in ref. 34) is a decent certification tool of choice to 
judge if ρ̂ML resides in a large enough reconstruction subspace of reasonable coverage relative to the data of a 
given POM. Typically, when the estimator ρ̂ML fits the data from a POM according to the log-likelihood function, 
the estimator may not necessarily predict other data from the same POM, or any other POM for that matter, 
especially in a situation where the reconstruction subspace does not tomographically include the measurement 
data sufficiently. If, on average, ρ̂ML predicts different sets of data of the same POM, then the subspace yields a 
predictive ρ̂ML. For demonstrating the principles of cross-validation, we consider a two-fold cross-validation strat-
egy and split the M measurement data into two datasets of equal size. Borrowing the language of machine learn-
ing, one dataset, the training set, is used to obtain ρ̂ML, and the other testing set is used to test the predictive power 
of ρ̂ML. The roles of both datasets are then switched, and training and testing are performed again. The average 
chi-square metric between the test data and the ML probabilities,
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describes the predictive power for ρ̂ML in terms of the prediction error for the given measurement scheme.
Like all numerical algorithms, there are many ways to terminate the nucleation procedure. The observer may 

choose to set a pre-chosen tolerance level for PrErr beyond which the procedure stops; or compare the change 
in the current PrErr value relative to the preceding value and accept the reconstruction if the change falls below 
certain threshold; or simply repeat the procedure a pre-chosen number of times. The numerical stabilization 
of PrErr can serve as an indication that continuing the procedure will not give appreciable improvement in the 
resulting ML estimator and ML subspace. Since the value of PrErr fluctuates for every experimental run, its value 
for each reconstruction-subspace dimension Drec should be accompanied by a statistical quantifier for its relia-
bility. As a typical choice, we shall assign confidence intervals to reflect the level of confidence (or signifcance) 
for these values. These confidence intervals are calculated using a known method of bootstrapping on the PrErr 
values (see Methods).

Numerical Experiments.  To put the ML subspace nucleation procedure to the test, for a given true state 
ρtrue, we simulate an experimental run for a CV POM involving M =  1000 random rank-one POM outcomes 
distributed uniformly according to the Haar measure35. In this run, a total of N =  107 sampling events is meas-
ured with the POM and the resulting data are accumulated through Monte Carlo methods. To demonstrate the 
proposed numerical method, we investigate three examples, namely a coherent state, even coherent state and 
squeezed coherent state. Figures 1, 2 and 3 provide a visualization of the respective nucleation processes for 
these three states. Figure 4 presents the results of the nucleation process with statistical descriptions for the PrErr 
values.
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The results obtained with simulated experiments verify the decreasing behavior for the values of the predic-
tion error PrErr with increasing reconstruction-subspace dimension Drec. This behavior confirms that, logically, 
a larger subspace would more adequately accomodate the measurement outcomes and more accurately predict 
any data derived from these outcomes.

(a () b)

(c () d)

(e) (f)

Figure 1. Subspace nucleation process from one set of data for (a) the coherent state defined by |α〉  of mean-
photon number equal to |α|2 =  4, projected onto the 16-dimensional Hilbert space for visualization. The seed 
subspace is of dimension d =  2. Subspaces of (b) Drec =  2, (c) 4, (d) 6, (e) 8 and (f) 10 that respectively maximize 
the log-likelihood are shown here for M =  1000 measurement outcomes. The interpolated hue for each integer 
coordinate (position of the matrix element) in the plots visually indicates the relative magnitudes of neighboring 
matrix elements of the real parts of all quantum states in the computational basis. Here the ten-dimensional 
optimal ML subspace already captures most of the important features of the state.
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Practical Aspects Of The Nucleation Methodology.  Subspace coverage. In the usual situation, the 
observer has already an intended target quantum state ρtarg for the source in mind before setting up the exper-
iment for a particular quantum protocol. Owing to experimental imperfections, the target state she intends to 
prepare is never the same as the true state ρtrue to which she asymptotically measures. Nevertheless, if the control 
of the source is done well, the observer may have reasons to believe that ρtrue should be close to ρtarg. For a given 
basis, the reconstruction dimension Drec, and hence the limit dimension Dlim, should at least be large enough to 
encompass all the significant matrix elements of ρtrue. Usually, the choice of Dlim is decided from ρtarg by trusting 
that it is close enough to the unknown ρtrue.

(a () b)

(c () d)

(e) (f)

Figure 2. Subspace nucleation process from one set of data for (a) the even coherent state defined by 
 α α+ −( ) with α = 5 and a proper normalization. All other figure specifications are as described in 
Fig. 1. For this state, the eight-dimensional optimal ML subspace is sufficient for a rather accurate ML 
reconstruction.
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However, such a gut feeling is not a necessary ingredient to pick the value of Dlim, for the data themselves 
already contain all encoded information about the quantum-state features. If Dlim is too small to cover the signif-
icant features of ρtrue, the data should be able to tell us just that, which they do indeed. One way of capturing the 
tell-tale signs from the data is to inspect the PrErr values. If the PrErr saturates at a value that is large, then this is 
an indication that the subspace does not cover the state features very well, and the corresponding estimator does 
not explain the data obtained and will have limited predictive power. In this case, one would need to increase the 
value of Dlim. The behavior of PrErr with Drec would eventually stabilize for sufficiently large Dlim.

As an example, Fig. 5 shows the behavior of PrErr for different values of Dlim, obtained from a fixed set of sim-
ulated data of a coherent state with mean photon number 30. As Dlim increases, the saturation of PrErr lowers and 
vanishes for sufficiently large Dlim. In this way, the choice of Dlim is optimized without the need for a prior belief.

(a () b)

(c () d)

(e) (f)

Figure 3. Subspace nucleation process from one set of data for (a) a squeezed coherent state of squeeze 
parameter =

π
z 2ei4  and α = 5. All other figure specifications are as described in Fig. 1.
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Subspace truncation and rate of convergence. If the observer insists, she can certainly make use of an educated 
prior belief for the true state to enhance the ML subspace nucleation procedure in an objective way. To under-
stand how, consider the simple case where ρtrue is the single-photon Fock state |n =  1〉  〈 n =  1|. If one carries out the 
nucleation procedure in the computational basis with (hypothetical) noiseless data, then the procedure will ter-
minate after just one step. This is because already after the very first step, the optimal qubit subspace is, of course, 
any of the subspaces that covers the n =  1 sector, and the resulting ML estimator ρ̂ML is precisely ρtrue since all 
other matrix elements are zero in the computational basis.

More generally, for (hypothetical) noiseless data and a rank-one ρtrue, if the basis in which subspace truncation 
of the Hilbert space is performed happens to be the basis with one of the basis kets being the ket of ρtrue, then the 

Figure 4. Superimposed plots of the PeErr values with error bars (squares and dashed lines plotted on a 
linear scale) and corresponding statistical information about each value (plotted on a log scale) against Drec, 
respectively for (a) the coherent state, (b) the even coherent state and (c) the squeezed coherent state. Each 
error bar is computed from the relevant bootstrap distribution. Small error bars are not visible in the figure. The 
statistical information for each value of Drec is based on a bootstrap distribution of 500 Monte-Carlo-generated 
PrErr values. This information includes the first and third quartiles of these points (respectively the bottom and 
top edges of the rectangle), the median or second quartile (solid line in the rectangle), the mean (circle), the 
lowest datum still within 1.5 interquartile range (IQR) of the first quartile and the highest datum still within 1.5 
IQR of the third quartile (respectively the bottom and top solid lines of the whisker). Outliers, which are outside 
the whisker, are plotted as vertically-aligned dots.

Figure 5. A plot of PrErr (log-scale) against Drec for a fixed set of data and various limit dimensions Dlim. 
The true state is a coherent state of mean photon number 30.
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nucleation procedure yields ρtrue after the very first step, because in this basis all matrix elements are zero except 
for the one corresponding to the ket of ρtrue. This argument is easily extended to any ρtrue, in which case truncation 
in a basis containing all eigenstates of ρtrue will give ρtrue as the estimator in no more than rank {ρtrue} steps. The 
exact number of steps would depend on the dimension d of the seed subspaces. Even for a realistic situation when 
the observer has access to only the target state ρtarg, not ρtrue, and real data with statistical fluctuation, finding the 
right basis with a reasonable ρtarg to perform subspace truncation for the nucleation procedure can greatly speed 
up the nucleation procedure if ρtrue is reasonably close to the target state, especially in the limit of large number 
of sampling events N.

It is now clear how the prior belief enters the nucleation procedure—it is simply used to set up the appropriate 
basis for subspace truncation in order to carry out subspace nucleation with significantly fewer steps. In no way is 
the final state estimator ρ̂ML dependent on the prior belief, only the rate of convergence to ρ̂ML, for the entire 
nucleation process is still controlled by data inspection alone once the basis is set up. Mathematically, if U is the 
unitary operator that converts the Fock basis to the appropriate basis, then a basis transformation ρ →  UρU† on 
quantum states in the optimization routine is entirely equivalent to an inverse basis transformation Π j →  U†Π jU 
on measurement outcomes due to the symmetry in the Born rule. If the observer believes that the target state 
ρtarg =  | 〉  〈  | is the likely candidate for describing the source, she may take this and generate a Dlim-dimensional 
eigenbasis of ρtarg and construct U out of this eigenbasis. The results in Fig. 6 further confirms the possibility of a 
significant improvement in nucleation convergence to the final optimal subspace and state estimator for a given 
set of data after a basis transformation.

Discussions
We have shown, from these findings, that the maximum-likelihood subspace nucleation procedure is a numeri-
cally feasible procedure for obtaining the valid optimal reconstruction subspace that contains the unknown quan-
tum state and, at the same time, maximizes the (log-)likelihood with respect to the measured data. Throughout 
the procedure, no other assumptions about the source are required. The complete elimination of this requirement 
turns our proposed procedure into an extremely robust method for real experiments, where such assumptions are 
sometimes difficult to justify precisely. The reporting of all results on experimental state reconstructions and diag-
nostics using continuous-variable measurement schemes can now be done more reliably once this restriction is 
lifted, since the concern of reconstruction artifacts that typically arise from an unsuitable or a suboptimal choice 
of reconstruction subspace is now out of the picture.

The methods of cross-validation and bootstrapping are used to justify the appropriate size of the optimal 
reconstruction subspace by investigating its predictive power of future data from the same measurement scheme. 
Other statistical tools can also be invoked depending on the way the observer uses the resulting quantum-state 
estimator. In general, all these statistical tools would have to be improved in order to address statistical problems 
related to the quantum-state space, as the positivity constraint plays an important role in altering the probability 
distribution of any set of data generated from a quantum state, which would in general be different from its clas-
sical counterpart. The study of the implications of the positivity constraint on these statistical methods is beyond 
the scope of this article.

It should be emphasized that the nucleation methodology is completely general and applicable to 
quantum-state estimation strategies that are not necessarily invoking the maximum-likelihood principle. 
Very similar nucleation procedures may be implemented for strategies such as linear-inversion or weighted 
linear-inversion, for instance. The only difference is that the objective function is no longer the likelihood 

Figure 6. A plot of PrErr (log-scale) against Drec for the coherent state discussed in Fig. 1 and a fixed set of 
simulated data with slight statistical fluctuation. Comparing with the rate of the subspace nucleation process 
in the standard computational (Fock) basis (red solid lines and square markers), a basis transformation based 
on the target coherent state of mean photon number five gives a relatively faster convergence (blue dashed line 
and triangular markers). The intersection of the data-point sequences at Drec =  10 and larger arises from the 
finite precision of the ML estimation.
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function, but some other function compatible with the chosen estimation strategy, and the quantum positive 
constraint can additionally be imposed on all such strategies. The subspace nucleation procedures for these strat-
egies proceed as usual otherwise. The bottom line—the set of data obtained with any CV measurement scheme is 
the only essential element for an accurate subspace and state reconstruction.

Methods
Detailed numerical procedure for the ML subspace nucleation process.  In this section, we shall 
also assume that the largest possible subspace for an efficient reconstruction has dimension defined by some large 
integer D dlim —the limit for the state reconstruction. The “lth (reconstruction) subspace of dimension d” can 
therefore be synonymously understood as the Dlim-dimensional projection operator Sl,d.

The nucleation process for a particular CV measurement scheme makes use of a list of L seed subspaces 

=
S{ }l d l

L
, 1

 of a pre-chosen dimension d. As an example, we shall take d =  2 and Dlim =  16, which are the settings for 
the simulations. Each (Dlim =  16)-dimensional projector Sl,2 is used to compute the maximum log-likelihood with 
respect to the data. The operators involved in this computation are the state ρl,d=2 and all the POM outcomes 
Π =

j
l d( , 2) on this particular qubit subspace. More explicitly, for a given l, the two-dimensional ρl,2 is simply repre-

sented as a two-dimensional positive, unit-trace matrix defined as

ρ =
†

†
A A
A Atr{ } (3)l
l l

l l
,2

,2 ,2

,2 ,2

using an auxiliary complex operator Al,2. The jth outcome Π j
l( ,2) residing on this subspace is represented by a pos-

itive 2 ×  2 matrix extracted out of the original 16 ×  16 positive matrix Π =̂ Mj
j( ) describing this outcome. For 

instance, suppose that Sl,2 is the 16 ×  16 diagonal matrix having only two “ones” respectively for the second and 
fifth diagonal entries. Then the 2 ×  2 positive matrix is simply

Π =











.ˆ

M M

M M (4)
j
l

j j

j j
( ,2) 2,2

( )
2,5
( )

5,2
( )

5,5
( )

Positivity in Π j
l( ,2) is trivially preserved for every j since this matrix is just the matrix representing Sl,dΠ jSl,d with 

only matrix elements on the relevant subspace retained. The sum of all Π sj
l( ,2)  is typically not the identity. The ML 

method regarding such cases are discussed in, for instance, refs 1 and 2. Once the two-dimensional ML estimator 
ρ̂ML for every value of l is computed, the maximal log-likelihood values are then sorted in descending value and 
the subspace that yields the largest maximal log-likelihood value is then chosen to seed the nucleation process. 
The set of 




=
=



 =

D
d

16
2

120lim  projectors is then reduced to the set of =( )14
2 91 projectors which now corre-

sponds to a set of subspaces that are orthogonal to the optimal subspace.
The next larger (d =  4)-dimensional ML subspace is built from this seed by accomodating the optimal qubit 

seed subspace that is both orthogonal to the current subspace and maximizes the log-likelihood. The subsequent 
computation is very similar to that described for the previous case, only that ρl,4 and Π j

l( ,4) are now 
four-dimensional operators. After this computation, the set of =( )14

2 91 projectors is then reduced to the set of 

=( )12
2 66 projectors that are orthogonal to all the selected projectors. The computation rate for this numerical 

scheme increases with each step as the set of seed subspaces on which ML estimation is performed decreases in 
size. The procedure continues in this manner until ρ̂ML fulfils some fixed criterion that would eventually termi-
nate the nucleation process.

Cross-validation and bootstrapping.  Cross-validation. If the observer wants to use ρ̂ML to predict future 
measurement data, then the technique of cross-validation is a suitable approach to verify if this ML estimator is 
predictive. Here, cross-validation is used to verify its predictive power on at least the same measurement scheme. 
A common technique known as K-fold cross-validation involves the splitting of a set of M data into K datasets of 
equal size. A total of K −  1 datasets are chosen as training sets to obtain an ML estimator ρ̂ML. The remaining 
dataset, the testing set, is then used to test whether ρ̂ML gives ML probabilities that are close to these data on aver-
age. Other variants of cross-validation exists, some of which possess high computational complexities32. So far, no 
systematic studies of cross-validation has been performed for quantum tomography, as such the implications of 
the positivity constraint, if any, on the quantum-state space are not known. For the simulations, K is set to two to 
ensure that both the training set and testing set are equally large enough. For the specifications of typical homo-
dyne experiments, the binned data are suitable for numerical computation for this value of K.

The predictive power of ρ̂ML is summarized by the prediction error

∑∑=
−

= =

ˆ

ˆM

n N p

p
PrErr 1 ( / )

,

(5)k

K

j

M K j j

j k
1 1

/ (ML) 2

(ML)

th testing set

where, without loss of generality, we have assumed that M is divisible by K. For a sufficiently large reconstruction 
subspace, PrErr would in principle approach zero if not for the slight statistical fluctuations of the measurement 
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data. We mention in passing that in the case where a source drift is present, the true state of the source is no longer 
stable and describing the source with a single ML estimator using all the measurement data would result in an 
average bias for PrErr.

Bootstrapping. Since PrErr is statistical, it is in principle necessary to assign some statistical quantifier to it. Any 
statistical quantifier that describes the reliability of PrErr would generally require a sample of PrErr values for 
each Drec. With only one set of data, a viable option is to perform bootstrapping on this set of data to generate new 
sets of pseudodata for the construction of the quantifier. Without the assumption of a model for bootstrapping, 
the non-parametric bootstrap method is suitable and has been proven to give sample points that follow a distri-
bution close to the population distribution. However, this convergence comes with strings attached, such as the 
adherence to a list of other assumptions, and these assumptions are not always satisfied for some cases, especially 
in the presence of the quantum positivity constraint.

A workaround is to suggest that since the PrErr decreases with increasing Drec (if N is large enough that is), we 
may take the ρ̂ML estimator with the smallest PrErr for bootstrapping—the parametric bootstrapping strategy. 
This choice of model for the bootstrap data asymptotically guarantees that the resulting bootstrap distribution of 
random PrErr values converges to the actual population distribution from the true state as long as N 1 (typical 
situation in CV experiments) and PrErr 1. The procedure for generating a PrErr value from a set of pseudo-
data obtained from a run of parametric bootstrapping is exactly the same as in the case of real data. Parametric 
bootstrapping is then repeated to accumulate a sample of bootstrap PrErr values for each Drec.

The quantifier chosen as an example is the confidence interval that representatively quantifies the confidence 
level for each PrErr value. For a given significance level 0 <  α <  1 that is small, we first compute the 1 −  α/2 
and α/2 percentiles from each bootstrap sample. Upon denoting the percentiles respectively by PrErr1−α/2 and 
PrErrα/2, the confidence interval is defined as the percentile interval [2 PrErr −  PrErr1−α/2, 2 PrErr −  PrErrα/2]. The 
advantage of this interval is that it is computationally efficient and captures approximately some essence of the 
sample dstributions. A more accurate interval can be acquired by performing a second-level bootstrapping for 
the standard deviation of each sample, which is often computationally intractable. As an estimate for the spread of 
PrErr, the percentile confidence interval provides sufficiently reliable information for general purposes. Besides, 
other statistical information is usually needed to supplement this interval for a more thorough data analysis.
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