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Abstract: Lotus leaves are often discarded as byproducts in the lotus industry. Polysaccharides are
regarded as one of the essentially bioactive components in lotus leaves. Therefore, in order to promote
the application of lotus leaves in the functional food industry, the deep eutectic solvent (DES) assisted
extraction of polysaccharides from lotus leaves (LLPs) was optimized, and structural and biological
properties of LLPs extracted by DES and hot water were further investigated. At the optimal extrac-
tion conditions (water content of 61.0% in DES, extraction temperature of 92 ◦C, liquid-solid ratio
of 31.0 mL/g and extraction time of 126 min), the maximum extraction yield (5.38%) was obtained.
Furthermore, LLP-D extracted by DES and LLP-W extracted by hot water possessed the same sugar
residues, such as 1,4-α-D-GalAp, 1,4-α-D-GalAMep, 1,3,6-β-D-Galp, 1,4-β-D-Galp, 1,5-α-L-Araf, and
1,2-α-L-Rhap, suggesting the presence of homogalacturonan (HG), rhamnogalacturonan I and ara-
binogalactan in both LLP-W and LLP-D. Notably, LLP-D was much richer in HG fraction than that of
LLP-W, suggesting that the DES could assist to specifically extract HG from lotus leaves. Addition-
ally, the lower molecular weight and higher content of uronic acids were observed in LLP-D, which
might contribute to its much stronger in vitro antioxidant, hypoglycemic, and immunomodulatory
effects. These findings suggest that the optimized DES assisted extraction method can be a potential
approach for specific extraction of acidic polysaccharides with good bioactivities from lotus leaves
for applications in the functional food industry.

Keywords: lotus leaf; deep eutectic solvent assisted extraction; polysaccharide; chemical structure;
biological activity

1. Introduction

Lotus (Nelumbo nucifera), a common water plant of the family Nelumbonaceae, is widely
cultivated in Asia [1,2]. Lotus has also been cultivated as an industrial crop in China, and
is widely used as an edible and medicinal plant [1,2]. Usually, lotus is mainly composed of
petal, seed, leaf, and root. Among them, lotus leaf is considered as one of the mainly edible
parts of lotus, which is also used as an herbal medicine to treat diverse diseases, such as
hyperlipidaemia, hypertension, obesity, and epistaxis [1,2]. A large number of studies
have demonstrated that lotus leaves possess promising health-promoting effects, such
as antioxidant, anti-obesity, hypoglycemic, hypolipidemic, anti-cancer, hepatoprotective,
and anti-inflammatory effects [2]. Generally, these health benefits are associated with a
variety of bioactive components that exist in lotus leaves, such as polysaccharides, phenolic
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compounds, alkaloids, and essential oils [2]. Among them, polysaccharides, as the essen-
tially bioactive components in lotus leaves, also possess various health-promoting effects,
such as anti-diabetic, antioxidant, antiglycation, and immunostimulatory effects [3–7].
Therefore, all data cited above indicates that polysaccharides extracted from lotus leaves
exhibit good application potentials in the functional food industry. However, although the
annual production of lotus leaves ranges from 7000 to 10,000 tons in China, most of them
are often discarded as byproducts in the lotus industry, and only 1% of them are applied in
the tea and catering industry [2]. Therefore, in order to promote the application of lotus
leaves in the functional food industry, the development of green and efficient methods for
the preparation of bioactive polysaccharides from lotus leaves is necessary.

Generally, the extraction yield, chemical structure, and bioactivity of natural polysac-
charides are greatly influenced by extraction methods [8–10]. Therefore, the optimization
of the extraction efficiency of polysaccharides from lotus leaves is important for their
future research, development, and application in the food industry. Recently, hot water
extraction [7], enzyme-assisted extraction [5], and dynamic high pressure microfluidization-
assisted extraction (DHPMAE) [3] have been applied for extracting polysaccharides from
lotus leaves. Indeed, different extraction techniques obviously affect the chemical and bio-
logical properties of polysaccharides extracted from lotus leaves. However, these methods
possess some drawbacks of low extraction efficiency, high economic cost, and specific re-
quirement of equipment. More recently, deep eutectic solvent (DES) has emerged to extract
biopolymers and various plant compounds [11]. DES is a kind of new extracting solvent,
which is composed of a hydrogen bonding acceptor and a hydrogen bonding donor [12].
As a green solvent, DES has advantages of low economic cost, safety, biodegradation,
and high dissolution ability [13]. DES can be served as extracting solvent for multiple
bioactive components, such as flavonoids, phenolic acids, and alkaloids [12]. Notably,
DES has also been utilized to extract various polysaccharides from plants, which has been
proven to exhibit higher extraction yield than that of traditional extraction solvent [14–16].
Therefore, all data suggests that DES possesses good potential for efficient extraction of
polysaccharides from edible and medicinal plants.

However, up to now, to the best of our knowledge, the potential applicability of
DES for extracting bioactive polysaccharides from lotus leaves (LLPs) has never been
investigated. Besides, the possible effect of DES assisted extraction on chemical structures
and bioactivities of LLPs was still unknown. Hence, the objective of this study was
to explore the potential applicability of DES for efficient extraction of LLPs by using
Box-Behnken Design. Subsequently, the chemical structures and bioactivities of LLPs
prepared by DES assisted extraction were investigated, and compared with that of hot
water extraction.

2. Materials and Methods
2.1. Materials and Reagents

Lotus leaves (Nelumbo nucifera Gaertn) were collected from Meishan, Sichuan Province,
China. Lotus leaves were dried by hot wind at 75 ◦C for 7 h according to a previous
study [6], and then pulverized into powder.

Choline chloride, ethylene glycol, 2-diphenyl-1-picrylhydrazyl (DPPH), 3-ethylbenzthiazoline-
6-sulphonic acid (ABTS), hydroxytoluene (BHT), 4-nitrophenyl β-D-glucopyranoside (pNPG), α-
glucosidase (10 U/mg), α-amylase (1000 U/mg), acarbose, 1-phenyl-3-methyl-5-pyrazolone (PMP),
vitamin C, and soluble starch were purchased from Merck (Merck Ltd., Darmstadt, Germany).

2.2. Extraction of Polysaccharides from Lotus Leaves (LLPs)
2.2.1. Preparation of Raw Material

Lotus leaves (5.0 g) were mixed with ethanol (50.0 mL, 80%, v/v) at room temper-
ature for 2.0 h to remove ethanol-soluble constituents by using an ultrasonic cleaner
(Ningbo Scientz Biotechnology Co., Ltd., Ningbo, China). After centrifugation (5000× g,
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10 min), the extracted residues were collected and applied for the further preparation
of polysaccharides.

2.2.2. Hot Water Extraction of LLPs

Hot water extraction (HWE) was performed based on our previous study [10]. Briefly,
5.0 g of extracted residues of lotus leaves were mixed with 150.0 mL of deionized water,
and stirred at heating magnetic stirrer at 90 ◦C for 3.0 h. After centrifugation (4000× g,
20 min), the supernatant was precipitated with four volumes of 95% (v/v) ethanol and
placed in 4 ◦C for 12 h. Precipitations were obtained by centrifugation (4000× g, 15 min),
and washed with ethanol (76%, v/v). Then, precipitations were redissolved and further
dialyzed (molar mass cut off, 3.5 kDa) against deionized water to remove small molecules.
Finally, polysaccharides from lotus leaves extracted by HWE (LLP-W) were obtained by
freeze drying.

2.2.3. Deep Eutectic Solvent Assisted Extraction (DESE) of LLPs

DES was prepared by using choline chloride (ChCl) and ethylene glycol (EG) in a
molar ratio of 1:3 according to previous studies with slight modifications [17,18]. Then,
the mixture was stirred at 80 ◦C until the solution became clear and stable to obtain a DES
stocking solution.

For the DESE extraction, the single factor experiments were firstly used to investigate
effects of content of water in DES (30, 40, 50, 60, and 70%), extraction temperature (60, 70,
80, 90, and 100 ◦C), liquid-solid ratio (20, 30, 40, 50, and 60 mL/g), and extraction time (60,
90, 120, 150, and 180 min) on the yields of LLPs. Each single factor was optimized when
other factors were fixed. Briefly, 5.0 g of extracted residues were mixed with DES extraction
solvent, and extracted on the heating magnetic stirrer. Then, the following steps were
conducted in accord with Section 2.2.2 to obtain lotus leaves polysaccharides extracted by
DESE (LLP-D).

Furthermore, according to the results from the single factor experiments, a three-level
Box-Behnken design (BBD) with four-factors was used to optimize the DESE conditions.
The independent variables were content of water in DES (X1, 50, 60, 70%), extraction
temperature (X2, 80, 90, 100 ◦C), liquid-solid ratio (X3, 20, 30, 40, mL/g), and time (X4, 90,
120, 150 min). Table 1 shows the independent variables and their levels. Each experiment
was tested in triplicate. Then, the experimental data of BBD was utilized for modeling and
optimizing the experimental conditions by using response surface methodology (RSM).
The experimental data for the response was fitted by using the second-order polynomial
model and the equation was as follow:

Y = β0 +
3

∑
i=1

βiXi +
3

∑
i=1

βiiX
2
i +

2

∑
i=1

3

∑
j=i+1

βijXiXj (1)

where Y is the predicted response; Xi and Xj are different variables; and β0, βi, βii,
and βij are the regression coefficients for intercept, linearity, square, and interaction,
respectively [16].
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Table 1. The Box-Behnken design with independent variables and observed values of the extraction
yield of polysaccharides from lotus leaves.

Runs
Levels of Independent Parameters

Yields (%)
X1 (%) X2 (◦C) X3 (mL/g) X4 (min)

1 0 (60) −1 (80) 0 (30) 1 (150) 3.20
2 0 (60) 1 (100) −1 (20) 0 (120) 4.01
3 1 (50) −1 (80) 0 (30) 0 (120) 2.41
4 1 (70) 0 (90) 1 (40) 0 (120) 4.06
5 1 (50) 1 (100) 0 (30) 0 (120) 3.51
6 −1 (50) 0 (90) −1 (20) 0 (120) 3.10
7 0 (60) 0 (90) 0 (30) 0 (120) 5.40
8 0 (60) 1 (100) 0 (30) 1 (150) 4.47
9 0 (60) 0 (90) −1 (20) 1 (150) 4.06

10 0 (60) −1 (80) 0 (30) −1 (90) 2.96
11 1 (70) 0 (90) 0 (30) −1 (90) 3.27
12 0 (60) 0 (90) 0 (30) 0 (120) 5.27
13 −1 (50) 0 (90) 1 (40) 0 (120) 3.35
14 0 (60) 0 (90) 0 (30) 0 (120) 5.32
15 0 (60) 1 (100) 1 (40) 0 (120) 4.31
16 0 (60) −1 (80) −1 (20) 0 (120) 2.97
17 −1 (50) 0 (90) 0 (30) −1 (90) 3.01
18 1 (70) −1 (80) 0 (30) 0 (120) 3.20
19 0 (60) 0 (90) 1 (40) −1 (90) 3.84
20 0 (60) 0 (90) 0 (30) 0 (120) 5.38
21 0 (60) 0 (90) 0 (30) 0 (120) 5.42
22 −1 (50) 0 (90) 0 (30) 1 (150) 3.52
23 0 (60) 0 (90) −1 (20) −1 (90) 3.46
24 0 (60) −1 (80) 1 (40) 0 (120) 3.38
25 1 (70) 0 (90) 0 (30) 1 (150) 3.76
26 0 (60) 1 (100) 0 (30) −1 (90) 3.41
27 1 (70) 0 (90) −1 (20) 0 (120) 3.39
28 0 (60) 0 (90) 1 (40) 1 (150) 4.17
29 1 (70) 1 (100) 0 (30) 0 (120) 3.35

X1, content of water in DES; X2, extraction temperature; X3, liquid-solid ratio; X4, extraction time.

2.3. Physicochemical and Structural Characterization of Polysaccharides from Lotus Leaves (LLPs)

The contents of total polysaccharides, proteins, and uronic acids in LLP-D and LLP-W
were analyzed by previously reported colorimetric methods [19]. The molecular weights
and molecular weight distributions of LLPs were investigated by using high performance
size exclusion chromatography equipped with the multi angle laser light scattering and the
refractive index detector (Wyatt Technology Co., Santa Barbara, CA, USA) [20]. Besides, the
apparent viscosities of LLPs were determined at the concentration of 10.0 mg/mL by using
a Discovery Hybrid Rheometer-1 (TA instruments, New Castle, DE, USA) with a parallel
steel plate (40.0 mm diameter and 1.0 mm gap) [20]. The constituent monosaccharides
of LLPs were analyzed by using Thermo U3000 HPLC system (Thermo Fisher Scientific,
Waltham, MA, USA) equipped with a Phenomenex gemini 5 µ C18 (150 mm × 4.6 mm)
column followed by a formerly reported method [20]. Moreover, the FT-IR spectra of
LLPs were recorded to analyze their chemical structures by using a Nicolet iS 10 FT-IR
(ThermoFisher scientific, Waltham, MA, USA) [20]. Furthermore, the 1H and 13C NMR
spectra of LLPs were also recorded to further analyze their chemical structures by using
a Bruker Ascend 600 MHz spectrometer with a z-gradient probe (Bruker, Rheinstetten,
Germany) [20].

2.4. Evaluation of Bioactivities of Polysaccharides from Lotus Leaves (LLPs)
2.4.1. Evaluation of In Vitro Antioxidant Activities of LLPs

The ABTS, DPPH, and NO radical scavenging capacities as well as ferric reducing
antioxidant power (FRAP) of LLPs were detected by previously reported methods [10].
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LLP-D and LLP-W were detected at five different concentrations against ultrapure water
as the blank control, and the BHT (for DPPH assay) or vitamin C (for ABTS, NO and FRAP
assays) was applied as the positive control.

2.4.2. Evaluation of In Vitro Hypoglycemic Effects of LLPs

α-Amylase and α-glucosidase inhibitory effects of LLPs were also detected by formerly
reported methods [20]. LLPs were tested at five different concentrations with acarbose
as the positive control. Then, IC50 values (µg/mL) of LLPs were calculated through a
log-regression curve.

2.4.3. Evaluation of Immunomodulatory Activities of LLPs

The immunomodulatory effects of LLPs were also evaluated according to the formerly
reported method [20]. Briefly, RAW 264.7 macrophages were cultivated in an anaerobic
incubator with the RPMI-1640 medium at 37 ◦C. The cells (1 × 105/well) were treated
with LLPs at the concentrations ranged from 5 to 320 µg/mL, and cultured for 24 h. The
cultural medium and lipopolysaccharide (LPS, 1.0 µg/mL) were used as blank and positive
controls, respectively. Effects of LLP-W and LLP-D on the cell viability of RAW 264.7
macrophages were measured by using a MTT colorimetric method. In addition, the nitric
oxide (NO) production of RAW 264.7 macrophages was determined by Griess reagent.
Furthermore, the interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) secretion of
RAW 264.7 macrophages after incubated with LLP-D and LLP-W were determined by an
ELISA kit (eBioscience, San Diego, CA, USA).

2.5. Statistical Analysis

Each experiment was operated in triplicate, and the data were displayed as the
means ± standard deviations. The experimental design, modeling, and data analysis
were performed by Design Expert software 8.0.6.1 (Stat-Ease Inc., Minneapolis, MN, USA).
Statistical analysis was conducted using Origin 9.0 software (OriginLab Corporation,
Northampton, MA, USA).

3. Results and Discussion
3.1. Optimization of DES Assisted Extraction of LLPs
3.1.1. Single Factor Experimental Analysis

Recent studies have demonstrated that the DES ChCl-EG is much suitable for the
extraction of polysaccharides from natural resources [17,18]. Therefore, the DES ChCl-EG
was chosen as the extraction solvent for the following studies. Figure 1 shows the effects of
water content in DES, extraction temperature, liquid-solid ratio, and extraction time on the
extraction yields of LLPs. Generally, the content of water in DES can change its viscosity
and polarity, resulting in a difference on the extraction yield of polysaccharides [16].
The highest extraction yield of LLPs was obtained at the water content of 60% (v/v)
in DES. This result may be due to that the higher viscosity of DES extraction solvent
caused by the lower water content makes it difficult to penetrate into the plant cell to
extract polysaccharides efficiently, while an excess of water content in DES may limit
the interactions between polysaccharides and DES [14,16]. The extraction temperature
was another important parameter for polysaccharide extraction. The extraction yield of
LLPs gradually increased with the increase of extraction temperature from 60 ◦C to 90 ◦C,
and slightly decreased at the temperature of 100 ◦C. This phenomenon suggested that a
relatively high extraction temperature could reduce the transfer resistance, decrease the
viscosity of extraction solvent, and increase the solubility of LLPs [16,21]. However, an
excessively high extraction temperature may cause the degradation of LLPs to decrease the
extraction yield [16,21]. Besides, the liquid-solid ratio also has an influence on the yield of
LLPs [15]. The extraction yield of LLPs increased from 20 mL/g to 30 mL/g, and decreased
above 30 mL/g. Furthermore, the extraction yield of LLPs increased with the increase of
extraction time from 60 to 120 min, while a decreasing was found after 120 min. This result
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might be caused by the hydrolysis of LLPs under a long extraction time [21]. Finally, the
optimal extraction conditions of single factor experiment were measured as follows, 60%
of water content in DES, temperature of 90 ◦C, liquid-solid ratio of 30 mL/g, and time of
120 min.
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Figure 1. Effects of water content (A) in deep eutectic solvent (DES), extraction temperature
(B), liquid-solid ratio (C), and extraction time (D) on extraction yields of polysaccharides extracted
from lotus leaves.

3.1.2. Box-Behnken Design Analysis

A Box-Behnken design (BBD) with 29 runs was further used to optimize the extraction
conditions of DESE. Based on the BBD matrix and experimental results in Table 1, the
predicted mathematical model was expressed by the following second-order polynomial
equation through multiple regression analysis,

Y =5.36+ 0.19X1 + 0.43X2 + 0.18X3 + 0.27X4 − 0.19X1X2 + 0.1X1X3 − 0.005X1X4
−0.027X2X3 + 0.2X2X4 − 0.067X3X4 − 1.18X2

1 − 1.02X2
2 − 0.68X2

3 − 0.8X2
4

(2)

where Y is the yield of LLPs, X1, X2, X3 and X4 are the content of water in DES (%), extraction
temperature (◦C), liquid-solid ratio (mL/g), and extraction time (min), respectively.

The influence of the variables on the extraction yield of LLPs and the validity of
the fitted model were evaluated by analysis of variance (ANOVA). As shown in Table 2,
the extremely low p-value (p < 0.0001) and the high F-value (147.70) suggested that the
regression model was statistically significant [14]. Indeed, the F-value (3.06) and p-value
(0.1464) of the lack of fit verified the validity of the regression model [14]. The coefficient of
determination (R2) was 0.9933, which was very close to the value of adjusted coefficient de-
termination (R2

adj = 0.9866), suggesting that there was a high degree of correlation between
the predicted yield and the actual yield of LLPs [3,14]. Besides, the values of the coefficient
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of variation and the adequate precision were 2.53% and 43.16, respectively, indicating that
the fitting model possessed good precision, reliability, and reproducibility [3,16]. Further-
more, the linear coefficients (X1, X2, X3, X4), interaction coefficients (X1X2, X1X3, X2X4), and
quadratic term coefficients (X1

2, X2
2, X3

2, X4
2) of the fitted model equation were significant

with p-values lower than 0.05. Results indicated that the selected extraction parameters,
including content of water in DES, extraction temperature, liquid-solid ratio, and extraction
time, were the determinant parameters for the polysaccharide extraction process.

Table 2. Analysis of the variance for the fitted second-order polynomial model for deep eutectic
solvent assisted extraction.

Sum of Squares df Mean Square F-Value p-Value

Model 19.51 14 1.39 147.7 <0.0001 **
X1 0.44 1 0.44 47.13 <0.0001 **
X2 2.18 1 2.18 231.54 <0.0001 **
X3 0.37 1 0.37 39.70 <0.0001 **
X4 0.87 1 0.87 92.15 <0.0001 **

X1X2 0.15 1 0.15 15.71 0.0014 **
X1X3 0.044 1 0.044 4.67 0.0484 *
X1X4 1.000 × 10−4 1 1.000 × 10−4 0.011 0.9195
X2 X3 3.025 × 10−3 1 3.025 × 10−3 0.32 0.5802
X2X4 0.17 1 0.17 17.82 0.0009 **
X3X4 0.018 1 0.018 1.93 0.1863
X1

2 9.03 1 9.03 957.01 <0.0001 **
X2

2 6.80 1 6.80 720.31 <0.0001 **
X3

2 3.01 1 3.01 318.91 <0.0001 **
X4

2 4.18 1 4.18 442.57 <0.0001 **
Residual 0.13 14 9.435 × 10−3

Lack of fit 0.12 10 0.012 3.06 0.1464
Pure error 0.1464 4 3.820 × 10−3

Correlation
total 19.64 28

R2 = 0.9933, R2
adj = 0.9866, coefficient of variation (CV) = 2.53%, and adeq. precision = 43.16; X1, content of water

in DES (%); X2, extraction temperature (◦C); X3, liquid-solid ratio (mL/g); X4, extraction time (min); Significantly
different, * p < 0.05, ** p < 0.01.

Furthermore, Figures 2 and 3 show the 3D response surface plots and the 2D contour
plots of the regression equation. It could be estimated that the content of water in DES
and the extraction temperature had more positive effects on the extraction yield of LLPs
than that of the extraction time and the liquid-solid ratio, respectively. Generally, the shape
of the contour plot is elliptical, suggesting that the mutual interaction between the two
extraction parameters is notable [21]. While shape of the contour plot is circular, indicating
that the mutual interaction between the two extraction parameters is not significant [21].
As shown in Figure 3, significant interaction effects between the content of water in DES
and the extraction temperature, the extraction temperature and the extraction time, and the
content of water in DES and the liquid-solid ratio were observed visually [21], which were
the same as shown in Table 2. Moreover, according to the analysis of the regression model
equation, it was concluded that the optimal extraction conditions were as follows: 60.69% of
water content in DES, extraction temperature of 92.19 ◦C, liquid-solid ratio of 31.22 mL/g,
and extraction time of 125.73 min. Considering the practical feasibility, the operating
conditions were adjusted as 61.0% of water content in DES, extraction temperature of
92.0 ◦C, liquid-solid ratio of 31.0 mL/g, and extraction time of 126.0 min. Under these
optimal conditions, the actual extraction yield of LLPs was 5.38% ± 0.11% (n = 3), which is
very close to the predicted value (5.45%).
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3.2. Physicochemical and Structural Properties of LLPs
3.2.1. Chemical Compositions of LLPs

The extraction yields and chemical compositions of LLP-D and LLP-W are expressed in
Table 3. Results indicated that the extraction yield of LLP-D extracted by DES (5.38% ± 0.11%)
was obviously higher than that of hot water extraction in the present study (3.22% ± 0.16%)
and in the previous study (1.18%) [7]. Indeed, the extraction yield of LLP-D was also notably
higher than that of enzyme assisted extraction (1.93%) [5]. Although the extraction yield
of LLP-D is slightly lower than that of DHPMAE (6.31%) [3], the DHPMAE approach
requires specific equipments with high costs, which limits its application in the food
industry. Therefore, the developed DES assisted extraction method could be applied for
efficient extraction of LLPs. Furthermore, both LLP-D extracted by DES (82.10% ± 1.29%)
and LLP-W (77.94% ± 0.48%) extracted by hot water possessed high contents of total
polysaccharides, indicating that polysaccharides were the major components in LLPs.
Obviously, LLP-D (39.96% ± 0.32%) had significantly higher content of total uronic acids
than that of LLP-W (22.98% ± 1.15%), indicating that the DES extraction solvent could aid
to specifically extract acidic polysaccharides from natural resources [11]. In addition, it
is reported that the contents of uronic acids have a great influence on the bioactivities of
acidic polysaccharides [22]. Furthermore, minor proteins were determined in both LLP-D
and LLP-W, suggesting that minor polysaccharide-protein complexes might exist in LLPs.

Table 3. Chemical compositions, molecular weight (Mw), and molar ratios of constituent monosac-
charides of polysaccharides extracted from lotus leaves.

LLP-W LLP-D

Yields and chemical compositions

Extraction yield (%) 3.22 ± 0.16 b 5.38 ± 0.11 a

Total polysaccharides (%) 77.94 ± 0.48 b 82.10 ± 1.29 a

Total uronic acids (%) 22.98 ± 1.15 b 39.96 ± 0.32 a

Total proteins (%) 3.39 ± 0.39 b 5.97 ± 0.52 a

Degree of esterification (%) 16.46 ± 0.08 b 28.92 ± 0.77 a

Mw× 104 (Da)

Peak 1 (15 min to 20 min) 12.90 ± 0.09 -
Peak 2 (20 min to 21 min) 4.70 ± 0.07 -
Peak 3 (21 min to 22 min) 3.43 ± 0.09 -
Peak 4 (17 min to 21 min) - 4.03 ± 0.07

Monosaccharides and molar ratios

Galactose 1.00 1.00
Galacturonic acid 0.70 1.36

Arabinose 0.64 0.70
Rhamnose 0.21 0.27
Mannose 0.26 0.10
Glucose 0.22 0.19

Glucuronic acid 0.21 0.18
Xylose trace trace

LLP-D and LLP-W are polysaccharides from lotus leaves extracted by deep eutectic solvent and hot water,
respectively; Each experiment was operated in triplicate, and values represent mean ± standard deviation.
Superscripts a and b differ significantly (p < 0.05) between LLP-W and LLP-D.

3.2.2. Molecular Weights and Apparent Viscosities of LLPs

Molecular weight and apparent viscosity have great influences on the bioactivities
of polysaccharides. Hence, the molecular weights and apparent viscosities of LLP-D and
LLP-W were investigated and compared. As displayed in Figure 4A, the HPSEC-RID chro-
matograms of LLP-W and LLP-D were notably different. Three polysaccharide fractions
(fractions 1 to 3) were found in LLP-W, in accordance with the previous study that several
polysaccharide fractions exist in the lotus leaves polysaccharides extracted by hot water [5].
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Interestingly, only one single and symmetric polysaccharide fraction (fraction 4) was de-
tected in LLP-D, suggesting that the DESE method could be helpful for specific extraction
of polysaccharides from lotus leaves with a high content of uronic acids (Table 3). Fur-
thermore, molecular weights of different polysaccharide fractions existed in LLP-W were
measured to be 12.90 × 104 Da (fraction 1), 4.70 × 104 Da (fraction 2), and 3.43 × 104 Da
(fraction 3), respectively. Compared with LLP-W, a lower molecular weight (4.03 × 104 Da)
of polysaccharide fraction 4 in LLP-D was determined. Usually, polysaccharides with
lower molecular weights exhibit higher antioxidant capacities against free radicals [22,23].
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mance liquid profiles of monosaccharides (C), and FT-IR spectra (D) of LLP-D and LLP-W. LLP-D
and LLP-W are polysaccharides from lotus leaves extracted by deep eutectic solvent and hot water,
respectively; Rha, rhamnose; GalA, galacturonic acid; Ara, arabinose; Gal, galactose; GlcA, glucuronic
acid; Glc, glucose; Xyl, xylose.
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Moreover, apparent viscosities of LLP-D and LLP-W associated with the shear rates
were investigated. As shown in Figure 4B, the apparent viscosities of LLP-W and LLP-D
were decreased as the increase of shearing rate, conforming to a shear-thinning behavior.
This phenomenon could be explained by the decrease of entanglement degrees among
molecular chains with the increase of shear rate. In addition, LLP-D exhibit higher ap-
parent viscosities than that of LLP-W. Usually, several factors, such as molecular weight,
monosaccharide composition, degree of esterification, could obviously influence the appar-
ent viscosities of natural polysaccharides [24]. In this study, the relatively high apparent
viscosity of LLP-D might be attributed to its high content of uronic acids and high degree
of esterification (Table 3).

3.2.3. Monosaccharide Compositions of LLPs

HPLC followed by PMP derivatization was used to detect the monosaccharide com-
positions of LLPs. Figure 4C shows the HPLC profiles of monosaccharide compositions of
LLPs. As shown in Figure 4C, LLP-W and LLP-D had the same types of monosaccharides,
which were composed of galactose (Gal), arabinose (Ara), galacturonic acid (GalA), rham-
nose (Rha), mannose (Man), glucose (Glc), glucuronic acid (GlcA), and xylose (Xyl). Table
3 summarizes the molar ratios of Rha, Gal, Ara, GalA, Man, Glc, and GlcA in LLPs, which
suggested that the major monosaccharides in LLPs extracted by DES and hot water were
similar, including Gal, GalA, and Ara. Generally, the typical constituent monosaccharides
for homogalacturonan (HG) and rhamnogalacturonan I (RG I) pectic domains are GalA,
GlcA, Gal, Rha, and Ara while for hemicelluloses they are Man, Glc, and Xyl [11]. In
addition, Ara and Gal can also arise from arabinogalactan (AG) [11]. Therefore, a large
amount of HG and arabinogalactan as well as a few of RG I might exist in both LLP-W and
LLP-D according to the molar ratios of their compositional monosaccharides. Indeed, the
HG pectic domain was much higher in LLP-D than that of LLP-W according to the molar
ratios of GalA and Rha, which further confirmed that acidic polysaccharides from lotus
leaves were more easily to be extracted by DES than that of hot water. All abovementioned
results suggested that the DES ChCl-EG extraction solvent had good potential for the
extraction of acidic polysaccharides from lotus leaves.

3.2.4. FT-IR and NMR Spectra of LLPs

Both FT-IR spectra and 1H and 13C NMR spectra were applied to analyze the structural
features of LLP-D and LLP-W. As displayed in Figure 4D, LLP-W and LLP-D exhibited
similar FT-IR spectra, indicating that LLP-W and LLP-D possessed similar functional
groups. Specifically, the strong absorption bands at 3045 cm−1 and 2918 cm−1 were
attributed to the stretching vibrations of O-H and C-H groups [5]. The absorption bands at
1743 cm−1 and 1617 cm−1 were attributed to the C=O vibrations of esterified carboxylic
groups and free carboxylic groups, respectively, demonstrating that both LLP-W and
LLP-D were acidic polysaccharides [8]. The absorption band at 1417 cm−1 further affirmed
the presence of uronic acids [9]. Besides, the absorption bands at 1239 cm−1 and 1102 cm−1

were related to the C-O-C stretching vibration and the presence of pyranose sugars in
LLPs, respectively [3,9]. Furthermore, the intensity of absorption band of 1743 cm−1

which associated with the carboxylic ester was higher in LLP-D than that of LLP-W,
indicating that the degree of esterification (DE) of LLPs was obviously affected by the DES
assisted extraction. Indeed, the DE values of LLP-D and LLP-W were determined to be
28.92% ± 0.77% and 16.46% ± 0.08%, respectively.

Furthermore, Figure 5 shows the 1H and 13C NMR spectra of LLP-D and LLP-W. As
shown in Figure 5, LLP-D and LLP-W exhibited similarly characteristic signals in both
1H and 13C NMR spectra, indicating that their primary structures were similar. The DES
assisted extraction did not change the primary structure of acidic polysaccharides from
lotus leaves. Specifically, the signal at 4.80 ppm was assigned to HDO. The signals at
5.26, 4.02, and 1.26 ppm were assigned to H-1, H-2, and H-6 of 1,2-α-L-Rhap [20,25,26].
The signals at 5.10/109.31 ppm and 4.23/83.79 ppm indicated the presence of H-1/C-1
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and H-4/C-4 of 1,5-α-L-Araf, whereas the C-2 and C-5 of 1,5-α-L-Araf were measured
to be 81.20 and 67.74 ppm [25,27]. Besides, the signal at 5.17 ppm was attributed to the
H-1 of T-α-L-Araf [25,28]. The peaks at 5.04/99.52 ppm were attributed to H-1/C-1 of
1,4-α-D-GalAp, whereas H-3, C-2, and C-5 of 1,4-α-D-GalAp were also determined to be
4.13, 69.81, and 73.28 ppm [20,25]. In addition, peaks at 4.98/100.47 were attributed to
H-1/C-1 of 1,4-α-D-GalAMep, whereas the H/C signals of the methyl signal of 1,4-α-D-
GalAMep were measured at 3.82 and 52.80 ppm [20,25]. Indeed, the signal at 170.58 ppm
was assigned to the C-6 of 1,4-α-D-GalAMep [25]. Compared with LLP-W, the intensities
of peaks at 4.98 and 3.82 ppm of LLP-D were much stronger, which was similar with
the FT-IR spectra that the DE value of LLP-D was higher than that of LLP-W (Table 3).
Moreover, the signals at 4.46, 3.73, and 76.51 ppm were assigned to the H-1, H-6, and C-5 of
1,3,6-β-D-Galp [29], and the signals at 4.56 and 61.16 ppm were attributed to the H-1 and
C-6 of 1,4-β-D-Galp [20,28]. Overall, according to the monosaccharide compositions, FT-IR
spectra, and NMR spectra of LLPs, the main polysaccharide fractions, including HG, AG,
and RG I, existed in LLPs [20,27,30].
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3.3. In Vitro Antioxidant Activities of LLPs

In this study, ABTS, DPPH, NO radical scavenging capacities and ferric reducing
antioxidant power (FRAP) of LLP-W and LLP-D were detected and compared. As shown
in Figure 6A–D, both LLP-W and LLP-D exhibited remarkable antioxidant activities when
compared with the positive controls (Vc and BHT). IC50 values of various different rad-
ical scavenging capacities of LLP-D and LLP-W were measured to be 0.61 ± 0.02 and
0.86 ± 0.01 mg/mL (ABTS), 0.65 ± 0.01 and 0.90 ± 0.01 mg/mL (DPPH), and 0.31 ± 0.03
and 0.43 ± 0.01 mg/mL (NO), respectively. Besides, the obvious antioxidant activities of
LLP-D and LLP-W have also been demonstrated by the notable FRAP at the concentration
of 3.0 mg/mL. Obviously, LLP-D exhibited significantly (p < 0.05) stronger antioxidant
activities than that of LLP-W.
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powers (D). LLP-D and LLP-W are polysaccharides from lotus leaves extracted by deep eutectic
solvent and hot water, respectively; Vc, vitamin C; BHT, butylated hydroxytoluene; Each experiment
was operated in triplicate, and the error bars are standard deviations; Significant (p < 0.05) differences
are shown by data bearing different letters (a–c).

Generally, physicochemical properties of acidic polysaccharides, including molecular
weight, type of monosaccharide, content of uronic acid, and degree of esterification, exhibit
notable influences on their in vitro antioxidant abilities [20,22]. Specifically, the acidic
polysaccharide with low molecular weight often exhibits strong antioxidant capacities,
because it is easy to react with free radicals for its great proportion of exposed reducing
ends and the large surface area [22,23]. Besides, the interaction between free uronic acid
groups and carbon atoms can also contribute to the high antioxidant capacities of acidic
polysaccharides [22,23]. Hence, compared with LLP-W, the stronger antioxidant capacities
of LLP-D might be due to its lower molecular weight and higher content of free uronic acids
(Table 3). These results indicated that the optimized DESE method had good potential for
the extraction of acidic polysaccharides with remarkable antioxidant capacities from lotus
leaves, which is beneficial to improve the application of lotus leaves in the food industry.

3.4. In Vitro Hypoglycemic Effects of LLPs

The in vitro hypoglycemic activity of natural polysaccharides can be efficiently eval-
uated through the determination of their inhibitory rates on the activities of α-amylase
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and α-glucosidase [20,31,32]. Therefore, inhibitory effects of LLP-D and LLP-W against
α-amylase and α-glucosidase were investigated. As shown in Figure 7A,B, both LLP-D
and LLP-W exhibited potent inhibitory effects against α-amylase and α-glucosidase. No-
tably, LLP-D exhibited stronger inhibitory effects on α-amylase and α-glucosidase than
that of LLP-W. The IC50 values of acarbose, LLP-D, and LLP-W against α-amylase were
measured to be 7.32 ± 0.20, 80.02 ± 0.95, and 198.39 ± 12.07 µg/mL, whereas IC50 values of
acarbose, LLP-D, and LLP-W against α-glucosidase were determined to be 941.01 ± 21.45,
4.46 ± 0.17, and 6.26 ± 0.07 µg/mL. Results showed that both LLP-D and LLP-W exhibited
extremely stronger inhibitor effects against α-glucosidase than that of acarbose, indicating
that LLPs had the potential applications to prevent and manage diabetes.
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In general, natural polysaccharides can inhibit enzymatic activities of α-amylase
and α-glucosidase through binding to the enzymes and changing their structures [22,23].
Polysaccharides with low molecular weight are easy to bind with the active sites of en-
zymes [31,33]. Besides, acidic polysaccharides can increase the binding capacity due to
the presence of electrophilic groups, such as keto or aldehyde [22]. Therefore, the low
molecular weight and high content of uronic acids of LLP-D may contribute to its strong
inhibitory activities against α-amylase and α-glucosidase. Besides, the high viscosity and
high degree of esterification of LLP-D could also benefit its hypoglycemic activity [34].
Overall, LLP-D extracted by DES could be served as a new and natural hypoglycemic
substance in the functional food industry.

3.5. Immunomodulatory Effects of LLPs

Several studies have reported that polysaccharides extracted from lotus leaves can
activate RAW 264.7 macrophages [5,7]. Therefore, in this study, the LPS induced-RAW
264.7 macrophage was used as a model for the evaluation of immunomodulatory effects
of LLP-W and LLP-D. Figure 8 shows the effects of LLP-W and LLP-D on the cytotoxicity,
NO, IL-6, and TNF-α productions of RAW 264.7 macrophages. As shown in Figure 8A,
both LLP-W and LLP-D showed no toxicity effects on RAW 264.7 macrophages. Moreover,
results showed that both LLP-W and LLP-D notably promoted the production of NO, IL-6,
and TNF-α in a dose-dependent manner, respectively. At the concentration of 320 µg/mL,
the productions of NO, IL-6, and TNF-α from macrophages activated by LLP-W and LLP-D
ranged from 23.08 ± 0.40 to 26.40 ± 0.38 µM, from 23.44 ± 0.21 to 27.51 ± 0.20 pg/mL,
and from 627.46 ± 12.48 to 698.52 pg/mL, respectively. Notably, compared with LLP-W,
LLP-D exhibited much stronger immunomodulatory effects, suggesting that the DESE
method also possessed good potential for preparation of acidic polysaccharides with high
immunomodulatory effects from lotus leaves.
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Generally, the immunomodulatory effects of natural polysaccharides are correlated
to the structural characters, such as molecular weight, monosaccharide composition, de-
gree of esterification [7,35]. Previous studies have shown that the low molecular weight
polysaccharides often exhibit strong immunomodulatory effects [7,36,37]. Besides, the im-
munomodulatory effects of acidic polysaccharides are positively correlated to the content
of uronic acids and the degree of esterification [7,35,38]. Therefore, compared with LLP-W,
the stronger immunomodulatory effects of LLP-D might be attributed to its relatively
lower molecular weight, higher content of uronic acids, and higher degree of esterifica-
tion (Table 3). However, in order to reveal the detailed structure-function relationships
of LLP-D, the further purification, structural characterization, and in vitro and in vivo
bioactivities evaluation are required in the future.
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optimal extraction conditions as 61.0% of water content in DES, extraction temperature of 
92.0 °C, liquid-solid ratio of 31.0 mL/g, and extraction time of 126.0 min. Compared with 
hot water extraction (yield, 3.22%), DES was more efficient for extracting polysaccharides 
from lotus leaves. Furthermore, LLP-D and LLP-W possessed the same constituent mon-
osaccharides and glycosidic linkages. Indeed, the main polysaccharide fractions, includ-
ing HG, AG, and RG I, could be found in both LLP-W and LLP-D. Notably, the DESE 
method could be beneficial for specific extraction of HG fraction from lotus leaves. Fur-
thermore, compared with LLP-W, LLP-D exhibited lower molecular weight and higher 
content of uronic acids (GalA), which might contribute to its stronger in vitro antioxidant, 
hypoglycemic, and immunomodulatory effects. Hence, these results suggest that the 

Figure 8. Effects of LLP-D and LLP-W on the cytotoxicity (A), NO production (B), IL-6 production
(C), and TNF-α production (D) of RAW 264.7 macrophages. LLP-D and LLP-W are polysaccharides
from lotus leaves extracted by deep eutectic solvent and hot water, respectively; Each experiment
was operated in triplicate, and the error bars are standard deviations; Significant differences of cell
viability and productions of NO, IL-6, and TNF-α of LLP-W and LLP-D vs. control are shown by
** p < 0.01. Superscripts a-b differ significantly (p < 0.05) between LLP-W and LLP-D.

4. Conclusions

In this study, the maximum extraction yield (5.38%) of LLPs was obtained under the
optimal extraction conditions as 61.0% of water content in DES, extraction temperature
of 92.0 ◦C, liquid-solid ratio of 31.0 mL/g, and extraction time of 126.0 min. Compared
with hot water extraction (yield, 3.22%), DES was more efficient for extracting polysaccha-
rides from lotus leaves. Furthermore, LLP-D and LLP-W possessed the same constituent
monosaccharides and glycosidic linkages. Indeed, the main polysaccharide fractions,
including HG, AG, and RG I, could be found in both LLP-W and LLP-D. Notably, the
DESE method could be beneficial for specific extraction of HG fraction from lotus leaves.
Furthermore, compared with LLP-W, LLP-D exhibited lower molecular weight and higher
content of uronic acids (GalA), which might contribute to its stronger in vitro antioxidant,
hypoglycemic, and immunomodulatory effects. Hence, these results suggest that the DESE
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method can be a potential method for specific extraction of acidic polysaccharides with
high bioactivities from lotus leaves.
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