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Mesenchymal stem cells in fibrotic diseases—the two sides
of the same coin
Lei Qin1, Nian Liu1, Chao-le-meng Bao2, Da-zhi Yang1, Gui-xing Ma3, Wei-hong Yi1, Guo-zhi Xiao3 and Hui-ling Cao3

Fibrosis is caused by extensive deposition of extracellular matrix (ECM) components, which play a crucial role in injury repair.
Fibrosis attributes to ~45% of all deaths worldwide. The molecular pathology of different fibrotic diseases varies, and a number of
bioactive factors are involved in the pathogenic process. Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that
have promising therapeutic effects in the treatment of different diseases. Current updates of fibrotic pathogenesis reveal that
residential MSCs may differentiate into myofibroblasts which lead to the fibrosis development. However, preclinical and clinical
trials with autologous or allogeneic MSCs infusion demonstrate that MSCs can relieve the fibrotic diseases by modulating
inflammation, regenerating damaged tissues, remodeling the ECMs, and modulating the death of stressed cells after implantation.
A variety of animal models were developed to study the mechanisms behind different fibrotic tissues and test the preclinical
efficacy of MSC therapy in these diseases. Furthermore, MSCs have been used for treating liver cirrhosis and pulmonary fibrosis
patients in several clinical trials, leading to satisfactory clinical efficacy without severe adverse events. This review discusses the two
opposite roles of residential MSCs and external MSCs in fibrotic diseases, and summarizes the current perspective of therapeutic
mechanism of MSCs in fibrosis, through both laboratory study and clinical trials.
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INTRODUCTION
Many types of tissue injury trigger serial cellular and molecular
cascades that lead to tissue fibrosis. Fibrosis is a disease
characterized by scarring and sclerosis of tissues, which can affect
many organs, including the liver, bone marrow, lung, kidney,
gastrointestinal tract, skin, eyes, and myocardial intima, ultimately
leading to cellular dysfunction and organ failure [1]. Fibrotic
diseases attribute to ~45% of all deaths worldwide [1, 2]. For
instance, liver fibrosis is one of leading causes of liver cancer
which is increased rapidly and causes estimated 750,000 deaths
per year [3, 4]. Moreover, there are millions of hepatitis B virus
(HBV) and hepatitis C virus (HCV) carriers globally, which might
attribute to the millions of people affected by pulmonary fibrosis
[5]. However, despite the huge morbidity and mortality, there are
only very limited approved anti-fibrosis therapies [6]. Therefore,
there is an urgent need to develop new anti-fibrosis therapies for
the treatment of fibrotic diseases. Moreover, understanding the
cellular mechanisms behind fibrosis is of great importance for
improving the therapeutic outcomes and discovering new
therapeutic approaches.
Mesenchymal stem cell (MSC) refers to a stem cell population

with demonstrable progenitor cell functionality of self-renewal
and differentiation, as clarified by International Society for Cell &
Gene Therapy (ISCT) Mesenchymal Stromal Cell (ISCT MSC)
committee [7]. The classic minimal criteria to define human MSCs

is through its phenotype, which includes positive expression of
CD105, CD73, and CD90, and negative of hematopoietic and
endothelial markers, such as CD45, CD34, CD14, CD19, and human
leukocyte antigen-DR isotype (Fig. 1). Similarly, a typical mouse
MSC is positive of CD105, CD29, CD44, and stem cell antigen 1
(SCA-1), and negative of CD45, CD31, and lymphocyte antigen 76
(Ly76) (Fig. 1). Besides, MSCs shall be multipotent and capable of
trilineage differentiation into adipocyte, chondrocyte, and osteo-
blast [8] (Fig. 1). MSCs widely existed in mesenchymal tissues and
can be harvested from bone marrow, umbilical cord, cord blood,
placenta, adipose tissue, muscles, dermal tissue, amniotic fluid,
menstrual blood, and urine [9–15].
Based on the conventional understanding of multipotent stem

cells, MSCs were believed to have promising application in
reconstructive therapy due to their self-renewal and multipotent
properties [16, 17]. Surprisingly, greater therapeutic potential of
MSCs was discovered as more complex functional mechanisms of
these cells were revealed over the decades, including its
immunomodulatory capabilities [18], autocrine and paracrine
effects [19], and the abilities to escape from the innate immune
system and counteract the complement system [20]. Therefore,
the clinical application of MSCs has been extensively attempted
for various diseases, such as osteoarthritis [21], rheumatoid
arthritis [22], tissue repair [23–25], diabetic foot ulcer [26], diabetes
[27], female infertility [28], autoimmune diseases [29],

Received: 19 February 2022 Accepted: 29 June 2022

1Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, China; 2CASTD Regengeek (Shenzhen) Medical
Technology Co. Ltd, Shenzhen 518000, China and 3Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key
Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China
Correspondence: Wei-hong Yi (szyiwh@163.com) or Guo-zhi Xiao (xiaogz@sustech.edu.cn) or Hui-ling Cao (caohl@sustech.edu.cn)
These authors contributed equally: Lei Qin, Nian Liu, Chao-le-meng Bao

www.nature.com/aps

© The Author(s), under exclusive licence to Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Chinese Pharmacological Society 2022

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41401-022-00952-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41401-022-00952-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41401-022-00952-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41401-022-00952-0&domain=pdf
mailto:szyiwh@163.com
mailto:xiaogz@sustech.edu.cn
mailto:caohl@sustech.edu.cn
www.nature.com/aps


cardiovascular diseases [30], neurodegenerative diseases [31],
graft versus host disease (GvHD) [32], COVID-19 patients [33], and
different types of fibrotic diseases [34–36].
With current technical advances in cell lineage tracing, imaging,

and phenotyping, many cell fate mapping studies revealed that
the sources of fibrotic cells come from residential MSCs which
differentiate and participate in the progress of fibrosis. Together
with the beneficial effects of MSCs infusion in both preclinical and
clinical trials, these studies suggest potential dual roles of MSCs in
the pathogenesis and treatment of fibrosis. Here in this review we
summarized the causal factors and mechanisms in fibrosis,
discussed the diverse roles of MSCs in the development and
treatment of fibrosis, and finally listed current ongoing clinical
MSC trails in fibrotic diseases.

FIBROTIC DISEASES: PATHOGENESIS AND MECHANISM
Tissue fibrosis is characterized as the extensive deposition of
extracellular matrix (ECM) components, which plays a crucial role
in injury repair. At the initial stage of fibrogenic process, the organ
will undergo an activation of local effector cells such as fibroblasts
and myofibroblasts. The stimulation of tissue injury is followed by
the reconstruction of the extracellular matrix, during which
inflammatory factors are secreted and ECM components such as
collagen and fibronectin are synthesized [6]. These changes
initiate and propagate wound healing response. In a short term,
fibrosis exhibits adaptive characteristics, showing that once the
normal organizational structure of the tissue is restored, the ECM
will be reshaped with little effect on organ function. However,
when severe or recurrent injury happens, the excessive deposition
of ECM components accelerates the progression of fibrosis and
ultimately leads to terminal organ failure. The pathologic matrix-
producing cells are activated fibroblasts, called myofibroblasts in
different organ and tissue fibrosis [37]. Myofibroblasts are
characterized with pronounced rough endoplasmic reticulum

and large nucleolus, as well as high synthetic and proliferative
capability [37]. The extensive proliferation, differentiation, and
ECM deposition of myofibroblasts are triggered by a variety of
cytokines and growth factors, such as transforming growth factor
β1 (TGF-β1) and platelet-derived growth factor (PDGF), derived
from adjacent stimulated tubular epithelial cells, endothelial cells,
leukocytes or from fibroblast themselves [38]. According to our
current understanding of fibrosis, one important way to find new
treatment for fibrosis is to decipher the cellular sources of
myofibroblasts.
Fibrosis is a highly dynamic process which could be seen as the

outcome of multiple types of tissue injury in the course of chronic
inflammation. In fact, wound healing of injured tissues requires
recruiting a large number of cell types coordinated at the space-
time level to sustain tissue homeostasis [39]. Studies have shown
that immature tissue can heal without fibrotic scars before the
inflammatory response, suggesting the role of inflammation on
fibrosis [40–42]. When tissue is subjected to sustained injury, the
substantial chronic injury could lead to uncontrolled myofibro-
blast activation and excessive accumulation of ECM, which results
in a chronic inflammatory environment infiltrated by macro-
phages, lymphocytes, eosinophils, and other immune cells [43]. In
addition, genetic changes in organs also participate in the
progress of fibrosis, such as Mucin 5B (MUC5B) in pulmonary
fibrosis and Myosin Heavy Chain 7 in cardiac fibrosis [44, 45].
These specific mutations associated with fibrosis suggest that
some non-fibroblast types are involved upstream of the patho-
genesis of fibrosis, highlighting the importance of multicellular
interactions in this disease.

The causal factors of fibrotic diseases
Fibrotic diseases are driven by typical cellular and molecular
mechanisms. Much of our understanding of fibrotic diseases has
been derived from the elucidation of the basic physiologic and
pathologic processes of fibrosis in evidence from experimental

Fig. 1 Cellular markers and trilineage differentiation of MSCs. The standardized phenotype of MSCs was proposed by the International
Society for Cellular Therapies (ISCT). A typical human (h)MSC positively expresses CD105, CD73, and CD90 membrane markers, but negative
with CD45, CD34, CD14, CD19, and HLA-DR on its surface. Comparably, the positive membrane markers for mouse (m)MSCs include CD15,
CD29, CD44, and SCA-1, but negative with CD45, CD31, and Ly76. According to ISCT, MSCs all share the classical trilineage differentiation
potential in vitro, i.e., MSCs can differentiate into osteoblasts, chondrocytes, and adipocytes in culture.
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animal models. Table 1 outlines the typical transgenic and
inducible (drug or surgical induced) animal models that have
been widely used in the study of fibrotic diseases. Based on the
observations and studies over these models, it is now well-
accepted that different fibrotic diseases are tightly associated with
diverse casual factors. Here we summarize some causal factors and
current treatment for common fibrotic diseases.

Cardiac fibrosis. Cardiac fibrosis implicates abnormalities in
myocardial function and cardiac metabolism, resulting in heart
failure, arrhythmias, and other heart diseases. Cardiovascular
diseases, such as hypertension, ischemic heart disease, dilated
cardiomyopathy, viral myocarditis, and diabetic cardiomyopathy,
can be observed in varying degrees of myocardial fibrosis [46].
There are several pathological factors involved in the cardiac
fibrosis, such as pressure overload, endothelial loss, or ischemic
injury, during which myocardial fibroblasts and cardiomyocytes
cause collagen deposition and lead to interstitial fibrosis in the
fibrotic heart [5]. After myocardial injury, the pathological basis of
myocardial fibrosis is associated with excessive and continuous
deposition and composition changes of ECM. During the process,
the expression of different types of collagens causes collagen
deposition and fibrotic scar formation. Increased expression of
type I and type III collagen significantly promoted the proliferation
of cardiac fibroblasts, which was mediated by extracellular signal-
regulated protein kinases 1 and 2 [47]. Type V and VI collagen

have been reported to interact with α-Integrin receptors in cardiac
fibroblasts and promote the differentiation of myofibroblasts
[48, 49]. Decreased secretion of type V collagen increased the
expression of αvβ3 and αvβ5 Integrins, which could change the
scar size through the activation of Integrin-mediated feedback
pathway [49].
Besides ECM changes, reported studies showed that several

genes are tightly associated with cardiac fibrosis. For example,
gene mesenchyme homeobox 1 (Meox1) is activated in stress-
induced fibroblasts and stimulates fibrosis, which is correlated
with the activation of cardiac fibroblasts in mice with heart failure
[50]. When these mice were treated with bromodomain and extra-
terminal domain inhibitors, the levels of Meox1 decreased
dramatically [50], indicating that blocking this gene may prevent
fibrosis of heart and other organs. Moreover, bromodomain-
containing protein 4 (BRD4), as an epigenetic regulator, plays an
important role in regulating cardiac fibroblast. Chemical inhibitors
that target BRD4 can effectively block cardiac fibroblast activation
[51]. These studies indicate that the status of cardiac fibroblasts
may be a feasible target for therapeutic intervention.
Although the pathogenesis of cardiac fibrosis remains to be

further studied, continuous inflammatory response and fibroblast
activation are the key factors causing cardiac fibrosis. A large
number of studies have shown that cytokines and immune cells
promote fibrosis through the interaction with fibroblasts [52].
Cardiac fibroblasts transform into activated myofibroblasts and

Table 1. Animal models utilized in the study of fibrotic diseases.

Fibrotic diseases Transgenic animal models Surgical/drug-induced animal models

Cardiac fibrosis FAK knockout mice [275];
SR-BI/apoE double KO mice [276];
EC-SOD overexpressing mice [277];

Myocardial ischemia model [278];
Transverse aortic constriction(TAC) model [279];
ISO (Isoproterenol) induced mice [280];
Angiotensin II mice [281];

Skin fibrosis TSK mutant mice [282, 283];
MRL/lpl/IFNγ receptor null mice [284];
Mutant kinase deficient type II TGF-β receptor
transgenic mice [285];

Radiation ulcers [77];
Bleomycin-induced skin fibrosis [286];
Skin wound healing models [287]:
Vinyl chloride induced model [288];

Liver fibrosis TbRIIDk transgenic mice [289];
HBV transgenic mice [290];

CCl4 mouse model [291];
Diethylnitrosamine (DEN) rat model [104];
Bile duct ligation (BDL) model [292];

Lung fibrosis TNF- overexpressing mouse [293];
TGF-β- overexpressing mouse [294];
IL-1-overexpressing mouse [295];

Bleomycin-induced mice model [296];
Silica aerosolized model [297];
FITC induced model [298];
Irradiation-induced pulmonary fibrosis [299];
Human fibroblasts transplantation in immunodeficient mice
[300];

Renal fibrosis Bradykinin B1 receptor deficient mice [301];
TGF-β- overexpressing rat [302];
Nep25 transgenic mice [303];
AT1 receptor-deficient mice [304];
Coll-GFP mice [305];

Drug induced models [306]: (HgCl2, Vanadate, Adriamycin, Uranyl
nitrate, Folic acid etc.);
Surgical induced models: Ureteral obstruction (UUO) rodent
model [307]; kidney ischemia mice [308];

Myelofibrosis (bone
marrow)

TPO(Thrombopoietin)-overexpressing mice [309];
GATA-1low mice [310];
Calrdel52 mice [311];
Abi-1 knockout mouse [312];

JAK2V617F murine bone marrow transplantation model [313];
MPLW515L murine bone marrow transplantation model [314];

Cystic fibrosis (airway) PTEN-long–deficient mice (Ptenl−/−) [115, 125];
CftrΔF508 mutation mice [315];

Ovalbumin-exposed mice [316];

Intestinal fibrosis IL-10 KO mice [317];
TGF-β1- overexpression mice [318];

Organoid-based epithelial to mesenchymal transition (OEMT)
model [319];
Trinitrobenzene sulfonic acid (TNBS) model [320];
Salmonella typhimurium models [321];
Radiation-Induced rat model [322];

Pancreatic fibrosis R122H transgenic mice [323]; DBTC induced model [324];
Caerulein-induced model [325];
Oleic acid-induced model [326];
Cerulein-induced model [327];
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release inflammatory factors in response to pathological stress
and rapidly regulate ECM turnover. During myocardial infarction
(MI), yes-associated protein (YAP) is involved in the regulation of
macrophage-mediated pro-inflammatory responses and interacts
with the Hippo pathway which is essential to cardiac repair [53].
YAP also enhanced the sensitivities of cardiac fibroblasts to the
pro-fibrotic activity of TGF-β1 [54]. Under MI or ischemia, cardiac
remodeling is regulated by Ca2+/calmodulin-dependent protein
kinase II, which is activated by reactive oxygen species (ROS) in the
inflammatory environment and modulates the pro-inflammatory
nuclear factor kappa-B (NF-κB) [55]. ROS can also directly regulate
the secretion of ECM by regulating the expression of matrix
metalloproteinases (MMPs) [42]. Endoplasmic reticulum (ER) stress
is related to the pro-inflammatory responses during fibrosis and
stress-induced cardiac fibrosis can be attenuated by
4-phenylbutyric acid through interfering with the process of
cardiac apoptosis and cardiac rupture [56, 57]. Besides inflamma-
tory pathways, metabolic dysfunction can also trigger cardiac
fibrosis. For instance, in models of type 1 or type 2 diabetes,
cardiac fibroblasts, macrophages, and other cell types are involved
in the process of pro-fibrosis effects, during which cardiac
fibroblasts are induced by high glucose, transformed into
myofibroblasts, and stimulates the deposition of ECM through
interacting with TGF-β/Smad pathway [58]. In addition, leptin is
one of the factors that stimulate ECM accumulation in the
myocardium and interacts with aldosterone receptor, which
triggers endothelial dysfunction and the development of cardiac
fibrosis [59]. Therefore, the various signaling molecules involved in
the cardiac fibrosis can provide therapeutic targets that may
attenuate fibrotic responses.

Skin fibrosis. Skin fibrosis is a serious global health problem
which manifests in many forms, such as systemic sclerosis (SSc),
GvHD, nephrotic fibrodermatitis, connective tissue disease,
sclerosing edema, hypertrophic scars, and keloids [60]. Skin
fibrosis is caused by external environmental factors, inflammation,
or autoimmune mechanisms [61]. Moreover, skin injury, infection,
and radiation can promote the process of skin fibrosis [60]. The
underlying cause of skin fibrosis is the excessive accumulation of
ECM, which leads to thickening of normal tissue and induces skin
pain or dysfunctions [62].
Although there is no general consensus on the etiology of skin

fibrosis, several studies have identified series of cytokines and
growth factors that drive scar formation. It is clinically formulated
that skin injury or inflammation is a prerequisite for abnormal
sustained wound healing and subsequently keloid formation [63].
Genetics have been noted to be involved in keloid development
and single nucleotide polymorphisms are thought to influence
scar severity [64]. In addition, the immune system plays an
important role in regulating wound repair and tissue regeneration
following initial trauma [65]. The inflammatory environment
formed following injury significantly increases the numbers of
neutrophils and macrophages which secrete varies of growth
factors, such as TGF-β, vascular endothelial growth factor (VEGF),
PDGF to participate in the skin fibrosis [66–68]. Moreover, T Helper
2 (Th2) cell cytokine is involved in wound healing and fibrotic
processes. When Th2 cytokine responses become hyperactive or
uncontrolled, they will trigger “over repair” mechanisms which
lead to fibrosis [69, 70]. IL-4 and IL-13 secreted by Th2 cells are
related to the pathogenesis of fibroproliferative disorders [43, 69].
During wound healing, the continuous activation of IL-4 and IL-13
related pathways, such as JAK/STAT6 (Janus kinase/signal sensor
and transcriptional activator protein 6), promotes fibroblast
proliferation, myofibroblast differentiation, and the production of
collagen and ECM turnover [43, 71, 72]. IL-4 in skin fibroblasts of
SSc patients was significantly elevated and stimulated collagen
synthesis [73, 74], whereas IL-4 expression was decreased after the
wound was healed in murine models [75]. IL-13 can activate the

proliferation and differentiation of fibroblasts, as well as the
expression of type I collagen and α-SMA [76]. In addition to
inflammatory factors, metabolic abnormalities persist in patients
with skin fibrosis. For example, the level of fatty acid oxidation is
reduced and glycolysis is elevated in fibrotic skin with abundant
ECM [77]. Activation of peroxisome proliferator-activated receptor
signaling or inhibiting glycolysis could lead to decreased ECM
gene transcription and increased ECM degradation [77]. Further-
more, ECM accumulation in skin fibrotic mice can be effectively
reduced by upregulating the expression of fatty acid transporter
CD36 [77]. These studies provide new therapeutic molecular
targets for the treatment of skin fibrosis.

Liver fibrosis. Liver fibrosis is a pathological process of abnormal
hyperplasia of connective tissue in the liver caused by a variety of
pathogenic factors. Liver fibrosis could develop into liver cirrhosis
and even hepatocellular carcinoma in serious conditions. The
most studied liver disease is nonalcoholic steatohepatitis (NASH),
the risk factors of which are either obesity, high cholesterol, or
metabolic syndrome [78]. Moreover, there are a variety of
potentially preventable causes for liver fibrosis, including HBV
and HCV infections, obesity, alcohol abuse, and aflatoxins [79].
Myofibroblasts are activated in response to liver injury, which is

the main source of ECM in fibrotic liver [4]. The sources of hepatic
myofibroblasts can be identified as hepatic stellate cells (HSCs),
liver-resident cells, portal fibroblasts, and bone MSCs [4, 80–82].
Among them, HSCs seem to be the main source of ECM formation
[83]. Toxic liver injury can promote the activation of HSCs, while
cholestatic liver fibrosis activates both HSCs and portal fibroblasts
[82, 84]. Physiologically, HSCs exhibit a quiescent phenotype, but
are activated in response to the chronic injury and further
upregulate the expression of α-SMA, and persistently secrete ECM
to induce the formation of fibrous scar [85]. Moreover, extensive
studies in animal models reveal that the depletion of activated
HSCs by genetic or pharmacological ways can limit the progres-
sion of liver fibrosis [86, 87]. The activation of HSCs is also
regulated by the pro-inflammatory cytokines (e.g., IL-6, IL-1β, TNF,
and TGF-β) [88, 89].
The key molecular mechanisms of liver fibrogenesis have been

revealed using transgenic mice models [90, 91]. Genes that related
with fibrogenesis interact with environmental factors in liver
and coordinate the progression of the fibrosis and the immune
response to the hepatic injury [92, 93]. Death receptor-mediated
genes (e.g., TRAIL, Bcl-xL, Fas), the pro-apoptotic pathways (e.g.,
Caspase 3), and natural killer cells regulate hepatocyte apoptosis
which is a key initial event that responds to the hepatic damage in
liver fibrosis [94–97]. During liver damage, the process of oxidative
stress leads to the production of ROS which is mediated by
NADPH oxidases and regulates HSC activation [98, 99]. The
inflammation and oxidative stress also lead to hepatocyte
apoptosis and contribute to the development of NASH [100].
Studies have shown that there is a high level of oxidative stress
response in NASH [101]. Moreover, the application of agonists of
transcription factors PPARγ could improve the inflammation
responses in liver fibrosis [102]. Increased IL-17 level was found
in the intestinal flora of NASH patients [103]. In addition, studies
showed that spleen tyrosine kinase (SYK) could promote liver
fibrosis, which could be a possible target of anti-fibrosis treatment.
SYK antagonist effectively inhibited liver fibrosis by inhibiting the
activation of HSCs, and reduced the occurrence of obstructive
jaundice, and hepatocellular carcinoma in cell and animal models
[104]. The therapeutic strategies that target HSCs and inflamma-
tory cells to mediate liver repair are needed to further study.

Pulmonary fibrosis (PF). Pulmonary fibrosis is a heterogeneous
end-stage interstitial lung disease characterized by parenchyma
destruction, ECM deposition, and inflammatory injury [105]. It is
the most common form of idiopathic interstitial pneumonia which
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is associated with a number of causes, including systemic sclerosis,
infection, chemotherapy, environmental exposures, or unknown
etiologies [106].
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder

that affects the health of over 5 million people worldwide [6]. IPF
is highly related to some co-morbidities and complications [107].
According to the pathogenesis of IPF, genetic mutations,
epigenetic factors, environmental and microbial factors contribute
to the development of pulmonary fibrosis. The dysfunction of
alveolar epithelial cells (AECs) is considered to be the driver during
the initiation of IPF [108]. The mutations in the surfactant protein C
(SFTPC) gene and the surfactant protein A2 (SFTPA2) are associated
with the development of IPF by affecting the protein trafficking
and folding in AECs [109, 110]. Toll interacting protein (TOLLIP)
expressed in AECs and telomerase expressed in stem cells and
progenitor cells are also reported to be associated with IPF
[44, 111]. Tumor suppressor phosphatase and tensin homolog
(PTEN) also plays a key role in lung infections and fibrosis.
Dysfunctional epithelia and AEC injury lead to a lower level of
PTEN expression in IPF patients, which activates the NF-κB
pathway and triggers the deposition of collagen in fibroblasts
[112]. During AEC injury, epithelial cells and macrophages release
a variety of chemokines (e.g TGF-β, PDGF, IL-1, TNF-α) and activate
the related signaling pathways, leading to fibroblast proliferation,
and differentiation [113].
In addition, evidence of lung tissue from IPF patients, mouse

models, and cultured lung fibroblasts have shown that drugs
targeted at cell metabolism could reverse pulmonary fibrosis.
Metformin, a widely used drug to treat non-insulin-dependent
diabetes, could reverse lung fibrosis and affect the mechanism of
the disease [114]. In addition, amphotericin (AmB) has been
currently approved as a candidate drug for the treatment of
pulmonary fibrosis. AmB helps to restore the function of lung cells
and avoid chronic bacterial pulmonary infection [115]. Genome-
wide association studies have shown that genetic variants of
MUC5B which is expressed in bronchiolar epithelium can slow
down the disease progression [44, 116]. The better understanding
of IPF pathogenesis is important for providing references of
treatment approaches to increase the life expectancy of patients
with pulmonary fibrosis.

Cystic fibrosis (CF). Cystic fibrosis (CF) is a genetic disease that
could affect multiple organs, including lung, intestine, airway, etc.
[117]. There are more than 100,000 CF patients worldwide who
continue to suffer from serious complications throughout their
lives [118]. CF is caused by mutations and dysfunction of cystic
fibrosis transmembrane conductance regulator (CFTR) gene [119].
According to the physiology functions of CFTR protein, the
mutations of CFTR gene can be classified into six classes: Class I
mutations cause no protein production; Class II mutations (e.g.,
Phe508del) cause the misfolded CFTR protein retained at the
endoplasmic reticulum; In class III, CFTR can be transported to cell
surface but has a defective channel regulation; Class IV mutations
reduce the channel conductance; Class V mutations decrease the
synthesis of CFTR; In class VI, mutations have a short half-life and a
lower stability compared to intact CFTR protein [120].
A better understanding about the pathophysiology of CF can

facilitate the development of novel therapies targeting this
disease. Reported study showed that the prevalence of pancrea-
titis increases in people with mutations of classes IV and V [121]. In
CFTR-related chronic pancreatitis, pancreatic ducts secrete the
fluid with neutral-acidic pH which can be alkalinized through
CFTR-mediated chloride and bicarbonate secretion [122]. In the
airway, CFTR mutations block Cl- transporter, resulting in impaired
mucus clearance, increased viscosity of airway mucus, and
inflammatory infection [123]. In CFTR-related lung disease, lungs
continued exposure to the inflammatory microenvironment which
is generated by the impaired microorganisms clearance and

pro-inflammatory microenvironment [124]. In addition to CFTR
gene, PTEN also plays a critical role in the development of CF. PTEN
deficiency stimulates mitochondrial activity and inhibits succinate
dehydrogenase activity, resulting in the increased release of
succinate and mitochondrial ROS [125]. This environment
promotes the colonization of Pseudomonas aeruginosa in airway
and stimulates anti-inflammatory response dominated by the
immune response gene 1 and itaconate [125]. Moreover, there are
antibiotic and anti-inflammatory therapies for cystic fibrosis [126].
A novel drug testing of CF patients uses a combination of
multiscale differential dynamic microscopy and a video analysis
algorithm to evaluate ciliary beat frequency [127]. In addition, a
new potential single-molecule therapy which is based on
Thymohormone α1 (Tα1) could not only correct genetic defects
in CF patients, but also significantly reduces pro-inflammatory NF-
κB activity and promotes expression of the anti-inflammatory
cytokine IL-10 [128]. This treatment could potentially correct the
genetic defects that cause cystic fibrosis in patients and help
reduce inflammatory response in the body.

The molecular mechanisms of the fibrotic pathogenesis
Fibrosis is considered as the hallmark of pathological tissue
remodeling in many clinical diseases. It is tightly associated with
radiation, chronic infection, toxins, or other congenital or
autoimmune factors, and also related to a large number of
bioactive factors, including proteolytic enzymes, cytokines, growth
factors, and angiogenic factors [6]. The molecular mechanisms
that drive fibrosis are complex. Fibrosis is a highly dynamic
process which has strong plasticity, and many key molecules are
involved in the regulation of fibrosis. Several important signaling
pathways that involved in the fibrotic pathogenesis have been
summarized in the following paragraphs.

Transforming growth factor-β (TGF-β). Transforming growth
factor-β is the main factor leading to fibrosis, which may serve
as a potential anti-fibrosis target. In response to tissue injury,
fibroblasts need to release TGF-β and other factors to coordinate
the local inflammation and myofibroblast activation processes.
These cells secrete collagen and fibronectin to participate in
wound healing and ECM remodeling to restore tissue integrity and
promote parenchymal replacement [129, 130]. Extensive evidence
has shown that inhibition of TGF-β activity can ameliorate the
development of tissue fibrosis. Bioactive TGF-β acts through two
types of cell surface receptors with transmembrane serine/
threonine kinases activity (TβRI and TβRII) to regulate fibroblasts
activation and immune responses during fibrotic process [131].
TGF-β family signaling is thought to be mediated by Smad- or

non-Smad pathways [131]. During liver fibrosis, macrophages-
derived TGF-β coordinates with other pro-fibrotic factors
(e.g., PDGF, MMPs) and promotes inflammatory response and
scarring through TGF-β1-Smad signaling or PI3K-Akt signaling
pathway [4, 132, 133]. Specific inhibition of canonical TGF-
β–Smad2/3 signaling in cardiac fibroblasts significantly reduces
myofibroblast differentiation and cardiac hypertrophy [134].
However, continued systemic inhibition of TGF-β1 has been found
to have strong side effects, such as the development of systemic
autoimmunity in TGF-β1 knockout mice and the carcinogenic
effect of pan-TGF-β blocker [129]. Additionally, based on extensive
preclinical data, Integrin-mediated TGF-β activation that regulates
tissue and immune homeostasis could serve as another potential
therapeutic target. TGF-β signaling pathways also coordinate with
other transcription factors to regulate fibrosis. For example,
transcription factor PU.1 is involved in regulating the process of
fibroblast pro-fibrosis in various fibrotic diseases [135–138]. PU.1
expression is upregulated in various fibrotic diseases and induces
the expression of pro-fibrotic related genes in fibroblasts which
produce excessive ECM [136]. Moreover, angiotensin‐II (AngII)
induced cardiac fibrosis can be attenuated by PU.1 inhibition

Roles of mesenchymal stem cells in fibrotic diseases
L Qin et al.

5

Acta Pharmacologica Sinica (2022) 0:1 – 20



through TGF-β1/Smad pathway. Inactivation of PU.1 gene disrupts
the fibrotic network and reprograms fibroblasts into quiescent
fibroblasts, leading to reprogramming and regression of fibrosis in
multiple organs [139]. These works have uncovered the molecular
mechanism by which TGF-β activation leads to fibrotic disease
and may provide a new strategy for antifibrotic treatment in the
future [139].

Interleukins. Cytokines are also reported as another important
inducer of fibrosis. Several synergistic mechanisms drive the
activation of TGF-β signaling pathways that promote fibrosis.
Notably, IL-17 signaling plays an important role of multiple tissue
fibrosis, including lung, liver, kidney, heart, and skin [140, 141]. In
SSc‑associated organ fibrosis, either cirrhosis, lung, skin, cardiac, or
renal, there is a higher level of the cytokine IL-17 detected
[142–145]. IL-17 is secreted by CD4+ T lymphocytes from SSc
patients which can be stimulated by IL-27 and further results in
the production of ECM proteins [146]. In cardiac fibroblasts, IL-17
promotes the expression of MMP-1 through RANKL/OPG (receptor
activator of nuclear factor-κB ligand/osteoprotegerin) pathway,
which can result in myocardial fibrosis [143, 147]. Notably, there is
a paradoxical role of increased IL-17 during renal fibrosis.
Knocking down the expression of IL-17 in mouse interstitial
fibrosis model promotes fibrotic process and the ECM accumula-
tion through upregulating TGF-β-induced phosphorylation of
p38MAPK and AKT [148]. However, in diabetic nephropathy,
IL-17 treatment suppresses the accumulation of collagen and
α-smooth muscle actin through IL-6/STAT3 (signal transducer and
activator of transcription 3) signaling during interstitial fibrosis
[149, 150].
Moreover, IL-13, IL-4R, or IL-13Rβ1 deficient in mice showed

reduced fibrosis after multiple types of tissue injury [151, 152]. IL-4
serves as a pro-fibrotic mediator secreted by T helper 2 (Th2) cells.
Th2 cytokines/STAT6 pathway is mediated by IL-4 receptor α,
which could promote the inflammatory responses of macro-
phages during wound repairing and tissue remodeling
[43, 153, 154]. As another Th2 cytokine, IL-13 shares same
receptor and signaling pathways as IL-4 and significantly increases
the synthesis of collagen in fibroblasts of keloids [72, 155]. During
intestinal tissue healing, the upregulation of IL-13 triggers the
formation of fibrosis [156]. IL-13 induces pulmonary fibrosis and
requires the activation of TGF-β, which is regulated by MMP-9-
dependent mechanism [157]. IL-13 also promotes fibrosis
independently of TGF-β, which is partially through directly
targeting stromal and parenchymal cells, like epithelial cells and
collagen-producing fibroblasts [158]. Gp130, a cytokine receptor
that regulates IL-6 and IL-11 proteins, is upregulated in patients
with Crohn’s disease who have failed to respond to anti-TNF
(tumor necrosis factor) therapy. Using Gp130 inhibitor bazedox-
ifene could reduce fibrosis-associated gene expression [34].
Recently, a study has shown that patients with inflammatory
bowel disease have an increased serum level of IL-24, which
induced the production of fibrosis-associated factors (e.g., TGF-β1,
MMP-2, COL1A1, PDGFβ) [35]. These findings led to new insights
into the potential role of interleukins as therapeutic targets of
fibrosis.

Integrins. Integrin-mediated cell-ECM interactions have been
extensively studied. Integrins transform extracellular signals into
a variety of cellular behaviors, including changes in cell adhesion,
migration, proliferation, differentiation, and apoptosis [159]. As
transmembrane receptors, Integrins couple external ECM to
internal cytoskeleton of the cells. The Integrin family has 24
different heterodimers composed of different α and β subunits in
humans [160]. Several synergistic mechanisms between Integrin
signals, TGF-β pathways, and ECM proteins drive the activation of
fibrosis. Integrins can activate TGF-β1 signaling to regulate
myofibroblast differentiation and promote fibrosis [48]. Before

activation, TGF-β exists as a complex of latency-associated protein
(LAP) and latent TGF-β binding protein [49]. The Integrins bind to
these inactive forms can mediate the activation of TGF-β. The
αvβ1 Integrin that is widely expressed on the fibroblasts can bind
to the LAP of TGF-β, resulting in the TGF-β activation and inducing
pulmonary fibrosis [50]. The αvβ6 Integrin activates TGF-β through
binding to the LAP of TGF-β1 gene, which is involved in the
fibrosis of liver, renal, and lung [38, 40, 51]. Therefore, studies
showed that the blockage of αvβ6 Integrin protects against
pulmonary fibrosis by decreasing the activation of TGF-β [161].
Moreover, suppressed αvβ6 Integrin in epithelial cells can mitigate
the development of chronic wounds [162] and inhibit advanced
renal fibrosis by reducing the TGF-β activity [163]. In addition,
α8β1 and α11β1 are significantly increased in hepatic stellate cells,
which promote liver fibrosis through TGF-β activity and YAP-1
pathways [164, 165].
There is an Integrin–ECM connection during tissue repair

process. Collagen-binding Integrins such as α1β1, α2β1, and
α11β1 have been found to contribute to fibroblast function in
wound healing [43, 44]. The α1β1 Integrins expressed in
fibroblasts can bind with collagens and mediate ECM accumula-
tion during wound repairing [45, 46]. The type I collagen-binding
α2β1 Integrins can promote myofibroblast differentiation and
accelerate wound closure [46, 47]. Moreover, MMPs that mediate
the degradation of ECM components can interact with Integrins
and participate in the activation of downstream signals [52–54].
The αvβ8 Integrin binds the LAP of TGF-β1 by recognizing RGD
motif and it selectively coordinates with membrane-type 1 (MT1)-
MMP to mediate TGF-β1 activation [55]. The αvβ3 Integrin can
interact with MMP-2 whereas αvβ3 Integrin does not participate in
the activation of TGF-β1 [55, 56]. These studies provide new
insights into the mechanisms underlying organ fibrosis.

Microbiome. Recent studies suggest that there are close relation-
ships between the microbiome and fibrosis development.
Microbial dysbiosis is believed to be a key driving force of the
pathogenesis of inflammatory bowel disease, including Crohn’s
disease and ulcerative colitis [166]. For Crohn’s disease, the main
complication is the intestinal stenosis and the formation of fibrotic
intestinal wall, which eventually requires surgical intervention [42].
As a microbial sensor, variants of nucleotide-binding oligomeriza-
tion domain containing 2 (NOD2) gene exist in patients with
Crohn’s disease which could narrow the intestines [167, 168].
Intestinal inflammation and fibrosis are also modulated by tumor
necrosis factor-like cytokine 1A (TL1A) and Tl1a-mediated
intestinal inflammation, which is reported to be affected by the
intestinal microbiome through pro-inflammatory cytokines such
as IL-1 or TNFα on the epithelial cells [169]. In addition, intestinal
microbiota-induced intestinal fibrosis has a higher level of TGF-β1
and collagen deposition. Clearance of the anaerobic bacteria can
disrupt the profibrotic effects of TGF-β-mediated fibrosis [170].
Intestinal microbiome disorders may also affect the progression

of liver fibrosis. In patients with chronic liver disease, bacteria and
their products are often transported across the intestinal barrier
that has been disrupted [171]. Blocking Toll-like receptor 4 (TLR4)
signaling in mice and reducing liver exposure to intestinal
microbes by using antibiotics decelerate the development of liver
fibrosis [172]. During Salmonella-induced colitis, the expression of
myeloid differentiation primary response gene (MyD)88 increases
and promotes fibrotic responses [173]. TLR4 regulates the
activities of HSCs through TGF-β-induced signals which is affected
by MyD88-NF-κB-dependent pathway [174]. In the liver, gut
dysbiosis also triggers innate immune responses to inflamma-
somes (e.g., NLRP3) and proinflammatory cytokine production,
which activates HSCs and produces ECM leading to fibrosis
[175, 176]. Moreover, in patients with nonalcoholic fatty
liver disease, fibrosis severity is associated with the changes in
gut microbiome (e.g., Enterobacteriaceae, Veillonellaceae, and
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Ruminococcaceae) [177]. In addition, cirrhotic patients have
abundant gut microbiota which is associated with membrane
transport and endotoxin production [178]. People with CF have
diverse airway microbial communities, which are affected by age,
antibiotics, and lung disease progression [179–181]. Antibiotic
therapy used in CF can also regulate the inflammatory
microenvironment which is affected by CFTR modulators through
pro-flammatory cytokine IL-18 [182]. These studies reveal the
role of the microbiome regulating the progression of fibrotic
diseases and facilitating the therapeutic approaches targeting
the microbiome.
Until now, it is still not fully understood the mechanism through

which tissue repair process goes wrong in fibrotic diseases.
Despite great advances in the understanding of the pathology
and molecular biology of fibrosis, a large gap remains between
the identification of anti-fibrosis targets and effective anti-fibrotic
therapies.

MSCS IN FIBROTIC DISEASES
Stem cells are unspecialized cells with great potential to
accomplish self-renew for long period and differentiate into
various specialized cell types under certain physiological or
experimental conditions [183]. Due to the ethical concerns of
embryonic stem cells and the potential teratoma formation of
induced pluripotent stem cells, great attention has been put on
mesenchymal stem cells (MSCs) for preclinical experiments and
clinical applications in regenerative medicine. MSCs were first
reported with isolation and characterization by Friedenstein et al.
from bone marrow in 1968 [184]. Ever since then, these cells have
been extensively characterized regarding their origins, stemness,
and differentiation capability. MSCs originate from the mesoderm,
posse high self-renewal ability and multipotent capability into
mesoderm lineage cells (including chondrocytes, osteoblasts,
adipocytes, and skeletal muscle cells) [185], ectodermic cells (such
as neurons, skin cells, and sweat glands) [186] and endodermic
cells (such as endothelial cells) [187]. Among all the types of cells
MSCs could differentiate into, their trilineage differentiation into
adipocyte, chondrocyte, and osteoblast is commonly used as a
criteria for their identification [8] (Fig. 1).
MSCs have been found in almost all tissue types, including bone

marrow, adipose tissue, fetal liver, the umbilical cord, muscle,
dental tissue, lung umbilical cord and placenta, peripheral blood,
and endometrial tissue. Among them, MSCs can be successfully
isolated and expanded from several common sources [188], i.e.,
bone marrow-derived stem cells (BMSCs), adipose tissue-derived
stem cells (ADSCs), dental stem cells, and perinatal tissues. Even
though MSCs derived from above tissues show good self-renew
and differentiation capability, their cellular markers and therapeutic
potentials are not idential, accompanied with different isolation
procedure, yield amount, and cytokine secretion etc. [188].
Inspired by their tremendous healing ability in various disease
backgrounds, MSCs are widely used for treating different types of
fibrotic diseases. However, current achievements from cell lineage
tracing studies showed that the cellular sources of myofibroblasts
could be partially originated from the residential progenitor or
multipotent stem cells during many fibrotic diseases’ develop-
ment. Therefore, it is crucial to understand the different roles and
functions of residential/internal MSCs in disease pathogenesis and
external MSCs in the treatment of fibrotic diseases.

Internal MSCs as one major source of myofibroblasts
Unlike the micro-environment of many other diseases, such as
degenerative diseases and inflammations, one of the character-
izations of fibrotic diseases is aberrant myofibroblast accumulation
[189, 190]. Myofibroblasts are the major ECM-depositing cells that
are positive of alpha-smooth muscle actin (ACTA2+/α-SMA)
marker. Because there is no single marker specifically for all

myofibroblasts, the cellular source of myofibroblasts in fibrosis is
controversial [37]. Current advancements in cell phenotyping,
transplantation, lineage tracing, and imaging allow fate mapping
of the cell sources of myofibroblasts in the progress of fibrosis in
different disease conditions [190]. Depending on the disease and
tissue backgrounds, these myofibroblasts were reported to be
originated from various cell types, including the residential
fibroblasts, residential epithelial and endothelial cells, residential
MSC-like cells, arteries, and arterioles, and some circulating bone
marrow (BM)-derived cells [37, 190, 191]. Among these cells, the
local residing MSCs, circulating BM-derived MSCs, perivascular
MSCs and epithelial–mesenchymal transition (EMT)-transformed
cells have been considered as the major contributors for massive
myofibroblast accumulation, extensive ECM deposition, and the
causes of organ failure, which have been reported in many fibrotic
diseases [192, 193] (Fig. 2).
Evidence shows that the major origin of myofibroblasts varies in

different fibrotic tissue background. For example, idiopathic
pulmonary fibrosis-associated myofibroblasts originate from
multiple cell sources [194]. It seems that resident mesenchymal
cells, rather than epithelial or BM-derived cells, were the main
source for the formation of lung myofibroblasts in pulmonary
fibrosis [195]. Moreover, 35% of renal myofibroblasts are derived
from circulating BM-derived MSCs during renal fibrosis [196].
Another study showed that renal myofibroblasts originate from
kidney resident Gli1+ cells, which label a subset of MSCs from the
perivascular niche [197]. Genetic lineage tracing analysis showed
that this tissue-resident, but not circulating, Gli1+ cells have been
proved to differentiate into myofibroblasts during tissue injury in
kidney, lung, liver, and heart [197]. Moreover, during bone marrow
fibrosis (BMF), genetic fate tracing studies showed that the
fibrosis-driving myofibroblasts derived from Gli1+ MSCs are
recruited from the endosteal and perivascular niche and cause
BMF and finally bone marrow failure [191].
The EMT process is a critical process of cellular conversion from

epithelial cells to mesenchymal phenotypes. According to the
different biological contexts, EMT process is classified into three
subtypes [198]: type I EMTs occur during embryo formation, organ
development, and other related normal biological process; type II
EMTs refer to the transition of epithelial or endothelial cells into
resident tissue fibroblasts during wound healing, tissue regenera-
tion, and organ fibrosis; type III EMTs are related to metastatic
invasion in neoplastic cells. During type II EMTs, epithelial cells
gradually lose their epithelial markers, such as E-cadherin and
cytokeratin, translocate β-catenin signals into nuclei, and de novo
express some mesenchymal markers typically α-SMA, vimentin,
and fibroblast specific protein 1 in mesenchymal myofibroblast
cells [192]. During the development of scarring and fibrosis, the
matrix-producing myofibroblasts arise from epithelial lineage cells
that underwent EMT process [193, 199]. Moreover, in kidney
fibrosis, EMT of polarized epithelial cells into mesenchymal
myofibroblast cells is mediated by upregulated MMP-9 induced
by TGF-β signaling [192]. In addition, TGF-β signaling can act on
multiple cell types that drive kidney fibrosis, suggesting that TGF-β
is an alternative therapeutic target for renal fibrosis [200].
In short conclusion, published results suggest that myofibro-

blasts responsible for fibrotic development in various tissues
partially come from internal MSCs. Targeting these MSCs and
terminating their proliferation, differentiation, and secretion
abilities could be a way to reduce fibrogenic development.
However, the underlying mechanism of the transition from normal
MSCs into myofibroblast-forming MSCs is still not clear; how to
differentiate these two types of MSCs still be a crucial challenge
for researchers.

The roles of external MSCs in fibrotic diseases
Unlike the residential MSCs, implantations of external MSCs are
reported with effective and protective functions in the treatment
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of fibrotic diseases in both pre-clinical and clinical studies
[36, 190, 201, 202]. These MSCs are in vitro amplified either from
autologous (cells derived from the same individual) or allogeneic
(cells derived from the same species but not the same individual)
sources (Fig. 2). Interestingly, studies showed that autologous
MSCs seem have more effective functions than allogeneic MSCs in
the treatment of acute kidney injury animals [203]. In general,
there are two major methods commonly used for MSC delivery in
current pre-clinical and clinical applications (Fig. 3): one is the
systematic infusion of MSCs into the vascular circulation, such as
intravenous or intradermal administration; the other is a direct
application of these therapeutic cells locally to the wounds [204].
These administered external MSCs display multiple functionalities
in modifying the fibrotic environment and influencing the
damaged cells though both direct and indirect approaches. Here,
we summarized six major reported regenerative features that
external MSCs applied, i.e., homing ability, tissue regeneration
capacity, ECM remodeling, tropic effects, paracrine effects, as well
as death modulation in the process of preventing fibrotic diseases
[205, 206] (Fig. 2).

Homing ability. Even though the administration of MSCs may not
be directly applied to the defective sites in fibrotic diseases, external
MSCs can sense and migrate to wounded sites through their
homing ability [207]. Homing ability is the starting point for MSC-
mediated regenerative effects in fibrosis. For example, in a treatment
of age-associated skin morphologic disgraces and structural deficits,
ADSCs can be rapidly recruited into the wounded sites [208]. In a
drug-induced liver fibrosis model, fluorescence-labeled BMSCs were
captured under microscopy in the fibrotic livers [209]. In addition,
in vivo live imaging system showed that transplanted Luc-GFP(green
fluorescence protein)-MSCs in a chronic kidney disease model can
be detected in damaged kidney tissue from 3 days to 14 days after
transplantation, with an improved treatment for the renal interstitial
fibrosis [210].

Since it is still debated whether the clearance of MSCs from
circulation into particular damaged tissues is an active transmigra-
tion mechanism or a passive entrapment and clearance, the homing
mechanism is not well documented [211]. Moreover, the homing
efficiency is not optimistic in MSC-based therapies [207, 212]. A
variety of factors, such as the donor age and the number of cellular
passages, in vitro culture conditions, the delivery approaches, as well
as the fibrotic disease itself, can influence the homing efficiency of
MSCs [213]. Studies showed that the homing capacity seems to be
highly correlated to external culture conditions. For example, the
primary/uncultured MSCs show significant higher efficient homing
capacity than 24 h cultured MSCs to bone marrow and spleen [214].
Moreover, pre-conditioning of MSCs with various factors could also
influence their homing ability. In a carbon tetrachloride (CCl4)
induced liver fibrosis model, nitric oxide (NO) and interleukin-6 (IL-6)
can enhance MSCs homing to damaged liver tissue with a better
outcome of anti-fibrosis [209, 215]. In another study with induced
liver fibrosis, BMSCs pretreated with 5 µM melatonin, a hormone to
improve sleep disorders, had significant improved homing capability
than untreated BMSCs [216]. Thus, improving the MSC’s homing
capacity is necessary for better treatment of fibrosis.

Regenerative capacity. MSCs not only migrate to the wounded
sites, but also proliferate, differentiate into targeted tissues, replace,
and regenerate the damaged tissues. In a chronic skin wound
model, injection of BMSCs around the wound significantly
accelerated the healing process of excisional wound [217]. These
allogeneic BMSCs were pre-tagged with GFP+ and differentiated
into epithelial cells with keratinocyte-specific protein keratin marker
[217]. As a satisfactory alternative to dermal fibroblasts, BMSCs can
develop into skin substitute in epidermis development and skin
wound healing [218]. Moreover, ADSCs in the treatment of skin
defects can differentiate into multiple cell types, including dermal
fibroblasts, endothelial cells, and keratinocytes in damaged sites
[208]. During the regeneration process, VEGF is one of the principal

Fig. 2 Dual functions of MSCs in fibrotic diseases. On one hand, organ residential MSCs are reported as one major cellular source of
myofibroblasts in fibrosis development. The residing MSCs, circulating BM-derived MSCs, perivascular MSCs and EMT-transformed cells are
potential origins for myofibroblasts in many fibrotic diseases. On the other hand, external MSCs administrations show significantly beneficial
contributions in the treatment of fibrosis in different organs. These MSC contributions include homing, regeneration, trophic effects, ECM
remodeling, immunomodulation, and death modulation.
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paracrine mediators of renoprotection of MSCs. In an acute kidney
injury model, MSCs with VEGF knockdown by small-interfering RNA
reduced the effectiveness and survival of MSCs [203].

Trophic effects. Besides these direct contributions from MSCs
mentioned above, these cells can indirectly enhance tissue
recovery through producing a large variety of bioactive trophic
factors that stimulate neighboring parenchymal cells to repair
damaged tissues in the treatment of fibrotic diseases [219]. These
bioactive trophic factors can enhance angiogenesis, prevent
apoptosis, stimulate cellular survival, proliferation, and differentia-
tion of residential cells in wounded tissues [219]. Angiogenesis is a
typical trophic effect of MSC administrations in skin diseases. On
one hand, MSCs can directly differentiate into endothelial cells
and/or pericytes in promoting angiogenesis in wound healing
[220]. On the other hand, conditioned medium from cultured
BMSCs which enriched with MSC-released proangiogenic factors,
such as VEGF and angiopoietin-1, has promoting effects in
endothelial cell tube formation in skin would closure [217].
Moreover, ADSCs also secrete pro-angiogenic growth factors in
the treatment of non-healing wounds [221]. In addition to
angiogenesis, ADSCs promote epidermal stem cells proliferation,
resulting in epithelialization and increased epidermal thickness
[222]. In an autologous bone marrow cell infusion therapy to liver
cirrhosis, bone marrow cells (BMCs) activated the proliferation of
hepatic progenitor cells and hepatocytes, which further promoted
the restoration of liver functions [223].

ECM remodeling. During the pathogenesis of organ fibrosis, the
massive accumulation of disorganized and stiff ECM is a diagnostic

biomarker, which takes the center stage for malfunction and
failure of damaged tissues [224]. MSCs have been shown with
anti-fibrotic effects in reducing fibrotic ECM accumulation. In SSc,
a rare chronic autoimmune disease with progressive fibrosis, MSCs
treatment provides anti-fibrotic effects with reduced skin and lung
fibrosis in various SSc animal models [225]. In a mouse model of
cutaneous scar formation, MSCs can suppress the cellular
proliferation and fibrotic formation of co-cultured fibroblasts
[226]. Moreover, in a rat model of radiation-induced pulmonary
fibrosis, infusion of human ADSCs triggered the secretions of
hepatocyte growth factor (HGF) and prostaglandin E2 (PGE2), but
decreased TNF-α and TGF-β1 levels in hosts [227]. As a
consequence, the human MSCs successfully limit pulmonary
fibrosis through inhibition of fibroblast activation and collagen
deposition, and prevention of the EMT process of type II alveolar
epithelial cells at the damaged sites [227]. Moreover, in vitro
studies showed that conditioned medium from human ADSCs
significantly suppressed the α-SMA translation and transcription
induced by TGF-β treatment in murine muscle, myoblast cell line
C2C12 [228]. Similarly, conditioned medium from ADSCs
decreased the expression of Col1 and Col3 in hypertrophic scars
(HS) tissues, and thinner and orderly arranged collagen fibers were
examined in HS tissues cultured with ADSC-conditional medium
[229]. Together, these results suggest that MSCs have anti-fibrotic
effects in the potential application to prevent organ fibrosis.

Immunomodulatory effects. One essential trophic mediator of
MSCs is their ability in attenuating inflammation at the site of
injury [230–232]. MSCs can produce a vast spectrum of paracrine
factors, including TGF-β, PGE2, HGF, IL-10, IL-6, indoleamine

Fig. 3 Applications of MSCs in the treatment of fibrotic diseases. For pre-clinical and clinical trials of MSCs treatment, patients can either
receive their own MSCs in an autologous way, or MSCs from related or not-related donors in an allogeneic way. Purified and amplified MSCs
can be infused back into patients either systematically or locally. Systematic infusion includes intravenous injection (MSCs and MSC-derived
factors are delivered in vein through circulation) and intradermal injection (MSCs and MSC-derived factors are delivered into the dermis, just
below the epidermis). Local infusion can be achieved with direct injection of MSCs and MSC-derived factors into the sites of injury (for
example, femur fracture), or transplantation of engineered MSC scaffolds to the sites of injury.
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2,3-dioxygenase, NO, and human leukocyte antigen G etc. [233].
With these factors, MSCs are capable of modulating large numbers
of different immune cells, such as natural killer (NK) cells, dendritic
cells, neutrophils, macrophages, B cells, and T cells [202, 233].
Studies demonstrated that MSCs altered T lymphocyte pheno-
types increased the frequency of CD4+CD25highCD45RA+ Tregs,
and modulated the associated cytokine production [234]. More-
over, activating MSCs’ autophagy can enhance the immunosup-
pression of CD4+ T cells, which is mediated by TGF-β1 pathway
[231]. Moreover, MSCs facilitate monocyte to macrophage
transition, shift inflammatory M1 macrophages to an anti-
inflammatory M2 activation stage in a PGE2-dependent manner
[235, 236]. Studies also showed that MSCs can downregulate
macrophages in a liver fibrosis model [237]. Interestingly, the
MSCs-derived exosomes display similar effective immunomodula-
tory properties and anti-inflammatory abilities as MSCs [238].
Moreover, the effects of MSCs derived from bone marrow and
from adipose tissues show comparable immunomodulatory
effects on both innate and acquired immunity of cells [239].
Based on the beneficial effects of MSCs in anti-inflammation and
immunomodulation, large attention has been attracted to the
application of MSCs therapy for immune and inflammatory
diseases [240–243], including allergic diseases, osteoarthritis, and
immune-dysregulating infectious diseases such as the novel
coronavirus disease 2019 (COVID-19) [244, 245].

Death modulation. In addition to the functions listed above,
MSCs can modulate cellular death of stressed cells in fibrotic
conditions [246]. This death modulation by MSCs is mediated
through both direct cell-cell contact and indirect paracrine
secretion on the third-part cells affected by apoptosis, necroptosis,
and pyroptosis [246]. On one hand, MSCs can facilitate the
endogenous progenitors’ survival and differentiation; on the other
hand, MSCs can enhance the clearance of damaged cells and
restore tissue homeostasis. For example, in chronic liver injuries,
MSCs can reduce hepatocyte apoptosis and increase hepatocyte
regeneration, which further reverse liver fibrosis and enhance liver
functionality [206]. Recently, in a CCl4-induced liver fibrosis model,
BMSCs experienced and underwent apoptosis in damaged liver
with massive production of apoptotic bodies, which stimulated
macrophages to release MMP-12 and accelerate ECM degradation
in mice [247]. Moreover, in a murine diabetic wound model, MSCs
subcutaneously injected around the wound can contribute to the
clearance of apoptotic cells by enhancing the phagocytosis of
apoptotic cells and suppressing the number of apoptotic cells in
wounds [248].
Importantly, these functioning features listed above are not

exclusive from each other, and MSCs have been reported with
multiple functions at one treatment in many cases. For example, in
a mouse chronic liver fibrosis model, MSCs infusion and MSCs-CM
treatment decreased hepatocellular death by promoting liver
regeneration and inhibiting hepatocyte apoptosis, and suppressed
necroinflammation by increasing Th2 and Treg cells and reducing
Th17 cells at the same time [237]. With all the beneficial
contributions of MSCs, MSC-based treatments have shown
promising results of therapies for the preventing or reversing
process of fibrosis.

MSCs and their microenvironment
It is intriguing how do MSCs from internal and external
populations behave differently in the development of fibrosis in
various tissue backgrounds. The key to answer this question could
be the microenvironment that the internal MSCs entrapped in
damaged tissue during the disease progress and that the external
MSCs directly experienced during circulation or in the fibrotic
tissues after cell administration. Evidence showed that the
microenvironment of fibrotic tissues is detected with a high level
of ROS [249], increasing alternations and stiffness of ECMs [250],

accompanied with a pre-inflammatory environment featured with
increasing NK cells and regulatory T cells [251, 252]. Clinical
samples were enriched with secreted TGF-β1, IL-1β, and TNF-α in
HBV patients with advanced fibrosis, which could induce a
profibrotic cascade and proinflammatory responses in human
stellate cell line LX-2 in vitro [253]. Those physical, chemical, and
biological environment changes bring different stimulations to
MSCs and further influence their functioning features. To study the
influence of pro-inflammatory microenvironment on MSCs, in vitro
studies were applied in cell culture systems. Pro-inflammatory
cytokines, such as IL-1β, IL-6, and IL-23, had no effect on MSCs
morphology and immunophenotype, but upregulated the expres-
sion of CD45, associated with enhanced adipogenic and
osteogenic differentiation capacity in both human BMSCs and
ADSCs [254]. Moreover, another inflammatory condition with
TNFα and IFNγ increased the gene expression of adhesion
molecules whereas migration-related genes were down-
regulated in equine BMSCs [255]. These observations further
suggest the complex microenvironment that MSCs experiences,
and the diversity of the environmental cues could lead to totally
different behaviors of these cells.

CLINICAL TRIALS OF MSCS IN FIBROTIC DISEASES
Although the therapeutic roles of MSCs have been studied in
various types of fibrotic diseases in vitro and in animal models,
clinical trials of using MSCs for fibrosis treatment were mainly
focused on pulmonary fibrosis and liver cirrhosis. We did a
systematic search in ClinicalTrial.Gov database and PubMed by
searching the keywords “mesenchymal stem cell” and “fibrosis or
cirrhosis” and found 75 registered clinical trials in ClinicalTrial.Gov
database. However, among these trials, many of them were
opaque with their status or the follow-up searches showed no clue
for any actual conduction of the trials. Therefore, these registra-
tions without clear status or clues for actual practice are excluded
from this review. Table 2 listed all the registered or published
clinical studies using MSCs to treat fibrotic diseases with ongoing
or completed status.
MSCs are widely utilized to treat the patients with liver cirrhosis

in clinical trials across the world (Table 2). In 19 registered clinical
trials, 9 used autologous stem cell sources from bone marrow (8)
and adipose tissue (1); and 10 used allogeneic sources from
umbilical cord (8), adipose tissue (1), and menstrual blood (1). The
dosage of MSC administration ranges from 0.5 million to 50
million per kg body weight per dose in different studies
(estimated as 20 million to 400 million per dose), and multiple
doses may give to the patients in some studies with each dose
given after 1-week to 1-month intermission. The dosage of cells is
mainly dependent on preclinical study, source of the cells, and
safety concerns [20]. In a study conducted in 2006, 30–50 million
autologous bone marrow-derived MSCs were injected into
peripheral or the portal vein of liver cirrhosis patients, and the
results showed that the cells were well tolerated by all patients
and the liver function was improved. The disease score decreased
from 17.9 ± 5.6 to 10.7 ± 6.3 (P < 0.05) and prothrombin complex
decreased from international normalized ratio 1.9 ± 0.4 to 1.4 ± 0.5
(P < 0.05). Serum creatinine decreased from 114 ± 35 to
80 ± 18 µmol/L (P < 0.05) [256]. In another study, an average of
31.73 million autologous bone marrow-derived MSCs were infused
systematically to patients with decompensated liver cirrhosis, and
the results showed that the disease score was decreased and the
quality of life of all four treated patients was improved with no
adverse events observed [257].
Another target indication of MSCs therapy for fibrotic diseases is

pulmonary fibrosis and seven related clinical trials were found in
the reviewed 15 studies (Table 2). For lung diseases, allogeneic
MSCs were more preferred and five out of seven studies used
allogeneic cell sources from umbilical cord, bone marrow, and
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placenta; while autologous MSCs from bone marrow and adipose
tissue were used in another two registered clinical trials
respectively. The cell dosage used in pulmonary fibrosis ranged
from 1 million to 100 million cells per kg body weight (40–800
million cells per dose), higher than that in liver cirrhosis studies. In
a study conducted in 2013, nine patients with IPF were dosed with
a single intravenous infusion of 20, 100, or 200 million allogeneic
bone marrow-derived MSCs. The study found no treatment-
emergent serious adverse events, and by 60 weeks post-infusion,
there was an average decline of 3.0% in predicted forced vital
capacity (FVC, the amount of air that can be forcibly exhaled from
lungs) and an 5.4% average decline in predicted diffusing capacity
of the lungs for carbon monoxide [258]. Another study utilized 10
to 100 million autologous MSCs from bone marrow to treat 12 IPF
patients, and revealed an initial mean FVC decline of 8.1% at
3 months. The number of patients without functional progression
was six (46%) at 3 months and three (23%) at 12 months. No
severe adverse events were found in this study either [259].
Compared with broad attempts in in vitro study and various

animal tests, clinical trials using MSCs for fibrotic diseases are
rather conservative. The registered clinical trials are mainly
conducted on liver cirrhosis and IPF patients, while two studies
out of 15 utilized allogeneic MSCs from bone marrow and
Wharton’s jelly to treat cystic fibrosis and diffuse cutaneous
systemic sclerosis patients respectively. However, no available
clinical data or publications were found about these two studies.
Unlike studies designed in preclinical trails, no genetically
modified MSCs were used during clinical trials, and in fact no
intentional modifications (even induced differentiation) on MSCs
were applied in the reported clinical trials. From safety perspec-
tive, it is encouraged to keep minimal manipulation and
homologous use of the cell therapy products in clinical use [260].

CONCLUSIONS AND PERSPECTIVES
Growing attentions have been attracted to the applications of
MSCs in fundamental and clinical researches, which lead to large
numbers of studies focusing on the new areas of the applications
of MSCs and MSCs-sourced bioactive factors to achieve optimal
outcomes.
In the field of cellular sources, such as bone marrow and

adipose tissues as traditional MSC sources, more sources of MSCs
have emerged, including various umbilical cord tissue (Wharton’s
jelly), placenta, dental pulps, mobilized peripheral blood, and
medical waste material from birth-derived tissues [261]. Impor-
tantly, MSCs derived from these non-traditional sources have been
shown with comparable efficacy in the treatment of fibrotic
diseases [262]. Furthermore, preconditioning of MSCs, including
hypoxia, pharmacological agents, mechanical treatment, trophic
factor administrations, etc., have been applied and studied in the
improvement of MSC therapy in preclinical and clinical trials [263].
Moreover, cell-free products from MSCs, including exosomes,
probiotics, MSC-derived ECM are largely involved in current
studies. Results showed an accelerated healing and decreased
scar formation were achieved with MSC-derived extracellular
vesicles (EV) treatment in chronic skin ulcers [264]. MSC-EV had
similar mechanisms, such as promoting angiogenesis, immuno-
suppression, and skin regeneration [264]. In addition, new
combinations of MSCs and other treatment or engineering tools
present promising therapeutic outcomes in preventing fibrotic
diseases. Previously, MSCs treatment as a cell-based approach
showed some defects in the direct injection, such as low cell
viability, transient retention, and poor efficacy [265]. A bioactive
hydrogel scaffold which provides MSCs with a physiologic
microenvironment, including mechanical support and protection
from native immune system is a promising method to improve the
therapeutic effect through changing cell delivery [265]. In a mouse
wound healing model, microspheres have been used to deliver

MSCs into wound margins and significantly enhanced wound
healing with reduced fibrotic activities [226]. Moreover, combined
ADSCs and platelet-rich plasma therapy showed better healing
outcome in diabetic wound healing model [222].
The microenvironment where MSCs originate and experience,

i.e., the physical properties, chemical components, various soluble
factors as well as neighboring cells, regulates their cellular
proliferation, differentiation, and other important functions.
Increasing studies support that MSCs display a dual role in the
progress of fibrosis: On one hand, the internal/residential MSCs
show a promoting role in the disease pathogenesis; On the other
hand, the external MSCs exhibit a suppressive role in fibrosis and
serve as a promising therapeutic option in the clinical applications
for fibrotic diseases. Interestingly, this dual nature of MSCs is not
unique to fibrosis. Published studies suggest that MSCs also
present dual roles in cancer progress [266] and in inflammatory
cascade [267]. In both cases, the microenvironment that MSCs
face plays major contribution in switching their cellular behaviors
and finally outcomes in disease development. The complex
microenvironment that internal and external MSCs faced and
encountered in fibrosis diseases could bring opposite outcomes
for their functions. Based on this information, pre-conditioning
strategies for MSCs have been encouraged to be used in
preclinical and clinical trials, including physical and chemical
pre-conditioning strategies such as hypoxic conditions, with
inflammatory cytokines, or with different pattern recognition
receptor ligands [268, 269].
With broader MSCs sources, MSCs and their derived bioactive

factors, dynamic cellular modifications, and more efficient
delivery for MSCs therapeutic applications are extensively used
in disease conditions besides fibrosis, such as tumor growth
[270], vascular diseases [271], degenerative conditions [272],
neurological disorders [273], inflammation [241], and immune-
related conditions [274]. The dual functions of MSCs in the
development and treatment of fibrotic diseases arise great
challenges for the fundamental research and clinical applica-
tions of MSCs in fibrosis. It is crucial to fully understand the
difference between myofibroblast-forming MSCs and anti-
fibrotic MSCs in cellular sources, cellular markers, and regulatory
pathways. By knowing the differences of the two sides of MSCs
in the pathogenesis and therapy of fibrotic diseases, we can
extend our understanding about MSCs and their applications in
more pathogenic conditions.
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