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Early indications of the likelihood of severe coronavirus disease 2019 COVID-19 can
influence treatments and could improve clinical outcomes. However, knowledge on the
prediction markers of COVID-19 fatality risks remains limited. Here, we analyzed and
quantified the reactivity of serum samples from acute (non-fatal and fatal) and convalescent
COVID-19 patients with the spike surface glycoprotein (S protein) and nucleocapsid
phosphoprotein (N protein) SARS-CoV-2 peptide libraries. Cytokine activation was also
analyzed. We demonstrated that IgM from fatal COVID-19 serum reacted with several N
protein peptides. In contrast, IgM from non-fatal serum reacted more with S protein
peptides. Further, higher levels of pro-inflammatory cytokines were found in fatal
COVID-19 serum compared to non-fatal. Many of these cytokines were pro-inflammatory
and chemokines. Differences in IgG reactivity from fatal and non-fatal COVID-19 sera were
also demonstrated. Additionally, the longitudinal analysis of IgG reactivity with SARS-CoV-2
S and N protein identified peptides with the highest longevity in humoral immune response.
Finally, using IgM antibody reactivity with S and N SARS-CoV-2 peptides and selected
cytokines, we have identified a panel of biomarkers specific to patients with a higher risk of
fatal COVID-19 compared with that of patients who survive. This panel could be used for the
early prediction of COVID-19 fatality risk.

Keywords: peptide, COVID-19, SARS-CoV-2, fatal, cytokine
INTRODUCTION

A local outbreak of a severe pneumonia of unknown etiology in Wuhan, China, spread rapidly and
was declared a pandemic in 2020; since then, there have been hundreds of millions of cases and over
four million deaths worldwide (1). A novel member of the beta-coronavirus family, severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) was isolated early during the outbreak and it
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was found to cause coronavirus-induced disease (COVID)-19
(2). A large proportion of COVID-19 cases are asymptomatic,
while disease severity is mostly linked with cases in older patients
and those with underlying conditions (3–6). Infection is
characterized by early activation of humoral immune responses
where IgM and IgG peak at week five of the disease (7).
Conversely, Iyer et al. have shown that IgM, IgG, and IgA
levels reach the highest levels between 14 and 28 days followed
by a gradual decline (8). SARS-CoV-2 Spike (S) and nucleocapsid
(N) proteins have been identified as major immunogens (9) with
IgG antibodies against the N and S proteins detected at the same
time, supporting their highly immunogenic status (10).

Anti-SARS-CoV-2 antibodies contribute to severity and
recovery from COVID-19. Sun et al. reported high anti-S
protein IgG antibodies in non-intensive care unit (ICU)
patients, while high anti-N protein IgG antibodies have been
found in ICU patients (9). In addition, Röltgen et al.
demonstrated a higher ratio of anti-S IgG/anti-N IgG
antibodies in outpatients with mild COVID-19 (11). These
data suggest differences in the antibody immune response to
SARS-CoV-2 which may contribute to differences in severity of
COVID-19. However, there is limited knowledge on how
reactivity with SARS-CoV-2 S and N protein peptides differs
between COVID-19 patients who require ICU treatment and
those with only mild COVID-19.

Multiple S and N protein epitopes have been identified through
COVID-19 patient serum reactivity studies conducted globally,
including in China and the United States 12–14). These data will
help to determine common peptides in the immune response to
SARS-CoV-2 around the world. Upon identification of
immunogenic regions of S and N proteins, they can be used to
design subunit vaccines against SARS-CoV-2 infection. In addition,
immunogenic peptides identified in COVID-19 sera could be used
to determine the similarity of the immune recognition between
SARS-CoV-2-infected and vaccinated individuals.

It is documented that antibody levels in response to SARS-
CoV-2 infection decline over time (15, 16). This decline in
antibody titer could contribute to COVID-19 reinfection (17).
Ibarrondo et al. have reported that antibody titer declines rapidly
with the half-life of 36 days in mild form cases of COVID-19
(18). Authors express concern about the duration of antibody
responses to SARS-CoV-2 after infection and, as a result, the
extent of lasting immunity following natural infection. Data on
antibody response in COVID-19 are mainly based on the
analysis of reactivity to whole S and N proteins and their
peptides (12–14). This immune response analysis recognizes
multiple epitopes across these proteins. However, the extent of
lasting reactivity to specific peptides after infection remains
largely unknown. By identifying peptides containing epitopes
inducing long circulating antibodies, it may be possible to
achieve better selection of strong and long-lasting targets
for vaccination.

In the present study, we have further advanced our
understanding of the biomarkers of fatal COVID-19 outcomes
by examining serum reactivity with S and N protein peptides as
well as cytokine activation. We show that in fatal cases, IgM
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reactivity is greater with N peptides than with S peptides but
higher with S peptides in milder cases of COVID-19. Further,
higher serum levels of pro-inflammatory cytokines were found in
fatal COVID-19 cases. Among these cytokines, increased
interleukin (IL)-18 and IL-6 appear to be the most significant
observation, confirming the role of these cytokines in fatal
COVID-19. Additionally, the increased serum level of
chemokines and cytokines activating macrophages and
neutrophils was demonstrated in fatal COVID-19 cases. We
also observed differences in IgG reactivity between fatal and
non-fatal COVID-19 sera. Additionally, the longitudinal analysis
of IgG reactivity with SARS-CoV-2 S and N proteins identified
peptides having the highest longevity in humoral immune
response. We also identified S and N protein peptides and
cytokines which could be used as early indicators of fatal
COVID-19 outcomes.
MATERIALS AND METHODS

Subjects
Acute serum samples were collected from 88 (70.8 ± 10.3 years
old) COVID-19 patients (37 males and 51 females). Out of these
acute samples, 62 and 26 samples were collected from non-fatal
and fatal COVID-19, respectively. We also collected samples
from 18 controls (65.3 ± 9.1 years old, 7 males and 11 females)
which were age-matched to acute COVID-19. These age-
matched control samples were used to analyze the acute
serum data.

Additionally, 44 samples (37.7 ± 13.4 years old; 12 male and
32 female) were collected between 32 and 65 days (median days
42.0 ± 11.1; D42) and 32 serum samples (42.9 ± 13.5 years old; 8
male and 24 female) between 280 and 363 days (median days
306.0 ± 21.1; D306) after having positive SARS-CoV-2 RNA
qPCR results and/or symptoms. D42 and D306 are herein
referred to as early and late convalescent samples, respectively.
To match the age of convalescent COVID-19 patients, serum
samples from 27 controls were collected (47.1 ± 13.7 years old; 11
males, 16 females). This age-matched control group was used to
analyze the convalescent data.

Clinical records were also collected for all patients. The
diagnosis of COVID-19 was established based on clinical
presentation and was confirmed by qPCR. All control serum
samples were tested for anti-SARS-CoV-2 antibodies using the
SARS-CoV-2 CoronaPass ELISA Kit (Genetico, Moscow,
Russia). Only samples that are negative based on ELISA results
were included as controls. Serum samples were stored at -80°C
until used.

Ethics Statement
The ethics committee of the Kazan Federal University approved
this study, and signed informed consent was obtained from each
patient and controls according to the guidelines adopted under
this protocol (protocol 4/09 of the meeting of the ethics
committee of the KSMA dated September 26, 2019). Sample
collection in 2015–2016 was done according to a protocol
March 2022 | Volume 13 | Article 830715
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approved by the Institutional Review Board of the Kazan Federal
University, and informed consent was obtained from each
respective subject according to the guidelines approved under
this protocol (Article 20, Federal Law “Protection of Health Right
of Citizens of Russian Federation” N323-FZ, 11.21.2011).

COVID-19 Peptides
S and N protein peptides (20 aa) with 3-aa overlaps for SARS-
CoV-2 were synthesized by Genscript (Jiangsu, China). SARS-
CoV-2 S and N protein peptide aa sequences (purity >95%) are
summarized in Table 1.

COVID-19 ELISA
The SARS-CoV-2-CoronaPass ELISA Kit (Genetico, Moscow,
Russia) was used to determine SARS-CoV-2-specific antibodies
IgM, IgG, and IgA according to the manufacturer’s instructions.
The specificity and sensitivity of the SARS-CoV-2-CoronaPass
ELISA Kit are 100% and 98.7%, respectively (19). Briefly, COVID-
19 and control sera were mixed with conjugate-1 at a 1:10 ratio
and incubated for 30 min at 37°C in a 96-well plate with pre-
adsorbed SARS-CoV-2 antigens. Inactivated human serum
without antibodies to SARS-CoV-2 served as a negative control
(provided within the kit). Following washes (3×; 0.5% Tween 20 in
PBS, PBS-T), wells were incubated with anti-human-IgG+IgM
+IgA-HRP-conjugated antibodies for 30 min at 37°C. Post
incubation and washes (3×; 0.5% Tween 20 in PBS), wells were
incubated with 3,3′,5,5′-tetramethylbenzidine (Chema Medica,
Moscow, Russia). The reaction was stopped by adding an equal
amount of 10% phosphoric acid (TatKhimProduct, Kazan,
Russia). Data were measured using a Tecan 200 microplate
reader (Tecan, Switzerland) at OD450 with reference OD650. The
result was considered as positive when the ratio of the tested
sample OD450 to the negative control OD450+0.15 was greater
than 1.

Peptide Reactivity With Serum Antibodies
Several peptides were analyzed for reactivity with COVID-19
sera as well as controls. Peptide sequences are summarized in
Table 1. Each peptide (1 mg/100 ml) was added into a 384-well
plate and incubated at 4°C for 18 h. The washed plates were
incubated with serum samples (1:100; 50 ml American Qualex
Technologies, San Clemente, CA, USA) at 4°C for 18 h.
Following washes [3×; 0.5% Tween 20 in PBS (PBS-T)], wells
were incubated with anti-human-IgG-HRP-conjugated
Frontiers in Immunology | www.frontiersin.org 3
antibodies (1:10,000 in PBS-T, American Qualex Technologies,
USA) for 30 min at 37°C. The washed (3×; 0.5% PBS-T) wells
were incubated with 3,3′,5,5′-tetramethylbenzidine (Chema
Medica, Moscow, Russia). The reaction was stopped by adding
an equal amount of 10% phosphoric acid (TatKhimProduct,
Kazan, Russia). Data were captured using a microplate reader
Tecan 200 (Tecan, Switzerland) at OD450 with reference OD650.

Multiplex Analysis
Serum cytokine levels were analyzed using the Bio-Plex (Bio-
Rad, Hercules, CA, USA) multiplex magnetic bead-based
antibody detection kit following the manufacturer ’s
instructions. The Bio-Plex Pro Human Cytokine 48-Plex
Screening Panel (12007283, Bio-Rad, Hercules, USA) was used
for detection of serum cytokines. Serum aliquots (50 ml) were
analyzed with a minimum of 50 beads per analyte acquired.
Median fluorescence intensities were collected using a MAGPIX
analyzer (Luminex, Austin, TX, USA). Each sample was analyzed
in triplicate. Data collected were analyzed with MasterPlex CT
control software and MasterPlex QT analysis software (MiraiBio,
San Bruno, CA, USA). Standard curves for each cytokine were
generated using standards provided by the manufacturer.

Statistical Analysis
Statistical analysis was performed in the R environment (20).
Statistically significant differences between comparison groups
were accepted as p < 0.05, assessed by the Kruskal–Wallis test
with Benjamini–Hochberg (BH) adjustment for multiple
comparisons. Correlations were analyzed using the R psych
package (21) (based on Spearman’s rank correlation coefficient,
p-values were adjusted with the Benjamini–Hochberg method).
RESULTS

Clinical Presentation of COVID-19
There were 88 acute and 76 convalescent serum samples
collected. The convalescent samples were split into early
(median 42.0 ± 11.1 days) or late (median 306.0 ± 21.1 days)
convalescence based on number of days after the first symptoms
of COVID-19 and/or positive SARS-CoV-2 PCR test. Diagnosis
of COVID-19 was established based on epidemiological
anamnesis and clinical presentation and confirmed by SARS-
CoV-2 qPCR analysis of nasopharyngeal swab. Clinical
TABLE 1 | Sequence and position of SARS-CoV-2 S and N protein peptides.

Peptide aa sequence Position Peptide aa sequence Position

Covid-N.1 MSDNGPQNQRNAPRITFGGP 1–20 Covid-N.10 NAAIVLQLPQGTTLPKGFYA 154–173 Covid-N.18 ELIRQGTDYKHWPQIAQFAP 290–309
Covid-N.2 GGPSDSTGSNQNGERSGARS 18–37 Covid-N.11 FYAEGSRGGSQASSRSSSRS 171–190 Covid-N.19 FAPSASAFFGMSRIGMEVTP 307–326
Covid-N.3 ARSKQRRPQGLPNNTASWF 35–54 Covid-N.12 SRSRNSSRNSTPGSSRGTSP 188–207 Covid-N.20 VTPSGTWLTYTGAIKLDDKD 324–343
Covid-N.4 WFTALTQHGKEDLKFPRGQG 52–71 Covid-N.13 TSPARMAGNGGDAALALLLL 205–224 Covid-N.21 DKDPNFKDQVILLNKHIDAY 341–360
Covid-N.5 GQGVPINTNSSPDDQIGYYR 69–88 Covid-N.14 LLLDRLNQLESKMSGKGQQQ 222–241 Covid-N.22 DAYKTFPPTEPKKDKKKKAD 358–377
Covid-N.6 YYRRATRRIRGGDGKMKDLS 86–105 Covid-N.15 QQQQGQTVTKKSAAEASKKP 239–258 Covid-N.23 KADETQALPQRQKKQQTVTL 375–394
Covid-N.7 DLSPRWYFYYLGTGPEAGLP 103–122 Covid-N.16 KKPRQKRTATKAYNVTQAFG 256–275 Covid-N.24 VTLLPAADLDDFSKQLQQSM 392–411
Covid-N.8 GLPYGANKDGIIWVATEGAL 120–139 Covid-N.17 AFGRRGPEQTQGNFGDQELI 273–292 Covid-N.25 LDDFSKQLQQSMSSADSTQA 409–428
Covid-N.9 GALNTPKDHIGTRNPANNAA 137–156
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manifestation included mild (60 cases), moderate (51 cases), and
severe (53 cases) forms. Out of 88 acute COVID-19 cases, 62
samples were from non-fatal and 26 samples were fatal COVID-
19. These fatal cases had a severe form of COVID-19. The scale
of lung damage of less than 20%, 20–40%, and more than 40%
was found in 137, 23, and 4 patients, respectively. Fever was
detected in all patients (37.92 ± 0.66°C) with a duration 6.31 ±
4.04 days. None of the COVID-19 convalescent patients required
artificial ventilation or were hospitalized in an ICU.

Analysis of S and N SARS-CoV-2 Peptide
Reactivity in Acute COVID-19 Sera
Analysis of anti-SARS-CoV-2 IgM reactivity with S and N
peptides revealed distinct patterns between cases of acute non-
fatal and fatal COVID-19 (Figure 1A). COVID-19 serum
reactivity was significantly increased with a total of eight S [S3
(p < 0.0001), S4 (p < 0.0001), S6 (p < 0.0001), S9 (p = 0.022), S10
(p = 0.046), S14 (p = 0.018), S19 (p = 0.018), and S20 (p = 0.028)]
and five N peptides [N6 (p < 0.0001), N8 (p < 0.0001), N13 (p <
0.0001), N14 (p < 0.0001), and N19 (p < 0.0001)] compared to
controls. However, when samples were analyzed based on patient
outcome, reactivity with the five N peptides was only
significantly higher [N6 (p < 0.0001), N8 (p < 0.0001), N13
(p < 0.0001), N14 (p < 0.0001), and N19 (p < 0.0001)] in cases of
fatal COVID-19. These fatal cases also only showed higher
reactivity with three of the S peptides [S3 (p < 0.0001), S4 (p <
Frontiers in Immunology | www.frontiersin.org 4
0.0001), and S6 (p < 0.0001)]. In contrast, five S peptides (S9, S10,
S14, S19, and S20) and none of the N peptides had increased
reactivity with non-fatal COVID-19 serum compared with
controls (Figure 1B).

Collectively, analysis of IgM revealed more frequent reactivity
of acute fatal COVID-19 with N protein peptides, while non-fatal
COVID-19 sera had more reactivity with S protein peptides.
When the locations of the reactive peptides were analyzed, we
found that all S peptides identified by acute fatal IgM were in the
N-terminal domain (NTD) of the S protein (Figure 2). In
contrast, S peptides highly reactive in non-fatal COVID-19
were located in the NTD and receptor-binding domain (RBD)
(Figure 2A). Increased reactivity with N protein peptides was
only found in fatal cases of COVID-19. These peptides were
located in the NTD, linked region (LKR), and C-terminal
domain (CTD) of N protein (Figure 2B).

IgG Antibody Reactivity
Analysis of acute IgG reactivity with S and N peptides revealed a
difference in S peptide reactivity between serum samples from
fatal and non-fatal COVID-19 cases (Figures 3A, B). Fatal
COVID-19 sera significantly reacted with S34 (p < 0.0001) and
S53 (p < 0.0001), while non-fatal COVID-19 significantly reacted
with S34 (p < 0.0001), S53 (p = 0.008), and S68 (p = 0.032)
peptides. There was no reactivity of IgG with N peptides from
both COVID-19 serum groups.
A

B

FIGURE 1 | Serum IgM reactivity with S and N SARS-CoV-2 peptide in non-fatal and fatal COVID-19. Serum from acute COVID-19 was used to determine IgM
reactivity with SARS-CoV-2 S and N protein peptides using ELISA. (A) Bar graph of serum reactivity with SARS-CoV-2 S and N peptides in non-fatal and fatal
COVID-19. Data is presented as mean±SEM (standard error of mean). Red brackets indicate statistically significant differences (p < 0.05, Kruskal-Wallis test with BH
adjustment). (B) Nightingale rose plots demonstrating SARS-CoV-2 S and N peptides differentially reactive with serum from non-fatal and fatal COVID-19 cases. Red
and blue – statistically significant reactivity between COVID-19 and control samples in fatal and non-fatal COVID-19 cases, respectively (p < 0.05, Kruskal-Wallis test
with BH adjustment); Grey – reactivity does differ significantly between COVID-19 and control samples. Data is presented as fold change – mean value of reactivity to
peptide in COVID-19 sera divided by mean of reactivity to the same peptides in control sera.
March 2022 | Volume 13 | Article 830715
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In contrast, multiple peptides of SARS-CoV-2 were found to be
significantly reactive with convalescent COVID-19 IgG (Figure 3)
compared to uninfected controls. Only three peptides were found
to be significantly [S34 (p < 0.0001), S53 (p = 0.008), and S68
Frontiers in Immunology | www.frontiersin.org 5
(p = 0.032) reactive in the acute non-fatal COVID-19 cases
(Figure 3B), whereas more peptides (18 peptides) were found to
be reactive in early convalescence (S3 (p = 0.007), S6 (p = 0.018),
S9 (p = 0.042), S15 (p = 0.014), S23 (p = 0.0005), S28 (p = 0.034),
A B

DC

FIGURE 3 | COVID-19 serum IgG reactivity with S and N SARS-CoV-2 peptides. Nightingale rose plots demonstrating reactivity of acute (non-fatal and fatal)
COVID-19 and convalescent serum (early and late convalescent) with SARS-CoV-2 S and N peptides. IgG reactivity with SARS-CoV-2 S and N protein peptides was
analyzed using ELISA. (A) IgM reactivity with S and N SARS-CoV-2 peptides in fatal COVID-19; (B) IgM reactivity with S and N SARS-CoV-2 peptides in non-fatal
COVID-19; (C) IgM reactivity with S and N SARS-CoV-2 peptides in early convalescent COVID-19; (D) IgM reactivity with S and N SARS-CoV-2 peptides in late
convalescent COVID-19. Red, blue, orange and yellow – statistically significant IgG reactivity in COVID-19 as compared to control (p < 0.05, Kruskal-Wallis test with
BH adjustment). Data is presented as fold change – mean value of reactivity to peptide in COVID-19 divided by mean of reactivity to the same peptides in control.
A

B

FIGURE 2 | Schematic presentation of S and N protein peptides location reacting with non-fatal and fatal COVID-19. (A) Location of S protein peptides reacting
with non-fatal and fatal COVID-19 IgM; (B) Location of N protein peptides reacting with fatal COVID-19 IgM. Red color – peptides reacting with fatal COVID-19 IgM;
Green color – peptides reacting with non-fatal COVID-19 IgM. S1, Spike 1; S2, Spike 2; TM, Transmembrane; SP, Signal Peptide; NTD, N-terminal Domain; RBD,
Receptor Binding Domain; FP, Fusion Peptide; HR1, Heptad Repeat 1; HR2, Heptad Repeat 2; IDR, Intrinsically Disordered Region; NDT, N-terminal Domain; LKR,
Linked Region; CTD, C-terminal Domain.
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S29 (p < 0.0001), S30 (p = 0.014), S31 (p = 0.0008), S34 (p = 0.038),
S45 (p < 0.0001), S51 (p = 0.007), S62 (p = 0.0001), S68 (p = 0.018),
S70 (p = 0.013), S71 (p < 0.0001), N6 (p = 0.042), and N13 (p =
0.033)] and late convalescence (12 peptides) [S6 (p = 0.007), S20
(p < 0.0001), S28 (p = 0.002), S29 (p = 0.001), S31 (p < 0.0001), S34
(p = 0.001), S51 (p = 0.020), S53 (p = 0.0008), S62 (p < 0.0001),
S69 (p = 0.0006), S70 (p = 0.0007), and S71 (p < 0.0001)] when
compared to controls. Three features of the convalescent serum
reactivity were recognized; firstly, more peptides were reactive
following recovery compared to the acute COVID-19 stages
(Figures 3B, C). Secondly, peptides S34, S53, and S68 were
consistently significantly reactive during acute and either the
early or late convalescent COVID-19 when compared to
controls (Figures 3B, C). Additionally, peptides S6 (p = 0.018, p
= 0.007), S28 (p = 0.034, p = 0.002), S29 (p < 0.0001, p = 0.001),
S31 (p = 0.0008, p < 0.0001), S34 (p = 0.038, p = 0.001), S51 (p =
0.007, p = 0.020), S62 (p = 0.0001, p < 0.0001), S70 (p = 0.013, p =
0.0007), and S71 (p < 0.0001, p < 0.0001) were significantly
reactive in the early and late convalescent COVID-19 stages
when compared to controls (Figures 3C, D). Some peptides
remained reactive up to 12 months postinfection with 12
peptides showing increased reactivity with late convalescence
serum in contrast to only three peptides in acute serum samples
(Figures 3B, D). Finally, the number of reactive peptides declined
Frontiers in Immunology | www.frontiersin.org 6
with months postinfection with 18 peptides in early convalescence
samples vs. 12 in late convalescent samples (Figures 3B, D).
Interestingly, at the early convalescent phase, two N protein
peptides (N6 (p = 0.042) and N13 (p = 0.033) were significantly
reactive with COVID-19 IgG, while reactivity to N proteins was
absent in late convalescence as compared to controls.

We have also found a difference in the dynamics of reactivity
with SARS-CoV-2 S and N peptides (Figure 4 and Table 2). There
were three groups of peptides identified based on longevity of the
reactivity with SAR-CoV-2 peptides. Group 1 contained peptides
with which reactivity with COVID-19 convalescent serum declined
between early and late convalescence. The peptide with the greatest
decline in reactivity from early to late convalescence was S45
(Figure 4A). Other peptides possessing declined reactivity were
S3, S9, S15, S23, S29, S30, N6, and N13. Group 2 included peptides
whose reactivity with COVID-19 convalescent serum remained
mostly unchanged (S6, S34, S51, S62, S68, S70, and S71)
(Figure 4B). Peptides in group 3 were more reactive in late
compared to early convalescence samples. These peptides were
S20, S28, S31, S53, and S69 (Figure 4C).

Peptides reacting with early and late convalescent serum
samples were mapped to different domains of the S protein
(Figure 5). We found that reactivity of peptides in the N-
terminal domain (NTD), receptor-binding domain (RBD), and
A

B

C

FIGURE 4 | Dynamics of convalescent COVID-19 IgG antibody reactivity with SARS-CoV-2 S protein peptides. Serum from early (median 42.0±11.1) and late
(median 306.0±21.1) convalescent COVID-19 was used for analysis. IgG reactivity with SARS-CoV-2 S protein peptides was analyzed using ELISA. (A) IgG reactivity
decreased in 5 out of 7 COVID-19 convalescent serum with time post infection; (B) reactivity with peptides remained mostly unchanged; (C) IgG reactivity increased
in 5 out of 7 COVID-19 convalescent serum with time post infection. Lines represent individual COVID-19 convalescent sample. S6, S15, S20, S31, S34 and S45 –

are SARS-CoV-2 S protein peptides.
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heptad repeat 2 (HR2) was high in both early and late
convalescence samples, whereas peptides in the Spike 2 (S2)
domain, namely, the fusion peptide (FP), were only highly
reactive in early convalescence samples. We also examined the
location of the N protein peptides with high reactivity in
convalescent samples. Reactivity of peptides in the NTD and
linker region (LKR) of the N protein was found in early
convalescence samples but only located in the NTD in late
convalescence samples. These data suggest that during the
convalescent phase, there are still antibodies circulating, which
could have a potential to neutralize the virus.

Serum Cytokine Analysis in COVID-19
We analyzed serum levels of cytokines in cases of fatal and non-
fatal COVID-19. We first observed a significantly elevated level of
7 serum cytokines (IL-1Ra, IL-2, IL-3, IL-10, IL-12p40, CXCL10,
and HGF) in all COVID-19 cases when compared with controls
(Figure 6A). Of these cytokines, a greater number [20 cytokines:
IL-1Ra (p = 0.0006), IL-1a (p = 0.003), IL-2 (p = 0.038), IL-2Ra (p
= 0.0001), IL-3 (p < 0.0001), IL-6 (p = 0.002), IL-10 (p = 0.006), IL-
12p40 (p < 0.0001), IL-16 (p = 0.008), IL-18 (p = 0.001), CCL2 (p =
0.017), CCL7 (p < 0.0001), CCL27 (p = 0.004), CXCL10 (p <
0.0001), bFGF (p = 0.031), HGF (p = 0.0001), LIF (p = 0.0002), M-
CSF (p = 0.030), SCF (p = 0.028), and SCGF-b (p = 0.029)] were
significantly elevated in fatal cases than in non-fatal cases [7
cytokines; IL-1Ra (p = 0.006), IL-2 (p = 0.0003), IL-3 (p <
0.0001), IL-10 (p = 0.014), IL-12p40 (p = 0.022), CXCL10 (p =
0.01)] (Figures 6A, B). We also compared the levels of cytokines
in fatal to those in non-fatal cases. There were 15 cytokines [IL-1a
(p = 0.002), IL-2Ra (p = 0.0008), IL-6 (p = 0.004), IL-12p40 (p =
Frontiers in Immunology | www.frontiersin.org 7
0.004), IL-16 (p = 0.008), IL-18 (p = 0.0008), CCL2 (p = 0.01),
CCL7 (p = 0.001), CXCL10 (p = 0.002), bFGF (p = 0.01), HGF (p
= 0.020), LIF (p = 0.002), M-CSF (p = 0.019), SCF (p = 0.002), and
SCGF-b (p = 0.049)] with significantly higher levels in fatal cases
compared with non-fatal cases (Figures 6A, B).

As expected, significantly increased activation of pro-
inflammatory cytokines (IL-1a, IL-2Ra, IL-6, IL-8, and IL-18) in
fatal COVID-19 compared to non-fatal COVID-19 sera was
measured (Figure 6C). Additionally, the level of multiple
chemokines (IL-12p40, CCL2, CCL7, CXCL10, and M-CSF) was
significantly increased in fatal COVID-19 cases. These data support
previous evidence that highly elevated cytokines and the “cytokine
storm” contribute to fatal COVID-19 pathogenesis (22–24).

Diagnostic Value of Peptide Reactivity and
Cytokine Activation
Using the data presented here on IgM SARS-CoV-2 peptide
reactivity and serum cytokine levels of IL-1a, IL-6, and IL-18, we
have identified a unique biomarker panel which could be used for
early identification of COVID-19 patients with increased risk of
severe and potentially fatal disease (Figure 7).
DISCUSSION

Distinct immune responses and patterns of cytokine activation
previously documented have uncovered several biomarkers
associated with COVID-19 severity (25–27). Our data provide a
more comprehensive picture and significantly advance the current
understanding about the humoral immune response in fatal and
TABLE 2 | Analysis of longitudinal reactivity of COVID-19 serum with SARS-CoV-2 S and N protein peptides.

Peptide COVID-19 (D42) COVID-19 (D306)

N % N %

Group 1 S3 31/44 70.45 14/42 33.33
S9 27/44 61.36 17/42 40.48
S15 22/44 50.00 9/42 21.43
S23 35/44 79.55 8/42 19.05
S30 31/44 70.45 18/42 42.86
S45 36/44 81.82 3/42 7.14
N6 30/44 68.18 14/42 33.33
N13 31/44 70.45 12/42 28.57

Group 2 S6 30/44 68.18 29/42 69.05
S28 27/44 61.36 28/42 66.67
S29 36/44 81.82 30/42 71.43
S31 30/44 68.18 33/42 78.57
S34 25/44 56.82 28/42 66.67
S47 21/44 47.73 24/42 57.14
S51 30/44 68.18 24/42 57.14
S68 28/44 63.64 25/42 59.52
S20 3/44 6.82 15/42 35.71

Group 3 S53 22/44 50.00 31/42 73.81
S62 33/44 75.00 36/42 85.71
S69 26/44 59.09 33/42 78.57
S70 29/44 65.91 32/42 76.19
S71 38/44 86.36 42/42 100.00
M
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A

B

C

FIGURE 6 | Serum cytokine level in fatal and survived COVID-19. Violine plot demonstrating serum cytokines level in acute COVID-19 analyzed using Bio-Plex (Bio-
Rad, Hercules, CA, USA) multiplex magnetic bead-based antibody detection kit. (A) Cytokines upregulated in non-fatal and fatal COVID-19 compared to controls;
(B) Cytokines upregulated only in fatal COVID-19 compared to controls; Data is presented as violin plots with boxplots of Log2 of cytokines concentration.*p < 0.05
(Kruskal-Wallis test with BH adjustment). (C) Nightingale rose plots demonstrating serum cytokine level in non-fatal and fatal COVID-19 using the Bio-Plex (Bio-Rad,
Hercules, CA, USA) multiplex magnetic bead-based antibody detection kit. Purple –increased reactivity in fatal COVID-19 compared to non-fatal COVID-19 samples
(p < 0.05, Kruskal-Wallis test with BH adjustment). Dotted line – fold change = 1. Data is presented as fold change – mean value of cytokines in fatal COVID-19
divided by mean of cytokines in non-fatal COVID-19.
A

B

D

C

FIGURE 5 | Schematic presentation of S and N protein peptide locations that are reactive with fatal and non-fatal COVID-19 sera. (A) Location of S protein peptides
reacting with IgG serum from early convalescent COVID-19; (B) Location of N protein peptides reacting with IgG serum from early convalescent COVID-19; (C)
Location of S protein peptides reacting with IgG serum from late convalescent COVID-19; (D) Location of N protein peptides reacting with IgG serum from late
convalescent COVID-19; Orange color – peptides reactive with early (1-2 months) convalescent COVID-19 IgG sera; Blue color – peptides reacting with late (10-12
months) convalescent COVID-19 IgG sera.
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non-fatal COVID-19 cases through identification of a distinct
pattern of antibody recognition of S and N protein peptides. The
most striking difference was a lack of IgM antibody reactivity with N
protein peptides in non-fatal patients. Also, we report that the
panels of S protein peptides reacting with fatal and non-fatal
COVID-19 differ. Specifically, only non-fatal COVID-19 sera had
reactive peptides located in the RBD of S protein. Importantly, the
RBD is one of the targets for neutralizing antibodies (28) and anti-
RBD antibody levels have been shown to correlate with neutralizing
activity (18). Our analysis revealed that S20, a peptide exclusively
reacting with non-fatal acute IgM, contains neutralizing epitopes
identified by Barnes et al. (28), thus supporting previous
observations that development of neutralizing antibodies is
delayed in fatal COVID-19 compared to non-fatal COVID-19
cases (29). In addition to the RBD, the NTD can be targeted by
neutralizing antibodies (30), although there is higher potency of
RBD-recognizing antibodies demonstrated by Graham et al. (31).
Therefore, we suggest that a larger number of peptides recognized
by survivor IgM antibodies on the RBD and the NTD regions
contribute to convalescence.

Evidence shows that the immune response to SARS-CoV-2
infection contributes to COVID-19 outcomes (32, 33). Reactivity
to S and N proteins appears to differ between non-fatal and fatal
cases (34); however, little is known about the location of
immunogenic regions in these proteins. We identified multiple N
protein peptides reacting with fatal COVID-19 IgM. These peptides
were located in the NTD and LKR and C-terminal domain (CTD)
regions of the N protein. These regions were previously shown to
contain immunogenic epitopes (35–37). Similarly, Heffron et al.
identified N protein peptides located in the CTD which highly
correlated with intubated patients, when compared with non-
hospitalized patients (37). Multiple epitopes in the NTD and LKR
regions have also been identified as reacting with severe COVID-19
patient sera (14). This commonly observed reactivity to N protein in
severe and fatal patients suggests that early screening for the
presence of anti-N protein antibodies could be a prognostic factor
for clinical outcome, helping to identify patients for high risk of
developing severe and fatal COVID-19 during admission (38). The
role of anti-N protein antibodies in pathogenesis of severe COVID-
Frontiers in Immunology | www.frontiersin.org 9
19 remains largely unknown. Recently, Batra et al. have suggested
that SARS-CoV-2 N protein could contribute to the severity of the
disease by inducing non-neutralizing antibodies with the ability to
induce an antibody-dependent enhancement (ADE) response (38).
This assumption is supported by the high homology between N
protein from SARS-CoV-2 and other coronaviruses (38). It was
suggested that previous exposure could lead to the circulation of the
large quantity of cross-reacting anti-coronavirus N protein
antibodies capable of ADE (38, 39).

We have also found that peptides recognized during early and
late convalescence differ following two major trends: firstly, the
number of reactive peptides declined with time post
convalescence, and secondly, the overall intensity of antibody
binding to peptides declined from early to late convalescence.
These data corroborate previous observations that the humoral
immune response declines with time post recovery (15, 40).
Substantial reduction in the number of peptides and reaction
intensity to NTD and RBD peptides of the S protein was found in
late convalescence. Similarly, reactivity to N peptides was reduced
as time passed such that there was no reactivity to these peptides
by 306 days after recovery. These data are in agreement with
previous reports showing that anti-S protein IgG levels remained
elevated for longer compared to anti-N protein IgG levels (41, 42).
Therefore, it could be suggested that anti-S protein antibodies are
the optimal markers of an anti-SARS-CoV-2 immune response.

Changes in serum cytokine levels were also examined as these
factors were identified early during the pandemic outbreak in
playing a central role in COVID-19 pathogenesis (27). The
“cytokine storm” and its major contributor IL-6 (43) have been
highlighted as potential therapeutic targets (44). We have
identified multiple cytokines known to induce and maintain
inflammation as activated in fatal but not non-fatal COVID-19
cases. Among these cytokines was IL-6, confirming previous
observations of its role in severe COVID-19 pathogenesis (45).
Additionally, we found an increased level of M-CSF in
fatal COVID-19 but not non-fatal COVID-19 sera. This
inflammatory mediator has overlapping functions with GM-
CSF, another cytokine previously identified as being highly
upregulated in fatal COVID-19 (46). The “cytokine storm”
FIGURE 7 | Diagnostic panel for early identification of fatal COVID-19. Serum cytokine (IL-1a, IL-6 and IL-18) level and reactivity of anti-SARS-CoV-2 IgM and IgG
with S and N protein peptides selected for a diagnostic panel for early identification of fatal COVID-19. Red – cytokine level and SARS-CoV-2 peptide reactivity in
fatal COVID-19; Blue – cytokine level and SARS-CoV-2 peptide reactivity in non-fatal COVID-19. Dotted line – fold change = 1, level in control. Data is presented as
fold change – mean value of cytokines in COVID-19 divided by mean of cytokines in control.
March 2022 | Volume 13 | Article 830715

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Martynova et al. SARS-CoV-2 Protein Peptide Prediction of COVID-19
hypothesis is further supported by our findings given that an
increased level of two powerful pro-inflammatory cytokines, IL-1a
and IL-18, were found in fatal, not in non-fatal, COVID-19. These
are IL-1 family cytokines with distinct functions. IL-1a is a
principal cytokine maintaining inflammatory moiety in necrotic
tissue (23). Therefore, a substantial increase in the level of this
cytokine could indicate necrosis in COVID-19 patients. IL-18 is
also a pro-inflammatory cytokine, produced by activated
inflammasomes (47). This cytokine is released by activated
macrophages and synergizes with IL-12 to activate T cell
immune response which can induce fatal inflammation through
activation of natural killer (NK) cells (22, 48, 49).

In addition to pro-inflammatory cytokines, we have found an
increased level of multiple chemokines capable of attracting
activated leukocytes to the site of infection. These chemokines,
CCL2, CCL7, CCL27, and CXCL10, were shown to stimulate
chemotaxis of monocytes, CD8 T cells, and NK cells which were
identified as infiltrating tissues in COVID-19 (50, 51). Our data
also confirm the role of CCL2 and CXCL10 in severe COVID-19
as these chemokines were found to be increased in serum of
patients admitted to ICU (46, 52). Additionally, our data further
support the hypothesis of dysregulation of mononuclear
phagocytes (52, 53), as CCL2, increased in COVID-19,
promotes macrophage migration and differentiation (54). The
role of neutrophils in the pathogenesis of fatal COVID-19 could
also be suggested as CCL7 contributes to the accumulation of
these granulocytes in the lung (55). Interestingly, Xie et al. (52)
showed that neutralization of CCL7 attenuated angiotensin II-
induced macrophage infiltration. This role of macrophages in
pathogenesis of COVID-19 is supported by an increased level of
M-CSF found in fatal cases. Together, excessive M-CSF-driven
monocyte/macrophage proliferation and CCL2/CCL7 activation
and chemotaxis could be the mechanism of severe and fatal
COVID-19 pathogenesis.

Levels of IL-1b were not affected, while, in contrast, serum IL-
18 was increased in fatal COVID-19 cases. A previous study
using an animal model of acute respiratory distress syndrome
(ARDS), that is frequently diagnosed in critical COVID-19 cases
(56), demonstrated that serum levels of IL-18 could serve as a
biomarker of severity and mortality (57). A similar conclusion
was presented by Satis et al., who showed that higher levels of IL-
18 were found in serum of COVID-19 with worse outcomes (58).

We have identified SARS-CoV-2 S and N peptides that can be
used for early prediction of fatal COVID-19 outcomes. Our data
confirm that reactivity with N protein peptides is more prevalent
in fatal than non-fatal COVID-19 sera. Additionally, we have
found higher levels of pro-inflammatory cytokines and
chemokines in fatal COVID-19 sera, supporting the role of
“cytokine storm” in the pathogenesis of severe COVID-19.
Among these cytokines, IL-18 appears to have a special role as
it can be released by activated macrophages and neutrophils and,
thus, combined with IL-12, could contribute to COVID-19
fatality. Higher levels of CCL2 and CCL7 chemokines as well
as M-CSF also implicate the role of macrophages and neutrophils
in pathogenesis of cytokine storm. From these data on S and N
protein peptide reactivity and cytokine activation, we provide a
Frontiers in Immunology | www.frontiersin.org 10
panel of clinically significant biomarkers which could be used for
early prediction of COVID-19 fatality.

In conclusion, we have identified several markers that could
be used for the early prediction of fatal COVID-19 outcomes. We
also confirm the prediction value of antibody reactivity with
SARS-CoV-2 N protein and the high serum levels of IL-6 in
COVID-19 patients. Moreover, we have identified novel
markers, including N and S protein peptides, that are reactive
in the case of fatal COVID-19. Higher levels of IL-1a and IL-18
pro-inflammatory cytokines were also found in fatal COVID-19
serum. Using these novel markers, we have developed a panel of
biomarkers that could be used for the early prediction of
COVID-19 fatality risk.
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