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Purpose: We focused on immune-related genes (IRGs) derived from transcriptomic
studies, which had the potential to stratify patients’ prognosis and to establish a risk
assessment model in colorectal cancer.

Summary: This article examined our understanding of the molecular pathways
associated with intratumoral immune response, which represented a critical step for
the implementation of stratification strategies toward the development of personalized
immunotherapy of colorectal cancer. More and more evidence shows that IRGs play
an important role in tumors. We have used data analysis to screen and identify
immune-related molecular biomarkers of colon cancer. We selected 18 immune-related
prognostic genes and established models to assess prognostic risks of patients,
which can provide recommendations for clinical treatment and follow-up. Colorectal
cancer (CRC) is a leading cause of cancer-related death in human. Several studies
have investigated whether IRGs and tumor immune microenvironment (TIME) could be
indicators of CRC prognoses. This study aimed to develop an improved prognostic
signature for CRC based on IRGs to predict overall survival (OS) and provide new
therapeutic targets for CRC treatment. Based on the screened IRGs, the Cox regression
model was used to build a prediction model based on 18-IRG signature. Cox regression
analysis revealed that the 18-IRG signature was an independent prognostic factor
for OS in CRC patients. Then, we used the TIMER online database to explore the
relationship between the risk scoring model and the infiltration of immune cells, and the
results showed that the risk model can reflect the state of TIME to a certain extent.
In short, an 18-IRG prognostic signature for predicting CRC patients’ survival was
firmly established.

Keywords: colorectal cancer, immune-related gene, immune prognostic signature, TCGA, tumor immune
microenvironment
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INTRODUCTION

Colorectal cancer (CRC) ranks among the top causes of cancer-
related deaths worldwide that endangers human health. The
GLOBOCAN data in 2018 released by the International Cancer
Research Agency showed that each year there were approximately
1.85 million new CRCs and more than 880,000 deaths worldwide.
The morbidity and mortality of CRC rank third and second,
respectively, in malignant tumors, in which the morbidity
accounts for approximately 10% of the total cancer incidence,
and the mortality accounts for 9% of the total deaths due to
cancer (Bray et al., 2018). It was predicted that the number of
cases will increase by more than 60% in 2030, with 2.2 million
new cases and 1.1 million deaths (Arnold et al., 2017). Surgical
resection is the main treatment option for CRC patients. With
the application and popularity of colonoscopy, early treatment
work has been improved. The clinical outcomes of CRC patients
in many countries have improved significantly over the past
few decades (Atkin et al., 2017). Despite the complete surgical
resection, many CRC patients eventually relapsed and developed
metastatic disease (Angenete, 2019). In clinical practice, a more
effective prognostic evaluation system is urgently needed to
provide personalized medicine for CRC patients and improve
patient outcomes.

It is noteworthy that after Fearon and Vogelstein proposed
the model of CRC genetic basis, researchers have begun to
understand the heterogeneity of CRC (Fearon and Vogelstein,
1990). Patients with different genetic backgrounds had different
outcomes after receiving the same treatment (Fearon and
Vogelstein, 1990). Some researchers believed that it was
attributed to immunity-related factors (Becht et al., 2016). As
we knew that the immune system plays an important role in
the development of a variety of cancers, including CRC (Gentles
et al., 2015). A recent study found that immunological data
(such as type, density, and location of immune cells in tumor
samples) can predict patient survival better than the current
histopathological characteristics used for CRC patients (Galon
et al., 2006). Immune cells are important parts of the tumor
microenvironment and affect the development and metastasis
of CRC (Pages et al., 2005). Tumor-infiltrating macrophages
and dendritic cells in CRC are related to local regulatory
T cells and systemic T-cell responses to tumor-associated
antigens and have an impact on patients’ survival (Nagorsen
et al., 2007). In addition, studies have shown that immune-
related genes (IRGs) in colon cancer are closely related to
the occurrence and development of colon cancer. However,
there is currently no prognostic model based on IRGs to
predict the overall prognosis of CRC patients and systematically
assess the immune environment of CRC (Ge et al., 2019).
Therefore, constructing an immune-based prognostic model that
can effectively predict the prognosis of CRC has a very important
clinical application prospect.

In this study, we screened differentially expressed IRGs that
are closely related to CRC through bioinformatics analysis of
The Cancer Genome Atlas (TCGA). Next, the IRGs that were
significantly associated with prognosis were further screened.
Differentially expressed tumor-associated transcription factors

(TFs) were searched, and a correlation network was constructed
to reveal the relationship between TFs regulating immune genes.
Then, immune-related prognostic models were constructed by
integrating IRGs of CRC. Besides, we verified that the risk model
can be used as an effective independent prognostic indicator.

MATERIALS AND METHODS

Patient Data Collection
Colorectal cancer patients (adenocarcinomas) with gene
expression profiles and clinical information were obtained
from TCGA data portal1. Processed RNA-Seq FPKM data of
398 CRC and 39 adjacent normal tissues were downloaded for
further analyses.

IRGs and Cancer-Related Transcription
Factors
The comprehensive list of IRGs was downloaded from the
Immunology Database and Analysis Portal (ImmPort) database2,
which shares immunology data and provides a list of IRGs for
cancer researchers (Bhattacharya et al., 2014). The IRGs that
actively participated in the immune process were identified.
To investigate the regulatory mechanism of IRGs, we extracted
cancer-related transcription factors (CRTFs) for subsequent
research. The CRTF data were downloaded from the Cistrome
Cancer database3, which is a useful database for biomedical and
genetic research and includes 318 CRTFs (Mei et al., 2017).

Differential Gene Expression Analysis
To select the IRGs and TFs that contributed to the development
and progression of CRC, differentially expressed genes (DEGs)
between tumor samples and normal samples were screened
using the limma R package. Differential expression analysis was
conducted, with an adjusted false discovery rate < 0.05 and |
log2(fold change)| > 1 as the thresholds. Differentially expressed
IRGs were identified as overlaps between the IRG list and the
DEG list. Differentially expressed TFs were identified as overlaps
between the TFs list and the DEG list. Heatmaps were generated
using the “pheatmap” R package, and volcano plots were also
displayed using the “ggplot2” R package.

CRTF-IRG Regulatory Network
In order to evaluate how differentially expressed CRTFs regulate
prognosis-related IRGs, we studied the correlation between them.
The core method is the Pearson test. The critical standard is set to
a correlation coefficient > 0.4, P < 0.001. This step is performed
using the Cor. test function in R, and the correlation coefficient
and P value are calculated by Cor. test. To make the situation
clearer, Cytoscape was used to build a visual regulatory network.

1https://portal.gdc.cancer.gov/
2https://immport.niaid.nih.gov
3http://cistrome.org/CistromeCancer/CancerTarget/
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PPI Network Construction and Module
Analysis
The PPI network was predicted using an online database search
tool STRING4 (Franceschini et al., 2013). Analyzing functional
interactions between proteins may provide insights into the
mechanisms of CRC development and progression. In this
study, prognostic-related PPI networks of IRGs and CRTFs were
constructed using the STRING database, and interactions with
composite scores > 0.4 were considered statistically significant.
Kyoto Encyclopedia of Genes and Genomes signaling pathways

4http://string-db.org, version 11.0

and biological functions of genes were analyzed using functional
clustering carried by STRING.

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA)5 was used to analyze the
GO term of the genes that make up the signature.

Construction of the Immune-Related
Signature for CRC
To control the quality of the data, after excluding patients who
lacked survival information or survived for less than 90 days,

5https://pypi.org/project/gseapy/

FIGURE 1 | Differentially expressed immune-related genes (IRGs) and cancer-related transcription factors (CRTFs) in colorectal cancer (CRC). (A) Heatmap of
differentially expressed genes in CRC. The color from green to red represents the progression from low expression to high expression. (B) Volcano plot of
differentially expressed genes in CRC. The red dots in the plot represent upregulated genes, and green dots represent downregulated genes with statistical
significance. Black dots represent no differentially expressed genes in CRC. (C) Heatmap of significantly differentially expressed IRGs in CRC. (D) Heatmap of
significantly differentially expressed cancer-related transcription factors in CRC. The color from green to red represents the progression from low expression to high
expression. (E) Volcano plot of differentially expressed IRGs. (F) Volcano plot of differentially expressed cancer-related transcription factors.
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334 samples were subsequently analyzed. Transcriptomic analysis
of RNA measured by FPKM values was performed using log2-
based conversion. Based on the differentially expressed IRGs,
Kaplan–Meier analysis was first performed to screen prognostic
immune genes. Then, immune-related prognostic signature (IPS)
was constructed by multivariate Cox regression to calculate the
risk score for each patient. Risk scores were acquired based
on expressions of genes multiplied by a linear combination
of regression coefficients obtained from the multivariate Cox
regression analysis. P < 0.01 was regarded as significant.

Survival Analysis
According to the optimal cutoff value obtained by the
“survminer” R package, CRC patients were classified into low
risk and high risk according to their risk scores. To investigate
the prognostic value of the prognostic model in CRC patients,
univariate Cox analysis was implemented by the “survival” R
package and “survminer” R package. A time-dependent receiver
operating characteristic (ROC) curve was plotted to assess
sensitivity and specificity using the “timeROC” R software
package (Heagerty et al., 2000). The area under the curve was
calculated from the ROC curve.

Association Analysis Between 18-IRGs
and Clinical Parameters
Association analysis of clinical characteristics of 18 key
prognostic IRGs in the model was performed using the t test. To
transform the data types into binary variables, 398 CRC patients
were grouped according to different clinical characteristics. In
terms of age, 65 years old was chosen as the cutoff point. The stage
was divided into stages I and II and stages III and IV. The T stage
was divided into T1–2 and T3–4. M stage was divided into M0 or
M1. N stages N0 and N1–2.

TIMER Database Analysis of the
Correlation Between Immune-Related
Markers and Immune Cell Infiltration
TIMER database6 is a comprehensive resource for systematical
analysis of immune infiltrates across different cancer types
(Li et al., 2017). The abundance of six immune infiltrates
was estimated by the TIMER algorithm (B cells, CD4+ T
cells, CD8+ T cells, neutrophils, macrophages, and dendritic

6https://cistrome.shinyapps.io/timer/

TABLE 1 | General characteristics of prognostic immune-related genes.

Gene symbol HR HR.95L HR.95H P-value Gene symbol HR (95% CI) P-value

CD1B 0.057 0.007 0.469 0.007658134 CD1B 0.057 (0.007–0.469) 0.008

SLC10A2 1.833 1.174 2.860 0.007661263 SLC10A2 1.833 (1.174–2.860) 0.008

CXCL3 0.976 0.960 0.994 0.007314764 CXCL3 0.976 (0.960–0.994) 0.007

NOX4 1.644 1.161 2.328 0.00512998 NOX4 1.644 (1.161–2.328) 0.005

FABP4 1.014 1.007 1.020 4.75E-05 FABP4 1.014 (1.007–1.020) 4.75E-05

ADIPOQ 1.102 1.047 1.160 0.00022247 ADIPOQ 1.102 (1.047–1.160) 2.22E-04

FGF2 1.340 1.076 1.670 0.009000359 FGF2 1.340 (1.076–1.670) 0.009

F2RL1 0.967 0.944 0.991 0.006461334 F2RL1 0.967 (0.944–0.991) 0.006

CCL19 1.030 1.008 1.051 0.005852187 CCL19 1.030 (1.008–1.051) 0.006

PLCG2 1.674 1.192 2.351 0.002941416 PLCG2 1.674 (1.192–2.351) 0.003

IGHG1 1.001 1.000 1.001 0.000824658 IGHG1 1.001 (1.000–1.001) 0.001

IGHG4 1.000 1.000 1.001 0.008255942 IGHG4 1.000 (1.000–1.001) 0.008

IGHV4-31 1.008 1.002 1.014 0.007667535 IGHV4-31 1.008 (1.002–1.014) 0.008

IGHV5-51 1.002 1.001 1.003 0.002062246 IGHV5-51 1.002 (1.001–1.003) 0.002

IGKV1-33 1.030 1.011 1.050 0.001978816 IGKV1-33 1.030 (1.011–1.050) 0.002

IGKV1-8 1.044 1.015 1.073 0.002316247 IGKV1-8 1.044 (1.015–1.073) 0.002

IGKV2D-40 1.016 1.005 1.026 0.003078753 IGKV2D-40 1.016 (1.005–1.026) 0.003

IGLV6-57 1.002 1.001 1.003 0.003346154 IGLV6-57 1.002 (1.001–1.003) 0.003

SEMA3G 1.294 1.123 1.491 0.000355359 SEMA3G 1.294 (1.123–1.491) 3.55E-04

INHBA 1.053 1.022 1.085 0.000678328 INHBA 1.053 (1.022–1.085) 0.001

NGF 3.615 2.038 6.413 1.12E-05 NGF 3.615 (2.038–6.413) 1.12E-05

RETNLB 1.004 1.001 1.006 0.002823016 RETNLB 1.004 (1.001–1.006) 0.003

STC1 1.078 1.021 1.139 0.007200166 STC1 1.078 (1.021–1.139) 0.007

UCN 1.383 1.118 1.711 0.002826168 UCN 1.383 (1.118–1.711) 0.003

VIP 1.058 1.021 1.096 0.001913177 VIP 1.058 (1.021–1.096) 0.002

NGFR 1.200 1.092 1.320 0.000160985 NGFR 1.200 (1.092–1.320) 1.61E-04

NPR1 1.501 1.133 1.988 0.004630474 NPR1 1.501 (1.133–1.988) 0.005

OXTR 1.426 1.177 1.728 0.000284786 OXTR 1.426 (1.177–1.728) 2.85E-04

PTH1R 1.628 1.220 2.174 0.000936214 PTH1R 1.628 (1.220–2.174) 0.001

TRDC 1.149 1.036 1.274 0.008408965 TRDC 1.149 (1.036–1.274) 0.008
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FIGURE 2 | Screening of IRGs related to significant prognosis in CRC. Forest plot showing the prognostic immune-related genes, P values, and hazard ratios. Green
dots represent low risk factors, and red dots represent high risk factors.

FIGURE 3 | The main regulatory network constructed based on
prognosis-related IRGs and CRTFs. (A) The main regulatory network was
constructed using Cytoscape for visualization. The circulars represent
differentially expressed prognostic immune-related genes, and the purple
triangles represent prognosis-related cancer-related transcription factors,
respectively. The red circulars represent high-risk genes, and the green
circulars represent low-risk genes. Red lines represent positive correlations
and green lines represent negative correlations. (B) The PPI network was
predicted using the Search Tool for the Retrieval of Interacting Genes online
database. Analyzing the functional interactions between proteins may provide
insights into the mechanisms of generation or development of CRC.

cells). We used the TIMER database to analyze the correlation
between the prognostic model of CRC patients and six tumor-
infiltrating immune cells.

Statistical Analysis
Overall survival (OS) was defined as the main outcome.
Univariate cox regression analysis and multivariate cox

regression analysis were performed to evaluate the prognostic
effect of the immune signature and various clinicopathological
features including age, clinical stage, grade, and TNM stage.
Statistical analyses were performed using R software (version
3.5.1). The heatmap was generated using the “pheatmap” R
package. Unless otherwise specified, a two-sided P < 0.05 was
considered statistically significant.

RESULTS

Differentially Expressed IRGs and CRTFs
in CRC
Compared with normal tissues, there were 5,938 DEGs in
CRC tissues, of which 3,936 were up-regulated and 2,002 were
down-regulated in these samples. The difference between tumor
tissue and normal tissue can be seen through the heatmap
and the volcano map (Figures 1A,B). Compared with normal
tissues, a total of 484 IRGs (173 up-regulated and 311 down-
regulated) and 71 CRTFs (46 up-regulated and 25 down-
regulated) were differentially expressed in CRC tissues. The
heatmaps showed that CRC samples can be distinguished from
normal samples based on the differentially expressed IRGs
and CRTFs (Figures 1C,D). The volcano plots showed the
distribution of differentially expressed IRGs and CRTF between
CRC samples and normal controls (Figures 1E,F).
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TABLE 2 | Correlation between prognostic IRGs and CRTFs.

TF Immune Gene Cor P value Regulation

BHLHE40 CLCF1 0.416839314 1.80E-15 Positive

BHLHE40 INHBA 0.401507385 2.28E-14 Positive

CBX7 CXCL12 0.486561766 2.97E-21 Positive

CBX7 PTGDS 0.503200159 7.70E-23 Positive

CBX7 COLEC12 0.424078295 5.19E-16 Positive

CBX7 A2M 0.616242787 2.60E-36 Positive

CBX7 CCL19 0.436562294 5.65E-17 Positive

CBX7 SEMA3G 0.542759756 5.56E-27 Positive

CBX7 SLIT2 0.555854437 1.78E-28 Positive

CBX7 TNFSF12 0.563264084 2.36E-29 Positive

CBX7 NGFR 0.488603311 1.92E-21 Positive

CBX7 NPR1 0.531260451 1.01E-25 Positive

CBX7 S1PR1 0.592504631 4.92E-33 Positive

CDK2 BIRC5 0.431405235 1.43E-16 Positive

CENPA BIRC5 0.642177664 3.16E-40 Positive

E2F3 S100P −0.44339107 1.61E-17 Negative

EPAS1 CXCL12 0.453700715 2.31E-18 Positive

EPAS1 PTGDS 0.448012905 6.81E-18 Positive

EPAS1 A2M 0.55619075 1.62E-28 Positive

EPAS1 CCL19 0.413149974 3.35E-15 Positive

EPAS1 PLCG2 0.446388336 9.24E-18 Positive

EPAS1 SEMA3G 0.484129321 4.99E-21 Positive

EPAS1 NPR1 0.424577277 4.75E-16 Positive

EPAS1 S1PR1 0.562256083 3.12E-29 Positive

EZH2 BIRC5 0.404514518 1.40E-14 Positive

FOSL1 CLCF1 0.539965172 1.14E-26 Positive

FOXP3 CD1B 0.512515443 9.11E-24 Positive

FOXP3 PTGDS 0.427576845 2.81E-16 Positive

FOXP3 A2M 0.545665937 2.62E-27 Positive

FOXP3 TLR7 0.505943161 4.13E-23 Positive

FOXP3 PLCG2 0.444809183 1.24E-17 Positive

FOXP3 IGHG1 0.445339174 1.12E-17 Positive

FOXP3 CMKLR1 0.65044552 1.48E-41 Positive

FOXP3 TNFSF12 0.462021403 4.58E-19 Positive

FOXP3 S1PR1 0.491569563 1.01E-21 Positive

H2AFX BIRC5 0.459290301 7.83E-19 Positive

KAT2B NR3C2 0.453792752 2.27E-18 Positive

KLF4 CCL28 0.428000208 2.61E-16 Positive

KLF4 GUCA2A 0.437937735 4.40E-17 Positive

KLF4 NR3C2 0.565658867 1.22E-29 Positive

LMO2 CXCL12 0.574574237 9.84E-31 Positive

LMO2 PTGDS 0.539133308 1.40E-26 Positive

LMO2 COLEC12 0.410459525 5.26E-15 Positive

LMO2 A2M 0.589918106 1.08E-32 Positive

LMO2 CCL19 0.452942043 2.67E-18 Positive

LMO2 CD79B 0.43546919 6.88E-17 Positive

LMO2 PLCG2 0.496304811 3.59E-22 Positive

LMO2 SEMA3G 0.575029816 8.63E-31 Positive

LMO2 SLIT2 0.461147564 5.44E-19 Positive

LMO2 CMKLR1 0.465054783 2.51E-19 Positive

LMO2 NGF 0.408695876 7.04E-15 Positive

LMO2 TNFSF12 0.497580181 2.70E-22 Positive

LMO2 NGFR 0.456316187 1.40E-18 Positive

(Continued)

TABLE 2 | Continued

TF Immune Gene Cor P value Regulation

LMO2 NPR1 0.546869058 1.92E-27 Positive

LMO2 S1PR1 0.635395146 3.63E-39 Positive

MAF CXCL12 0.660448884 3.22E-43 Positive

MAF PTGDS 0.524781296 4.95E-25 Positive

MAF COLEC12 0.700804251 1.23E-50 Positive

MAF A2M 0.72079867 8.62E-55 Positive

MAF NOX4 0.609211362 2.60E-35 Positive

MAF TLR7 0.658440876 7.02E-43 Positive

MAF PLCG2 0.507215446 3.09E-23 Positive

MAF IGHG1 0.437003034 5.21E-17 Positive

MAF SEMA3G 0.581610292 1.28E-31 Positive

MAF SLIT2 0.621276631 4.82E-37 Positive

MAF CMKLR1 0.683628325 2.48E-47 Positive

MAF INHBA 0.59794424 9.22E-34 Positive

MAF NGF 0.430176879 1.78E-16 Positive

MAF STC1 0.438639668 3.87E-17 Positive

MAF TNFSF12 0.632265446 1.10E-38 Positive

MAF NGFR 0.417731411 1.55E-15 Positive

MAF NPR1 0.590835707 8.17E-33 Positive

MAF S1PR1 0.714778352 1.68E-53 Positive

MYH11 CXCL12 0.40925357 6.42E-15 Positive

MYH11 PTGDS 0.422386792 6.95E-16 Positive

MYH11 A2M 0.613726369 5.96E-36 Positive

MYH11 SEMA3G 0.427612739 2.79E-16 Positive

MYH11 SLIT2 0.555833348 1.79E-28 Positive

MYH11 TNFSF12 0.461576107 5.00E-19 Positive

MYH11 VIP 0.470463748 8.48E-20 Positive

MYH11 NGFR 0.456187973 1.43E-18 Positive

MYH11 NPR1 0.520453508 1.40E-24 Positive

MYH11 S1PR1 0.590045306 1.04E-32 Positive

NCAPG BIRC5 0.554839718 2.33E-28 Positive

NR3C1 CXCL12 0.589098923 1.38E-32 Positive

NR3C1 PTGDS 0.449503703 5.14E-18 Positive

NR3C1 COLEC12 0.62546825 1.16E-37 Positive

NR3C1 A2M 0.675323103 8.15E-46 Positive

NR3C1 NOX4 0.502386799 9.25E-23 Positive

NR3C1 TLR7 0.549000706 1.10E-27 Positive

NR3C1 FGF2 0.456714287 1.29E-18 Positive

NR3C1 PLCG2 0.465257317 2.41E-19 Positive

NR3C1 SEMA3G 0.512080143 1.01E-23 Positive

NR3C1 SLIT2 0.584275041 5.83E-32 Positive

NR3C1 CMKLR1 0.547817016 1.50E-27 Positive

NR3C1 INHBA 0.559600609 6.44E-29 Positive

NR3C1 TNFSF12 0.482380673 7.22E-21 Positive

NR3C1 VIP 0.420746246 9.23E-16 Positive

NR3C1 IL1RAP 0.409789576 5.88E-15 Positive

NR3C1 NPR1 0.46851997 1.26E-19 Positive

NR3C1 S1PR1 0.646179039 7.28E-41 Positive

PBX1 A2M 0.405034889 1.28E-14 Positive

RUNX1 CXCL12 0.438209268 4.19E-17 Positive

RUNX1 COLEC12 0.407539671 8.52E-15 Positive

RUNX1 A2M 0.433301718 1.02E-16 Positive

RUNX1 SEMA3G 0.416583417 1.88E-15 Positive

(Continued)
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TABLE 2 | Continued

TF Immune Gene Cor P value Regulation

RUNX1 INHBA 0.435841724 6.44E-17 Positive

RUNX1 S1PR1 0.40202312 2.10E-14 Positive

SNAPC4 JAG2 0.402211118 2.03E-14 Positive

SOX4 S100P −0.415710928 2.18E-15 Negative

SPDEF S100P 0.425063976 4.37E-16 Positive

SPDEF RETNLB 0.495866186 3.95E-22 Positive

SPIB SCG2 0.419892177 1.07E-15 Positive

TFAP2C IGHV3-64 0.507706392 2.76E-23 Positive

TFAP2C PTH1R 0.459218282 7.94E-19 Positive

Screening of IRGs Related to Significant
Prognosis in CRC
To determine the differentially expressed IRGs with prognostic
characteristics, the relationship between the expression of 484
IRGs in 398 CRC samples and prognosis were evaluated by
univariate Cox analysis. A total of 30 IRGs with prognostic
characteristics were found, as shown in Table 1. Figure 2
is a forest plot showing the prognostic IRGs, P values, and
hazard ratios. Among the 18 prognostic-related IRGs, CD1B,
CXCL3, F2RL1, and IGHG4 are low-risk genes. The higher
expression of these genes indicated better prognosis of patients.
The other 14 IRGs are high-risk genes, and when their expression
increases, the patient’s risk increases. NGF is the gene with the
highest risk factor.

The Mechanism of Prognosis-Related
IRGs and CRTF-IRG Regulatory Network
We explored the potential regulatory mechanisms of 18
prognostic-related IRGs, which may reflect the regulatory
mechanisms of these gene sets. We selected 30 prognostic-
related IRGs and 71 differential CTRFs for correlation analysis
to explore the regulatory mechanism of prognostic-related IRGs.
The Cor. test function is used to test the correlation between
each CRTF and each IRG. The core method is Pearson test.
The correlation coefficient filter is 0.4, and the P value filter
is 0.001. The regulatory relationship between these CRTFs and
IRGs is revealed in the regulatory network (Figure 3A). As shown
in Figure 3A, NR3C1, MYH11, RUNX1, MAF, CCB7, LMO2,
FOXP3, and EPAS1 regulate most of the IRGs related to prognosis
and dominate the regulation network. This transcriptional
regulatory network reveals the regulatory relationship between
these IRGs and CRTFs. Table 2 shows the correlation between
IRGs and CRTFs after screening. The PPI network of IRGs
and CRTFs was constructed, and the most significant module
was obtained. The functional analyses of genes involved in this
module were analyzed. Enrichment analysis shows that the genes
in this module are mainly involved in cell proliferation and
metabolic processes (Figure 3B).

Hub Gene Selection and Analysis in CRC
Using Cytohubba in Cytoscape, we filtered 33 hub genes
that were identified by filtering according to the criterion of

degrees > 10 criteria (each node had more than 10 interactions),
and the 10 most central genes in the immune gene regulatory
network according to node degree were MAF, A2M, CBX7,
MYH11, EPAS1, CXCL12, LMO2, S1PR1, FOXP3, and NR3C1
(Figures 4A,B). Gene Ontology (GO) enrichment analysis of
genes in the immune gene regulatory network related to
prognosis was conducted to explore which signaling pathways
were activated. The analysis of the biological processes (BPs)
of the central genes using BiNGO in Cytoscape is shown in
Figures 4C,D. GO analysis showed that the changes in the BPs
of these genes were significantly enriched in the immune process,
cell proliferation, immune organ development, and hemopoiesis.
Changes in molecular function were mainly focused on TF
activity, cytokine activation, and molecular binding. Afterward,
the functional enrichment analysis of the key genes of the IRG
set was performed by GSEA. Figure 4E shows that the changes in
the BP of these genes are significantly enriched in the immune
process, cell proliferation, immune organ development, and
hematopoiesis. The results of Kaplan–Meier analysis of these hub
genes are in the Supplementary Figure 1.

Construction of the Immune-Related
Signature for CRC
Multivariate Cox analysis was performed on 30 prognostic IRGs,
and 18 genes were finally selected to establish a prognostic
model (Table 3). The risk score is based on the gene expression
level multiplied by its corresponding regression coefficient.
The regression coefficient was calculated by multivariate Cox
regression. The risk score is related to not only the expression
level of these genes but also the correlation coefficients. The risk
score of each patient is the sum of all the 18 risk prognostic genes
in Table 3 multiplied by the corresponding risk factors. The 398
CRC samples were then divided into high-risk groups (n = 199)
and low-risk groups (n = 199) based on the median risk score
(Figure 5A). Survival overview and gene expression heatmaps
are presented in Figures 5B,C. Survival analysis showed that the
OS of patients in the high-risk group was significantly lower than
that in the low-risk group (P < 0.0001; Figure 5D). The 5-year
survival rate of the high-risk group was 51.1%, and the 5-year
survival rate of the low-risk group was 81.4%. The areas under the
ROC curves at 1, 3, and 5 years of OS are 0.811, 0.711, and 0.734,
respectively, which indicated that the prognostic model showed
good sensitivity and specificity (Figure 5E). In addition, as shown
in Supplementary Figure 2, the model after excluding genes with
P ≥ 0.05 has advantages in the short-term prognosis (1 year), but
the model is not effective in predicting the long-term prognosis.

Immune-Related Prognostic Signature
Was an Independent Predictive Marker
of OS for CRC Patients
Three hundred ninety-eight CRC patients with clinical
information of age, gender, pathological stage, TNM stage,
and risk score were selected for further analysis. Univariate
and multivariate Cox regression analyses were performed to
assess the independent predictive power of immune-related
prognostic markers. Univariate analysis showed that pathological

Frontiers in Genetics | www.frontiersin.org 7 March 2021 | Volume 12 | Article 619611

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-619611 February 27, 2021 Time: 15:51 # 8

Qian et al. Prognostic Model of Colorectal Cancer

FIGURE 4 | Interaction network and biological process analysis of the hub genes. (A) Top 10 hub genes screened from the regulatory network. (B) Top 10 hub
genes and their first neighbors that are screened from the regulatory network. Hub gene is shown in red to orange on the left. The first neighboring node is shown in
blue. The right picture shows the characteristics of the genes in the left picture. The green ones are low-risk genes. The red ones are high-risk genes. The triangles
are transcription factors. (C) The biological process analysis of genes in the network was constructed using BiNGO. The color depth of nodes refers to the corrected
P value of ontologies. The size of nodes refers to the number of genes that are involved in the ontologies. P < 0.01 was considered statistically significant. (D) The
biological process analysis of hub genes was constructed using BiNGO. P < 0.05 was considered statistically significant. (E) Ten-hub-gene enrichment plots from
Gene Set Enrichment Analysis (GSEA).
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TABLE 3 | Eighteen genes that constitute the immune-related prognostic model and the corresponding risk factors
Riskscore = CD1B*(-4.726)+ SLC10A2*(0.844)+ CXCL3*(-0.019)+ NOX4*(-1.253)+ FABP4*(0.057)+ ADIPOQ*(-0.249)+ F2RL1*(-0.027)+ PLCG2*(0.499)+ IGKV1 -
33*(0.051) + IGLV6 - 57*(0.003) + INHBA*(0.139) + NGF*(0.944) + RETNLB*(0.004) + UCN*(0.468) + VIP*(0.067) + NGFR*(-0.436) + OXTR*(-0.304) + TRDC*(0.267).

Gene symbol Coef HR HR.95L HR.95H P value Gene symbol Coef HR (95% CI) P-value

CD1B −4.72557 0.008866 0.000607 0.12956 0.000554 CD1B −4.726 0.009 (0.001–0.130) 0.001

SLC10A2 0.844378 2.326529 1.393175 3.885182 0.00125 SLC10A2 0.844 2.327 (1.393–3.885) 0.001

CXCL3 −0.01882 0.981352 0.962769 1.000294 0.053627 CXCL3 −0.019 0.981 (0.963–1.000) 0.054

NOX4 −1.25348 0.28551 0.077017 1.058413 0.060787 NOX4 −1.253 0.286 (0.077–1.058) 0.061

FABP4 0.056939 1.058591 1.017112 1.101762 0.00524 FABP4 0.057 1.059 (1.017–1.102) 0.005

ADIPOQ −0.24929 0.779353 0.615716 0.986479 0.038156 ADIPOQ −0.249 0.779 (0.616–0.986) 0.038

F2RL1 −0.02671 0.97364 0.947442 1.000561 0.054904 F2RL1 −0.027 0.974 (0.947–1.001) 0.055

PLCG2 0.499377 1.647695 1.049015 2.588045 0.030183 PLCG2 0.499 1.648 (1.049–2.588) 0.030

IGKV1-33 0.051157 1.052488 1.013034 1.093479 0.008684 IGKV1-33 0.051 1.052 (1.013–1.093) 0.009

IGLV6-57 0.002935 1.002939 1.001397 1.004484 0.000186 IGLV6-57 0.003 1.003 (1.001–1.004) <0.001

INHBA 0.139399 1.149582 1.032699 1.279695 0.010831 INHBA 0.139 1.150 (1.033–1.280) 0.011

NGF 0.943896 2.569974 0.919885 7.179992 0.071757 NGF 0.944 2.570 (0.920–7.180) 0.072

RETNLB 0.004124 1.004132 1.001374 1.006897 0.003296 RETNLB 0.004 1.004 (1.001–1.007) 0.003

UCN 0.468088 1.596938 1.251116 2.038348 0.00017 UCN 0.468 1.597 (1.251–2.038) <0.001

VIP 0.066515 1.068777 1.004482 1.137187 0.035621 VIP 0.067 1.069 (1.004–1.137) 0.036

NGFR −0.43637 0.646376 0.412695 1.012376 0.05662 NGFR −0.436 0.646 (0.413–1.012) 0.057

OXTR −0.30443 0.737541 0.524661 1.036796 0.079773 OXTR −0.304 0.738 (0.525–1.037) 0.080

TRDC 0.267054 1.306111 1.14942 1.484163 4.21E-05 TRDC 0.267 1.306 (1.149–1.484) <0.001

stage (P < 0.001), TNM stage (P < 0.001), and immune-
related prognostic risk score (P < 0.001) were significantly
correlated with OS (Table 4 and Figure 6A). After multivariate
analysis, the immune-related prognostic risk score was the only
independent prognostic factor related to OS (P < 0.005; Table 5
and Figure 6B).

Association Between 18 IRGs, Clinical
Parameters, and Prognostic Risk Scores
We analyzed the association between the expression of 18 key
prognostic related IRGs in the patient’s tumor tissue and the
patient’s clinical characteristics. The association between NGF,
TRDC, CXCL3, CD1B, VIP, F2RL1, FABP4, OXTR, UCN, NOX4,
ADIPOQ, and clinical characteristics was found (Table 6 and
Figure 7). NGF is negatively correlated with age, and NGF
expression is generally higher in advanced patients. Patients with
higher VIP expression generally have higher T and N stages. On
the other hand, TRDC, CXCL3, and FRL1 are highly expressed in
patients in the early stage and patients with N0 stage.

TIMER Database Analysis
The relationships between the risk score model and immune
cell infiltration were studied. The characterization of immune
infiltration is very important for exploring the state of
the immune microenvironment and studying the interaction
between tumors and immunity. We applied the TIMER tool
to identify potential relationships between IPS and infiltrating
immune cells, including B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells. As shown in
Figure 8, the proportions of tumor-infiltrating CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and dendritic cells were
closely related to our prognostic risk score (p < 0.05).

DISCUSSION

In recent years, the genetic characteristics of mRNA in cancer
patients have attracted people’s attention, and studies have
revealed its great potential in the prognosis of CRC. In this
study, based on the analysis of the TCGA data set, 484
differentially expressed IRGs were screened from 389 HCC
and 39 normal tissues. By univariate regression analysis of
differentially expressed IRGs, 30 genes were detected to be
significantly correlated with OS. To further study the regulatory
mechanisms of prognostic IRGs, a tumor-related TF-mediated
network was established to reveal key TFs that can regulate
these IRGs. Studies have shown that CBX7 played an important
role in gastric and pancreatic cancer (Ni et al., 2017, 2018). In
recent years, studies have found that CBX7 was a component
of polycomb repressive complex 1, maintaining the stem cell–
like characteristics of gastric cancer cells by activating the AKT
pathway and down-regulating p16 (Ni et al., 2018). MYH11 (also
known as SMMHC) encodes a smooth muscle myosin heavy
chain, which plays a key role in smooth muscle contraction.
The inversion of the MYH11 locus is one of the most common
chromosomal aberrations in acute myeloid leukemia (Alhopuro
et al., 2008). The MYH11 gene has a single-nucleotide repeat
sequence (C8) in the coding sequence, which may be a mutation
target for cancer that exhibits microsatellite instability (MSI).
The study found that compared with the low microsatellite
unstable group, the incidence of MYH11 frameshift mutation
was higher in patients with high microsatellite-unstable (MSI)
gastric cancer and CRC (Jo et al., 2018). Among these major
hub genes, the study of CXCL12 is more comprehensive. It
has been reported that the CXCL12/CXCR4 axis is related
to tumor progression, angiogenesis, metastasis, and survival
(Teicher and Fricker, 2010). Recent studies have found that the
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FIGURE 5 | Construction of an immune-related prognostic signature for CRC. (A) The risk score distribution of CRC patients in The Cancer Genome Atlas (TCGA)
database. (B) Survival status and duration of patients. (C) Heatmap of the expression of 18 immune-related genes in CRC patients. (D) Survival curves for the
low-risk and high-risk groups. (E) The receiver operating characteristic curve (ROC) analysis predicted overall survival using the risk score. The forecast time is 1, 3,
and 5 years.

TABLE 4 | Univariate analyses of overall survival in CRC patients of TCGA.

Variable HR HR.95L HR.95H P value Variable HR P-value

Age 1.736 0.896 3.365 0.102 Age 1.736 (0.896–3.365) 0.102

Gender 1.178 0.65 2.137 0.589 Gender 1.178 (0.650–2.137) 0.589

Stage 2.908 2.039 4.148 <0.001 Stage 2.908 (2.039–4.148) <0.001

T 4.279 2.334 7.844 <0.001 T 4.279 (2.334–7.844) <0.001

M 6.608 3.613 12.087 <0.001 M 6.608 (3.613–12.087) <0.001

N 2.344 1.662 3.305 <0.001 N 2.344 (1.662–3.305) <0.001

riskScore 5.168 2.305 11.586 <0.001 riskScore 5.168 (2.305–11.586) <0.001
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FIGURE 6 | Independence of immune-related prognostic signature from clinical factors. (A) Forest plot for univariate analysis of overall survival of TCGA CRC
patients. (B) Forest plot for multivariate analysis of overall survival of TCGA CRC patients. Red dots represent high-risk factors.

TABLE 5 | Multivariate analyses of overall survival in CRC patients of TCGA.

Variables HR HR.95L HR.95H P value Variables HR (95% CI) P-value

Age 2.367721 1.157118 4.844884 0.018303 Age 2.368 (1.157–4.845) 0.018

Gender 1.094256 0.595933 2.009281 0.771426 Gender 1.094 (0.596–2.009) 0.771

Stage 1.761849 0.613679 5.058204 0.292554 Stage 1.762 (0.614–5.058) 0.293

T 1.616913 0.790257 3.308302 0.188337 T 1.617 (0.790–3.308) 0.188

M 1.84477 0.452177 7.526206 0.393327 M 1.845 (0.452–7.526) 0.393

N 1.114703 0.611102 2.033314 0.723281 N 1.115 (0.611–2.033) 0.723

riskScore 3.472938 1.497053 8.056694 0.003734 riskScore 3.473 (1.497–8.057) 0.004

TABLE 6 | Eighteen genes in the risk score model and clinical characteristics correlation analysis.

Gene symbol Age Gender Stage T M N

CD1B −0.983 (0.326) 1.524 (A200.129) 2.047 (0.042) 1.837 (0.069) 17.361 (5.956e− 04) 1.883 (0.061)

SLC10A2 0.57 (0.569) 1.211 (0.228) 0.673 (0.501) −0.577 (0.565) 2.255 (0.521) 0.63 (0.529)

CXCL3 −0.593 (0.554) −0.845 (0.399) 3.828 (1.582e− 04) 0.582 (0.562) 8.458 (0.037) 3.696 (2.634e− 04)

NOX4 1.983 (0.048) −0.889 (0.375) −0.739 (0.460) −0.221 (0.826) 1.356 (0.716) −1.146 (0.253)

FABP4 1.665 (0.098) 0.985 (0.326) −0.97 (0.333) −2.659 (0.008) 3.322 (0.345) −1.062 (0.290)

ADIPOQ 1.49 (0.138) 0.232 (0.817) −0.467 (0.641) −2.356 (0.019) 1.274 (0.735) −0.578 (0.564)

F2RL1 −1.259 (0.209) 0.132 (0.895) 2.675 (0.008) 0.839 (0.404) 1.936 (0.586) 2.752 (0.006)

PLCG2 −0.344 (0.731) 0.971 (0.333) −1.347 (0.179) −0.604 (0.547) 2.094 (0.553) −1.693 (0.092)

IGKV1-33 −0.892 (0.373) −1.171 (0.243) 1.102 (0.272) −0.602 (0.548) 5.168 (0.160) 1.094 (0.275)

IGLV6-57 −0.47 (0.639) −0.851 (0.396) −0.451 (0.653) 0.023 (0.982) 3.862 (0.277) −0.532 (0.596)

INHBA 1.674 (0.095) −0.644 (0.520) −0.861 (0.390) −0.854 (0.396) 1.453 (0.693) −1.192 (0.234)

NGF 1.982 (0.049) 0.97 (0.333) −2.586 (0.010) −2.025 (0.045) 3.632 (0.304) −2.864 (0.005)

RETNLB 0.556 (0.579) 0.35 (0.727) 1.355 (0.176) 1.381 (0.172) 1.72 (0.633) 1.273 (0.204)

UCN −2.129 (0.034) 1.217 (0.225) −1.575 (0.117) −0.26 (0.795) 0.735 (0.865) −1.428 (0.155)

VIP 0.486 (0.627) −0.139 (0.889) −1.763 (0.080) −2.259 (0.025) 0.968 (0.809) −2.041 (0.043)

NGFR 1.548 (0.124) 1.651 (0.100) −1.511 (0.133) −1.652 (0.101) 4.464 (0.216) −1.626 (0.106)

OXTR 0.297 (0.767) −1.763 (0.080) −1.243 (0.215) −1.985 (0.048) 1.805 (0.614) −1.272 (0.205)

TRDC 0.144 (0.885) −0.141 (0.888) 2.772 (0.006) 1.011 (0.316) 14.881 (0.002) 2.671 (0.008)

riskScore −1.146 (0.253) −0.901 (0.369) −1.268 (0.207) −1.394 (0.165) 17.773 (4.899e− 04) −1.274 (0.205)

The numbers in the table represent the t value of t test between each gene and clinical features; the numbers in parentheses represent P value.

activation of LMO2 is essential for the development of T-cell
acute lymphoblastic leukemia (T-ALL) leukemia (Morishima
et al., 2019). The SP1PR1 gene plays a role in regulating
tumors. Targeting the SphK1/S1P/S1PR1 axis with specific drugs
can reduce tumor progression caused by key proinflammatory
cytokines, macrophage infiltration, and obesity (Nagahashi et al.,
2018). FOXP3 is one of the key TFs controlling the development
and function of regulatory T cells. FOXP3 has been extensively
studied in human tumors, which is closely related to tumor
immunity, and its correlation with T cells in tumors has recently

been reported (Wing et al., 2019). The relationship between
several other genes and CRC is still unclear. Among them,
the role of MAF, A2M, EPAS1, and NR3C1 in CRC is worthy
of further investigation. A study of breast cancer showed that
the enhanced expression of MAF can mediate bone metastasis
of breast cancer, which can be used as a risk index for bone
metastasis in breast cancer patients (Pavlovic et al., 2015). The
proteins encoded by A2M are protease inhibitors and cytokine
transporters. It can inhibit a variety of proteases, as well as
inflammatory cytokines, thereby destroying the inflammatory
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FIGURE 7 | Clinical characteristics correlation analysis. Clinical characteristics correlation analysis of genes in the risk score model (P < 0.05).

FIGURE 8 | Relationships between the risk score model and infiltration abundances of six types of immune cells.

cascade. Xu’s team found that EPAS1 gene is dysregulated in
non–small cell lung cancer, which encodes hypoxia-inducible
factor 2α and plays an important role in the progression of
non–small cell lung cancer (Xu et al., 2018). It is known that
EPAS1 is regulated by DNA methylation transcription in CRC
(Rawluszko-Wieczorek et al., 2014), but its role in CRC remains
to be studied. NR3C1 encodes a glucocorticoid receptor, which
can act both as a TF that binds to the glucocorticoid response

element in the promoter of the glucocorticoid response gene to
activate its transcription and as a regulator of other TFs. Further
experimental evidence on the function of these genes in CRC may
be of great help to our understanding of the progress of CRC.

In recent years, Xie et al. (2017) established a 20-gene
prognosis model, which has a good predictive function for CRC
prognosis. Another study also constructed a novel four-gene
signature for CRC OS prediction based on gene expression data
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from TCGA, COAD, and READ data sets (Ahluwalia et al., 2019).
A recent study exploring the prognostic value of immune cells
in the CRC tumor microenvironment determined that tumor-
infiltrating immune cells is highly correlated with the progression
and prognosis of CRC (Ge et al., 2019). However, these studies
do not fully explore the relationship between immune genes and
the prognosis of CRC. Our study has the following advantages.
First, we used a specialized immunological database to analyze
as many IRGs as possible. To our knowledge, this is the first
study to explore the relationship between a large number of IRGs
and the prognosis of patients with CRC. Second, we obtained
some immune-related prognostic genes and established a novel
prognostic model related to immunity. This prognostic model
showed excellent performance in the prediction of OS based
on the TCGA database. According to the in-depth analysis,
the immune-related prognostic model was demonstrated to be
an independent prognostic indicator after adjusting for other
clinical factors. These results indicated that the immune-related
prognosis model can be used as an effective marker for the
prognosis of CRC patients.

The characterization of immune infiltration is of great
significance for studying the interaction between tumor and
immunity. Therefore, we explored the relationship between
immune-related prognostic models and immune cell infiltration
to reflect the state of the immune microenvironment. According
to the TIMER database, we found that high-risk patients had
higher levels of CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells of infiltration. These results
confirmed and extended the discovery that the heterogeneity
of immune infiltration is important for the progression
of CRC. A recent study reported that the colonic cancer
microenvironment uses dendritic cells’ plasticity to support
cancer progression by enhancing the release of the inflammatory
chemokine CXCL1 (Hsu et al., 2018), which is consistent with our
results. Neutrophils contribute to the activation, regulation, and
effect of immune cells (Mantovani et al., 2011). Existing research
reported that tumor-associated neutrophils in CRC produce
matrix metalloproteinase 9 vascular endothelial growth factor
and hepatocyte growth factor to promote tumor invasion and
angiogenesis. In addition, neutrophils also promote the spread of
tumor cells by capturing tumor cells in the circulation, thereby
promoting their migration to distant places (Mizuno et al., 2019).
Studies have reported that macrophages are associated with CRC
progression (Wei et al., 2019). Tumor-associated macrophages
(TAMs) can induce EMT processes to enhance CRC migration,
invasion, and circulating tumor cell (CTC)-mediated metastasis
(Wei et al., 2019). The immune model can indicate the infiltration
of immune cells to some extent. It may be a promising way to cure
CRC by broadening the relationship between immune cells and
tumor progression.

Current research provides novel insights into the CRC
immune microenvironment and immunotherapy. We conducted
functional studies on selected genes to confirm their clinical
value. However, the limitation of this study is that it is a
retrospective study. Therefore, further prospective research is
needed. On the one hand, the predictive capability of this model
in CRC requires further testing with the goal of better prognostic

stratification and treatment management. On the other hand, we
need to further study the biological functions of the 18 IRGs
through a series of experiments.

In short, through comprehensive analysis, many IRGs were
found to be significantly related to the prognosis of CRC. Besides,
we constructed a novel immune-related prognosis model as an
independent prognostic indicator of CRC. This prognostic model
can also indicate the infiltration of immune cells and prove
its key role in the TIME. The current research has deepened
our understanding of IRGs in CRC and provided new potential
prognostic and therapeutic biomarkers.
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