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Abstract

Intermittent hypobaric hypoxia (IHH) has been the focus of important research in cardioprotection, and it has been associated with several
mechanisms. Intermittent hypobaric hypoxia inhibits prolyl hydroxylases (PHD) activity, increasing the stabilization of hypoxia-inducible factor-
1 (HIF-1) and activating crucial adaptative genes. It has been hence suggested that IHH might be a simple intervention, which may offer a
thoughtful benefits to patients with acute myocardial infarction and no complications. Nevertheless, several doubts exist as to whether IHH is a
really safe technique, with little to no complications in post-myocardial infarction patients. Intermittent hypobaric hypoxia might produce instead
unfavourable changes such as impairment of vascular hemodynamics and hypertensive response, increased risk of hemoconcentration and
thrombosis, cardiac rhythm perturbations, coronary artery disease and heart failure, insulin resistance, steatohepatitis and even high-altitude
pulmonary oedema in susceptible or nonacclimatized patients. Although intermittent and chronic exposures seem effective in cardioprotection,
IHH safety issues have been mostly overlooked, so that assorted concerns should be raised about the opportunity to use IHH in the post-myo-
cardial infarction period. Several IHH protocols used in some studies were also aggressive, which would hamper their widespread introduction
within the clinical practice. As such, further research is needed before IHH can be widely advocated in myocardial infarction prevention and
recovery.
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Introduction

High-altitude exposure has been considered a major cardiorespira-
tory, endocrine, metabolic, nutritional, thermal and psychological
strain for the human body [1]. The atmospheric low oxygen partial
pressure affects oxygen (O2) cascade inducing metabolic adapta-
tions, such as changes in cell oxidative metabolism [1]. Acute,
chronic or intermittent hypoxia (IH) exposure studies have been
carried out with animals and humans in hypobaric chambers simu-
lating high-altitude hypoxia conditions [2]. As a rule, IH refers to
discontinuous use of hypoxia to reproduce features of altitude
acclimatization using different methods, protocols and devices [3].

Specifically, IHH consists in temporary sessions expositions to
acute hypobaric hypoxia conditions of a precise barometric pres-
sure and thus to an equivalent altitude [2]. The IHH exposition is
typically performed in hypobaric chambers. The ascent and descent
of the chamber from ambient pressure to altitude occurred at a
certain speed, and the oxyhemoglobin saturation of the patients is
monitored at all times [4,5].

A hypobaric chamber, also known as altitude chamber, is hence
used during aerospace or high terrestrial altitude research or training
to simulate the effects of high altitude on the human body, especially
hypoxia (low oxygen) and hypobaria (low ambient air pressure). Inter-
mittent hypobaric hypoxia has been the focus of important research
for recovery of post-myocardial infarction function over the past dec-
ades. Wang et al. observed that IHH improves post-ischaemic recov-
ery of myocardial contractile function via redox signalling in rats [6].
In another recent investigation, Xu et al. demonstrated that IHH atten-
uates progressive myocardial remodelling and improves overall myo-
cardial contractility [7]. In both studies, experimental animals were
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intermittently exposed to an equivalent altitude of 5000 m in a
hypobaric chamber for 4 weeks, concluding that IHH might reveal as
a promising therapeutic approach for ischaemic heart diseases.

Cardiac protection by IHH has been associated with several mech-
anisms, including attenuated infarct size, myocardial fibrosis and
apoptotic cardiomyocytes [7], elevated reactive oxygen species
(ROS) production during early reperfusion [6], preserved Ca2+

homeostasis [8], calcium/calmodulin-dependent protein kinase II
activity regulation [9], reduced myocardial apoptosis [10], induced
opening of mitoKATP channels [11,12], increased vascularization
[13], as well as antiarrhythmic and antioxidant effects [14,15]. It has
been thus suggested that IHH is a simple intervention, which may
offer a thoughtful benefits to patients with acute myocardial infarction
and with little side effects or adverse reactions [6,8,12,14,16].

It has been recently observed that hypoxia-inducible factor-1
alpha (HIF-1a), inducible nitric oxide synthase (iNOS) and PHD are
also involved in IHH induced cardioprotection, which can hence be
considered potential therapeutic targets [17]. The transcription factor
HIF-1 is a key regulator responsible for the induction of genes that
facilitate adaptation and survival of cells and the whole organism from
normoxia (~21% O2) to hypoxia (~1% O2) [18–21]. Hypoxia-inducible
factor-1 is composed of HIF-1a and HIF-1b. Of these two subunits,
HIF-1b is constitutively expressed, whereas HIF-1a is tightly regu-
lated by oxygen tension in terms of its protein stability and activity
[22–25]. Under continuous oxygen supply, two distinct prolyl resi-
dues within the oxygen-dependent degradation domain of HIFa
subunits are hydroxylated by prolyl-4-hydroxylase domain-containing
enzymes (PHDs). Hydroxy-HIFa is recognized by the von Hippel–
Lindau tumour suppressor protein and subsequently targeted for
proteasomal degradation [22,26]. It has also been described that
the presence of high ROS concentrations efficiently stabilizes HIF-1a
[27–30].

Overall, IHH inhibits PHD activity, increasing the stabilization of
HIF-1 and activating crucial adaptative genes for erythropoiesis, iron
homeostasis and angiogenesis such as erythropoietin (Epo), transfer-
rin, transferrin receptor and vascular endothelial growth factor [31–
33], as well as genes that regulate vasomotor control, glucose and
energy metabolism, pH regulation, cell proliferation and viability [34].
Hypoxia-inducible factor-1 is also involved in the induction of cardio-
protective molecules, such as iNOS and hemeoxygenase 1 [34].

Nevertheless, several doubts exist as to whether IHH is a really
safe technique, with little to no adverse effects in post-myocardial
infarction patients. Intermittent hypobaric hypoxia might produce
unfavourable biochemical changes, including decreased anti-oxidative
capacity and increased lipid peroxidation, which would lead to sup-
pression of vascular endothelial function and impairment of vascular
hemodynamics. Moreover, IH causes oxidative stress that may limit
bioavailability of the endothelium-derived vasodilator nitric oxide, and
contribute to generate a hypertensive response [35]. Cellular hypoxia
is characterized by an increased levels of reduced equivalents as a
result of insufficient availability of O2 to be reduced in the mitochon-
drial electron transport chain [36]. In both the animal models and in
humans exposed to different altitudes (e.g. 3000–8500 m), an oxida-
tive stress has been clearly shown, as reflected by increased lipid,
protein and DNA oxidation [37–40]. It has also been demonstrated

that the activity of enzymes such as cyclooxygenase, NAD(P)H oxi-
dase and xanthine oxidase are crucial for the ROS generation under
hypoxic conditions [36]. In this perspective, ROS participate in
cardioprotection induced by ischaemic conditioning [6,41,42], and
their generation might hence be beneficial after an acute myocardial
infarction [8,43].

It is also noteworthy that erythropoiesis stimulation with an
increase in Epo concentration [44–47], thereby enhancing red blood
cells mass, hematocrit, blood viscosity and platelet count, have sig-
nificant effect on blood rheology and blood pressure, exposing
patients with high risk of cardiovascular events to hemoconcentration
and thrombosis, especially during episodes of dehydration [48,49].
Elevated systemic hematocrit increases the risk of cardiovascular
disorders, such as stroke and myocardial infarction. One possible
pathophysiological mechanism involves an impairment of the ‘1blood
–endothelium interface [50]. Moreover, erythrocytosis predisposes to
a prothrombotic state and hematocrit is a prognostic marker in
patients with ST-segment elevation MI. Patients with elevated hemat-
ocrit are at increased risk of short-term mortality [51], as arterial
thrombi usually forms under high blood flow conditions [52].
Although it has been suggested that the IH-induced, adverse myocar-
dial consequences might be reversed by Epo administration [53], this
appears rather unlikely, considering the previously mentioned mecha-
nisms. In this perspective, it should considered that systemic effects
of hypoxia exposure are also dependent upon the so-call ‘hypoxic
dose’, especially in terms of time of exposure, level of simulated alti-
tude, type of hypoxic strategy. For instance, it has been shown that
natural versus artificial hypoxia can produce very different haemato-
logical results [54–56]. Conversely, there is trustworthy evidence in
the current scientific literature to show that the most effective method
to stimulate accelerated erythropoiesis with the ‘Living High-Training
Low’ strategy requires 2500 m altitude, 22 hr a day for at least
28 days [57]. The empirical evidence regarding the efficacy of IH is,
however, still partially unclear. Several studies, have failed to demon-
strate significant alterations in the erythropoietic response after differ-
ent protocols [58–60]. Neya et al. also showed that normobaric IH
(3000 m) was insufficient to enhance erythropoiesis [61], whereas
exposure to more elevated simulated altitude (i.e. 4000 m) through
intermittent normobaric hypoxia [46,47], or up to 5000–6300 m
through IHH [62,63], induced a significant increase in several haema-
tological parameters.

Obstructive sleep apnoea is associated with increased risk of ath-
erosclerosis and, therefore, myocardial infarction and stroke [64],
essential and resistant hypertension, cardiac rhythm perturbations
(e.g. atrial fibrillation, bradyarrhythmias, supraventricular and ventric-
ular arrhythmias) and heart failure [65]. As this condition is charac-
terized by episodic cycles of hypoxia and normoxia during the sleep,
Park and Suzuki observed that IH increases the susceptibility of the
heart to oxidative stress, thereby worsening the risk of ischae-
miareperfusion-induced myocardial injury [66]. In obese or diabetic
patients, IH exacerbates the insulin resistance and induces steato-
hepatitis, suggesting that it might account for the metabolic
dysfunction in obesity [67].

Considering the original findings of Wang et al. [6], and Xu
et al. [7], who reported that prolonged exposure of mice to an
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equivalent altitude of 5000 can initiate the cardioprotective
response, and even of other authors who tested the cardioprotec-
tion effects of IHH to an equivalent altitude of 7000 m [43,68],
the acute exposure to similar or equivalent altitude might
induce pulmonary oedema in susceptible or nonacclimatized
patients [69–71].

Although intermittent and chronic exposures have been demon-
strated to be effective in increasing coronary vasculature, decreasing
infarction size and providing more efficient metabolism and better
cardiac functional recovery post-ischaemia [72], IHH safety issues
have been mostly overlooked, so that assorted concerns should be

raised about the opportunity to use IHH in the post-myocardial infarc-
tion period at this point in time. Several IHH protocols used in some
studies were also aggressive, which would hamper their introduction
within the clinical practice. As such, further research is needed before
IHH can be widely advocated in myocardial infarction prevention and
recovery.
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