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Abstract

Background: Sodium antimony gluconate (SAG) unresponsiveness of Leishmania donovani (Ld) had effectively
compromised the chemotherapeutic potential of SAG. 60s ribosomal L23a (60sRL23a), identified as one of the over-
expressed protein in different resistant strains of L.donovani as observed with differential proteomics studies indicates
towards its possible involvement in SAG resistance in L.donovani. In the present study 60sRL23a has been characterized for
its probable association with SAG resistance mechanism.

Methodology and principal findings: The expression profile of 60s ribosomal L23a (60sRL23a) was checked in different SAG
resistant as well as sensitive strains of L.donovani clinical isolates by real-time PCR and western blotting and was found to be
up-regulated in resistant strains. Ld60sRL23a was cloned, expressed in E.coli system and purified for raising antibody in swiss
mice and was observed to have cytosolic localization in L.donovani. 60sRL23a was further over-expressed in sensitive strain
of L.donovani to check its sensitivity profile against SAG (Sb V and III) and was found to be altered towards the resistant
mode.

Conclusion/Significance: This study reports for the first time that the over expression of 60sRL23a in SAG sensitive parasite
decreases the sensitivity of the parasite towards SAG, miltefosine and paramomycin. Growth curve of the tranfectants
further indicated the proliferative potential of 60sRL23a assisting the parasite survival and reaffirming the extra ribosomal
role of 60sRL23a. The study thus indicates towards the role of the protein in lowering and redistributing the drug pressure
by increased proliferation of parasites and warrants further longitudinal study to understand the underlying mechanism.
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Introduction

Leishmaniasis is a neglected tropical disease, affecting almost,

more than 10 million people around the world and ranks itself

second to malaria in terms of mortality and morbidity. It is caused

by an obligatory intracellular protozoan parasite of the genus

Leishmania and has varied clinical spectrum from self healing skin

ulcers to fatal visceral infection if left untreated. As vaccine against

visceral form is still a distant proposition, treatment against

Visceral Leishmaniasis (VL) solely relies on chemotherapy.

Unfortunately, during the last decade Sodium Antimony Gluco-

nate (SAG) which had a traditional background of sixty years of

chemotherapy has been worn out due to the resistance developed

against this drug. This has become a major obstacle to the

treatment, especially in India, where more than 60% of VL

patients are unresponsive to SAG treatment. Although, new drugs

have become available in recent years for treatment of VL, they

are also far from satisfactory [1]. This is due to increased relapse

cases, lack of cost effectiveness and emerging resistance against

them, as reported earlier [2]. Therefore, understanding the

resistance mechanism could only strengthen the search for safe

and wise chemotherapeutic strategies against VL.

SAG having Sb (V) is a pro-drug and requires biological

reduction to active form i.e. Sb (III) in macrophage and/or

amastigotes. Sb (III) has been reported to interact with several

targets. Resistance in general has been understood as interplay

among uptake, efflux and/or sequestration of active molecule and

modulating gene expression levels [3]. Most of the drug resistance

studies were done on the laboratory mutants as compared to the

clinical isolates. Although some studies emphasized on field isolates

but these were based on biochemical, biophysical and immuno-

logical analysis of resistant isolates but several questions remains

unrequited regarding the parasite’s modulation for SAG at

molecular level [4,5]. Actual scenario could be more lucid by
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exploring clinical isolates and characterizing the up regulated as

well as down regulated proteins in the resistant strains. Several

differential studies revealed many proteins under several metabolic

pathways, proteins involved in maintaining redox balance,

transporters and signaling pathways along with a large number

of translational/ribosomal proteins indicating its possible role in

resistance mechanism in the resistant clinical isolates [6,7,8]. Some

of them are well characterized for their possible role in SAG

resistance mechanism e.g. Trypanothione reductase, c glutamyl

cysteine synthtase, ornithine decarboxylase and ABC transporters

but ribosomal proteins are yet to be explored for its involvement in

drug resistance against VL [9]. 60s ribosomal L23a (60sRL23a) is

one such over-expressed protein in SAG resistant strain of

Leishmania donovani (Ld) identified through differential proteomics

indicating its possible involvement in SAG resistance in L.donovani

[10].

60sRL23a encoded protein is a component of 60s subunit of

large subunit of ribosome. In eukaryotes, ribosome biogenesis is a

coordinated assembly involving four ribosomal rRNA molecules

and more than seventy ribosomal proteins. It was believed that

ribosome were previously consists of RNA only and ribosomal

protein appeared later in the evolution to facilitate the protein

synthesis. However, ribosomal proteins have also been reported to

regulate cell growth and apoptosis apart from their regular

translational apparatus activity [11]. There are some circumstan-

tial evidences available regarding ribosomal proteins acting as

modulators and effectors of changes [12]. Ribosomal proteins may

be meant for ribosome, but could be recruited for extra ribosomal

functions [13]. In the present study for the first time involvement

of over-expressed 60sRL23a in in vitro SAG resistance has been

explored in clinical isolates of L.donovani.

Materials and Methods

Parasites
Clinical isolates used in this study were isolated from patients at

the Kala –Azar Medical Research centre, Institute of Medical

Sciences, Banaras Hindu University, Varanasi, India, and at its

affiliated hospital at Muzaffarpur, Bihar, India. Clinical isolates

were obtained prior to drug treatment from VL patients who had

responded to chemotherapy by SAG and were designated as SAG-

S (SAG-sensitive), whereas VL patients who did not respond to

SAG were designated as SAG-R (SAG-resistant). Promastigotes of

corresponding strains were harvested by transformation of

amastigotes from the splenic aspirates of kala-azar patients.

SAG-S isolates used in this study include 2001 (S1) whereas the

three SAG-R isolates were 2039 (R1), 1216 (R2), 761 (R3). The

isolates used in this study were anonymized. The Dd8 (S2) strain

(MHOM/IN/80/DD8) was used as a reference strain in this

study. The isolates were maintained in RPMI-1640 medium

containing 10%FCS at 26uC (Sigma, USA) in 75 cm2 culture flask

(Nunc). The virulence have been retained in parasites through

regular passage through hamster, so as to maintain their

chemosensitivity profiles that was measured periodically by

amastigote macrophage J774A.1 infectivity assay as described

elsewhere [14].

SAG sensitivity of clinical isolates in vitro and in vivo
In vitro assay. Mouse macrophage cell line, J774A.1, was

cultured in Dulbecco’s modified Eagle’s medium (DMEM)(Sigma,

USA) in 16 well chamber slides (Nunc, USA) to a cell density of

105 cells/well and infected with late log phase promastigotes (S1,

S2, R1, R2, R3) at a multiplicity of infection of 10:1 (parasite/

macrophage) and incubated at 37uC in 5% CO2 for 8–12 h after

which chamber slides were washed with PBS and finally the wells

were supplemented with fresh medium. Different concentrations

of SAG [Sb (V) (Albert David)] were added to the wells in

triplicate and incubated for 48–96 h. Chamber slides were fixed in

absolute methanol, stained with Geimsa and examined under oil

immersion objective of light microscope. At least 100 macrophages

were counted per well for calculating % infected macrophages.

Percentage inhibition (PI) of parasite multiplication was calculated

in comparison to untreated/control using the formula: PI = no. of

parasite count from infected control – no. of parasites from the

treated group/no of parasite count from infected control per 100

macrophages [15]. Sb (III) (Sigma) sensitivity of parasite isolates

(Promastigotes) was analyzed as described elsewhere [16].

In vivo assay. Golden hamsters were infected intracadially

with 16107 late log phase promastigote of clinical isolates (S1, S2,

R1, R2, R3), per 0.1 ml of 16PBS. Parasitic burden were assessed

on day 20–25 post infection by performing splenic biopsies as

described previously [17]. Once the infection sets in with

promastigote form, further passages in hamsters were carried out

with splenic amastigotes as described previously [18]. Animals

carrying 20–30 days old infection were employed for SAG

sensitivity assay. Infected hamsters (5 animals for each dose of

different clinical isolates) were treated intraperitoneally (i.p.) with

SAG at doses of 80, 40 and 20 mg/kg body weight. Five infected

hamsters were kept as untreated control. Splenic biopsies were

again performed on day 7 post treatment after administration of

last dose of SAG. Parasitic burden of both treated and untreated

were infected animals was assessed with smear touch blots of

spleen of hamsters and percentage parasite inhibition in treated

animals was calculated by as per formula described elsewhere [15].

Cloning expression and purification of recombinant
Ld60sRL23a

L.donovani genomic DNA was isolated from 108 cultured

promastigotes [19]. Genomic DNA was spooled and subjected to

RNase (100 mg/ml) treatment. 60sRL23a gene was amplified

using primers: forward 59GGTACCATGCCTCCTGCTCA-

GAAG39 and reverse59 AAGCTTGACAAGACCGATCTT39

Author Summary

Visceral Leishmaniasis (VL) is the most fatal form in Indian
subcontinent. Till last few years, the treatment of the
disease was done with Sodium antimony gluconate (SAG),
the first line drug against VL. This, however, was severely
eroded by the resistance developed by the parasite
against it. In order to understand the underlying mecha-
nism, earlier a proteomic analysis of SAG sensitive as well
as SAG resistant isolates of L.donovani (Ld) was done in
which 60s ribosomal L23a (Ld60sRL23a) protein, one of the
essential member of translational machinery, was found to
be over-expressed. To examine its role in SAG resistance
mechanism, which is hitherto not known, 60sRL23a was
characterized and over-expressed in the sensitive isolate of
L.donovani. The sensitivity of these transfectants, was
found to be decreased towards SAG. The growth curve of
transfectants clearly showed its proliferation potential in
both promastigote and amastigote forms. Cell cycle
analysis of the transfectants further assured its rapid
progression towards the G2/M phase. The above studies,
thus, indicate that 60s RL23a regulates proliferation of
L.donovani parasites and represents a unique strategy to
resist SAG. 60sRL23a could be further explored as a
potential drug target to strengthen the chemotherapy
strategy against L.donovani.

Role of 60s Ribosomal L23a in SAG Resistance
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and Taq DNA polymerase (Sigma Aldrich) lacking 39-59

exonuclease activity in a termocycler (Bio-Rad) under conditions

at one cycle of 95uC for 5 min, 30 cycles of 95uC for 45 s, 54uC for

30 s, 72uC for 45 s, and finally one cycle of 72uC for 10 min.

Amplified PCR product was electrophoresed in agarose gel and

eluted from the gel by Gen Elute columns (Qiagen). Eluted

product was cloned in pTZ57R/T (T/A) cloning vector

(Fermentas) and transformed into competent DH5a cells. The

transformants were screened for the presence of recombinant

plasmids with 60sRL23a insert by gene specific PCR under similar

conditions as previously mentioned. Isolated positive clones were

sequenced from Chromous Biotech Pvt Ltd. (Bangalore) and

submitted to the National Centre for Biotechnology Information

http://www.ncbi.nlm.nih.gov/nuccore/GU121098.1 (accession

no. GU121098.1). 60sRL23a was further sub cloned at the KpnI

and HindIII site of bacterial pTriEx4 (Novagen). The expression of

60sRL23a was checked in bacterial cell by transforming the

60sRL23a+pTriEx4 in Escherichia coli Rosetta Strain. The

transformed cells were inoculated into 5 ml test tube culture

medium (Luria Bertani) and allowed to grow at 37uC in a shaker at

220 rpm. Cultures in logarithmic phase (at OD600 of ,0.5–0.6)

were induced for 3 hrs with 1 mM isopropyl-ß-D-thiogalactopyr-

anoside (IPTG) at 37uC. After induction cells were lysed in SDS-

Sample buffer using 56 stock (0.313 M Tris-Hcl(pH 6.8), 50%

glycerol, 10%SDS) [20]. Uninduced control culture was analyzed

in parallel. These separated proteins from the polyacrylamide gel

were transformed onto a nitrocellulose membrane in a semidry

blot apparatus (Amersham) as described elsewhere [21]. Mem-

brane was incubated for 1 h in blocking buffer followed by a 2 h

incubation at room temperature with mouse anti-His antibody

(Novagen) as primary antibody (1:2500 dilution) and then

incubated with goat anti-mouse HRP conjugate antibody (1/

10,000: Bangalore Genie) for 1 h at room temperature. The blot

was developed using an ECL kit (GE Biosciences). For purification

of 60sRL23a 200 ml of LB medium containing 35 mg/mL of

chloramphenicol and 35 mg/mL ampicillin were inoculated with

E.coli Rosetta strain transformed with pTriEx4-Ld60sRL23a and

grown to an O.D.600 of, 0.6 and then induced by addition of

1 mM (IPTG, Sigma) then further incubated for an additional 4–

5 h at 37uC. The rLd60sRL23a was purified by affinity

chromatography using Ni2+ chelating resin to bind the His6-

Tag fusion peptide derived from the pTriEx4 vector. The cell

pellet was resuspended in 5 mL of lysis buffer (10 mM Tris-HCl

(pH 8.0), 200 mM NaCl,) containing 1:200 dilution of protease

cocktail inhibitor (Sigma) and incubated for 30 mins on ice and

the suspension was sonicated for 10620 s (with 30 s interval

between each pulse) on ice. The sonicated cells were centrifuged at

15,000 g for 30 min, and the supernatant was incubated at 4uC
for 1 h with the 2 ml of Ni-NTA Superflow resin (Qiagen, Hilden,

Germany) previously equilibrated with lysis buffer. After washing

with buffer (10 mM Tris-HCl, 200 mM Nacl) containing different

concentrations of imidazole i.e. 10, 20, 30 and 50 mM, the

purified rLd60sRL23a was eluted with elution buffer (10 mM

Tris-HCl, 200 mM NaCl, and 200 mM imidazole, pH 7.5). The

eluted fractions were analysed by 12% SDS-PAGE and the gels

were stained with Coomassie brilliant blue R-250 (Sigma-Aldrich,

St.Louis, USA). The protein content of the fractions was estimated

by the Bradford method using bovine serum albumin (BSA) as

standard.

Production of polyclonal antibodies against rLd60sRL23a
and western blot analysis

The purified rLd60sRL23a was used for raising antibodies (Ab)

in swiss mice. Swiss mice were first immunized using 25 mg of

rLd60sRL23a in Freund’s complete adjuvant. Twelve days after

the first dose the mice were given 2 booster doses of 15 mg of the

recombinant protein each in incomplete Freund’s adjuvant at 15

days interval and blood was collected after the last immunization

by sacrificing the mice for serum collection. For immunoblotting

experiment, purified rLd60sRL23a protein and whole cell lysate

(WCL) were resolved on 12% SDS-PAGE and transformed onto

nitrocellulose membrane using a semi-dry blot apparatus (Amer-

sham) [21]. After overnight blocking in 5% BSA, the membrane

was incubated with antiserum to the rLd60sRL23a protein at a

dilution of 1:3000 for 120 min at room temperature (RT). The

membrane was washed three times with PBS containing 0.5%

Tween 20 (PBS-T) and then incubated with Rat anti-Mouse IgG

HRP conjugate (Invitrogen, Carlsbad, USA) at a dilution of

1:10,000 for 1 h at room temperature. Blot was developed by

using diaminobenzidine+imidazole+H2O2 (Sigma).

Immunolocalization studies. The expression of 60sRL23a

at the appropriate cellular localizations was confirmed by

immunofluorescence using polyclonal Ab raised in swiss mice

against r60sRL23a. Ld (S1) parasites were plated on four 18 mm

cover slips (BLUE STAR) and fixed using 4% paraformaldehyde.

Two of them were permeabilized by 0.5% Triton X-100 for 7 min

followed washing with 16PBS. One permeabilized and one non-

permeabilized coverslips (positive controls) were incubated with

the same primary antibody followed by washing with 16PBS and

then incubated with secondary anti-mouse FITC conjugate

(Banglore Genei) for 1 h at room temperature. After washing in

PBS, cover slips were mounted upside down on glass slides with

Fluorescent Mounting Media (CALBIOCHEM) and visualized

directly under fluorescence microscope (Eclipse 80i Nikon) using

1006 oil objective (1.4 NA). Cells transfected with

60srL23a+pXG-’GFP+, were visualized directly under the same

fluorescent microscope [15].

Homology modeling. Amino acid sequence of L. donovani

60sRL23a (Uniprot id: D1M863) was used for homology modeling.

The Hidden Markov model based profile-profile alignment

algorithm available at HHpred server on the bioinformatics toolkit

platform of the Max Planck Institute for Developmental Biology

(http://toolkit.tuebingen.mpg.de/hhpred) was used to find best

template in PDB database for homology modeling with default

settings [22]. HHpred uses HMM based profile-profile alignment

method for identification and alignment of homologous protein.

After ensuring high degree of accuracy in alignment, ten homology

models were built using Modeller 9.10 with thorough optimization

[23]. Final model was selected on the basis of DOPE score and

structural validations were performed by using SAVS server.

(http://nihserver.mbi.ucla.edu/SAVES_3/).

Real time quantitative analysis of 60sRL23a expression in
clinical isolates

10 million log phase parasites each of S1, S2, R1, R2, R3 were

taken for RNA extraction. The freshly harvested promastigotes

were immediately resuspended in Tri reagent (Sigma, Aldrich).

RNA was isolated according to the manufacture protocol. Isolated

RNA were treated with DNase and quantified in Gene-quant

(Biorad). Total RNA (1 mg/reaction) was reverse transcribed using

first-strand cDNA synthesis kit (Fermentas) and then cDNA was

treated with RNase. For qRT-PCR primers were designed using

Beacon Designer software (Biorad). qRT-PCR was carried out

with 12.5 ml of SYBER green PCR master mix (TAKARA), 1 mg

of cDNA, and primers at a final concentration of 200 nM in a final

volume of 25 ml. PCR was conducted under the following

conditions: initial denaturation at 95uC for 10 min followed by

40 cycles, each consisting of denaturation at 95uC for 1 min,

Role of 60s Ribosomal L23a in SAG Resistance
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annealing at 52uC for 1 min and extension at 70uC for 1 min

followed by 80uC for 10 sec. 87 cycles of melt curve was set at

52uC for 10 sec. All quantification was normalized to the Ld-actin

gene. A no-template control cDNA was included to eliminate

contaminations or nonspecific reactions. The cycle threshold (CT)

value was defined as the number of PCR cycles required for the

fluorescence signal to exceed the detection threshold value

(background noise). Difference in gene expression was calculated

by comparative CT method [24]. This method compares test

samples to the comparator sample and uses results obtained with a

uniformly expressed control gene (Ld-actin) to correct for

differences in the amounts of RNA present in the two samples

being compared to generate a DCT value. Results are expressed as

the degrees of difference between DCT values of test and

comparator sample (S1) to get DDCT i.e. [25]. Then the

normalized expression ratio was calculated as 22DDCT [26].

Overexpression of Ld60sRL23a in sensitive strain of Ld
60sRL23a gene was amplified from 60sRL23a+pTriEx4 con-

struct using primers: forward 59 GGATCCATGCCTCCTGCT-

CAGAAGACC39 and reverse 59 GATATCGACAAGACG-

GATCTTGTTGGCAG39 and then cloned into Leishmania

expression vector pXG-’GFP+ at BamHI and EcoRV site [27].

Late log phase S1 promastigotes were washed with transfection

buffer (21 mM HEPES,pH 7.5, 137 mM NaCl, 5 mM KCl,

0.7 mM Na2HPO4, 6 mM glucose). Transfection of the parasites

with 20 mg of 60sRL23a+pXG-’GFP+ and pXG-’GFP+ alone,

were carried out in 0.2 cm electroporation cuvet using a Gene

Pulsar (Bio-Rad). Transfectants were allowed to recover for 24 h

and then were selected for resistance to G418 at 5, 10, 20, 50 mg/

mL.

Growth profile of transfectants S1 (60sRL23a+pXG-’GFP+)
and S1(pXG-’GFP+) -

26106 parasites (promastigote) were seeded. Counting of

parasites (promastigote) for each transfectants was done for 8

days. Growth curve was plotted as number of parasites versus

number of days. The proliferative potential of transfectants at

amastigote stage was studied in macrophage amastigote (1:8)

system in chamber slide. Parasites in macrophages were counted

by geimsa staining at 0 h, 6 h, 12 h, 24 h, 48 h.

Cell cycle analysis. Log phase promastigotes were synchro-

nized with 0.3 mM hydroxyurea for 16 hrs. Then the parasites

were washed to remove hydroxyurea. Cells were fixed at 0, 3, 6,

12 h in 70% ethanol for 2 h on ice and then resuspended in

0.5 mL PBS containing 0.5 mg PI and 50 mg RNase A and

incubated for 1 h in dark at room temperature [28]. Data

acquisition was carried out at FACS Calibur and analyzed using

CELLQUEST software.

Sb(III) and Sb(V) sensitivity profile of transfectants
Sb(III) and Sb(V) sensitivity profile of Transfectants growing at

0 mg, 20 mg, 50 mg were determined in the same procedure as it

was done for clinical isolates.

Sensitivity profile of transfectants towards other
antileishmanial drugs

Transfectants (promastigotes) growing at 50 mg of G418 were

assessed for their sensitivity towards miltefosine (SynphaBase),

paramomycin (Sigma) and amphotericin B (Sigma) through flow-

cytometry as described earlier [29].

Ethics statement. The clinical isolates were obtained from

the splenic biopsies carried out on the Leishmania patients. The

study was approved by the ethics committee of the Kala-azar

Medical Research Centre, Muzaffarpur and CDRI. The patients

provided a written consent and were informed before enrolment

to this study. Experiments on the animals (hamsters) were

performed following the approval of the protocol and the

guidelines of Institutional Animal Ethics Committee (IAEC) of

the CDRI which is adhered to National Guideline of CPCSEA

(Committee for the Purpose of Control and Supervision on

Experiments on Animals) under

the Ministry of Environment and Forest, Government of India.

The approval reference number 25/08/Para/IAEC dated 03.

08.2011.

Statistical analysis. The 50% inhibitory concentrations

(IC50s) of drugs were calculated by non linear regression obtained

through log [inhibitor] vs. response- variable slope of log dose/

response data on the drug [30]. The data were statistically

analyzed by the one way ANOVA test and a post Tukey test and

are presented as means and standard deviations (SDs) of three

determinations from at least three independent experiments. AP

value of ,0.05 was considered significant.

Accession numbers. Leishmania donovani 60S ribosomal pro-

tein L23a gene, complete cds has been submitted to NCBI and has

accession no GU121098.

Results

SAG sensitivity profile of clinical isolates in hamster and
macrophages

The in vitro and in vivo SAG sensitivity was assessed in clinical

isolates isolated from SAG responsive and unresponsive patients

from Muzaffarpur. The in vitro chemotherapeutic profile of

clinical isolates was summarized in (Table 1). The in vitro SAG

sensitivity assay was studied with both Sb (V) and Sb (III) and has

been found to be correlated to each other as confirmed by the

resistance index (Table 1). The chemotherapeutic sensitivity

profiles of clinical isolates tested in hamster model showed the

successful treatment of hamsters infected with S1 and S2 with

standard dose of SAG (80 mg/kg65 i.p.) with a percent

inhibition (PI) of 94.9762 for S1 and 96.91560.84 for S2.

SAG still exerted leishmanicidal action at 20 mg/kg65ip with PI

of 65.6763.75 for S1 and 70.64061.24 for S2. PI was

79.9862.41 for S1 and 84.8762.313 for S2 at 40 mg/kg65

i.p. whereas SAG failed to inhibit the multiplication of R1, R2

and R3 even at higher doses (Figure 1).

Molecular characterization of Ld60sRL23a. The

60sRL23a gene of L.donovani of 435 bp was successfully cloned

in T/A vector (Figure 2A, 2B) and sequenced which has 97%

identity to 60sRL23a of L.major, 95.86% to L.mexicana and 93.75%

L.infantum (Table 2). It was further sub-cloned in bacterial

expression vector pTriEx4 (Figure 2C), purified and eluted at

200 mM imidazole concentration. The size of the eluted

r60sRL23a was ,27 kDa (Figure 2D). Western blot analysis of

L.donovani promastigote lysate was performed with the polyclonal

anti-rLd60sRL23a antibody which detected protein in the whole

cell lysate of Ld belonging to the molecular wt of 16 kDa.

(Figure 2E). Immunolocalization studies further confirmed the

cytosolic existence of the protein (Figure 2F).

Comparative modeling technique was attempted for obtaining

three-dimensional coordinates of L.donovani 60S ribosomal protein

L23a. 60S ribosomal protein L25 of Saccharomyces cerevisiae S288c

(PDB id: 3U5E_chain X) was selected as template using hhpred

server on the basis of lower E-value, P-value and higher score.

This protein shows 43.80% similarity with L.donovani 60S

ribosomal protein L23a sequence (Figure 2 I). The best molecular

Role of 60s Ribosomal L23a in SAG Resistance
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model showed the DOPE score of 210568.408203. Ramachan-

dran plot obtained from Procheck shows high accuracy with 100%

residues within the allowed region (figure 2G, 2H). Figure 2(I)

shows the superimposed image of L.donovani 60sRL23a on

Saccharomyces cerevisiae L25.

Expression profile of 60sRL23a in different clinical isolates
of L.donovani

Since 60sRL23a was found to be over-expressed in the SAG

resistant strains as identified through differential proteomics

study it was further investigated for its expression profile in

several resistant and sensitive strains of L.donovani through real-

time PCR (Figure 3A). The study revealed the difference in the

expression levels of 60sRL23a between the sensitive and

resistant strains of L.donovani. There was ,two fold increase in

the expression of protein in resistant parasite (Figure 3B).

Expression profile of 60sRL23a in protein level was further

confirmed through western blot analysis with anti-r60sRL23a

antibody and was found to replicate the response of real-time

study as confirmed by the densitometric study through

chemidoc software (BIORAD) using Ld-actin as internal control

[31].

Overexpression of 60sRL23a in L.donovani S1 parasites
60sRL23a gene was further sub-cloned in Leishmania expression

vector pXG-’GFP+ (Figure 4A) and was transfected in S1 to check

whether this protein can alter the sensitivity profile of S1. The

western blot analysis of the whole cell lysate of S1

[60sRL23a+pXG-’GFP+] parasite with anti-60sRL23a antibody

revealed the identification of the protein at ,43 kDa and

,16 kDa mol wt. (Figure 4B), whereas with anti-GFP antibody

the protein bands were detected at ,43 kDa and ,27 kDa

(Figure 4C). The S1 lysate having vector alone [pXG-’GFP+]

exhibited a band at mol wt of 27 kDa when analyzed with GFP

antibody and at ,16 kDa when analyzed with r60sRL23a

antibody. This indicated towards the expression of GFP alone

(Figure 4C). The increased expression pattern of the protein in S1

[60sRL23a+pXG-’GFP+] parasite has been observed with in-

creased pressure of G418 at 0 mg/mL, 20 mg/mL and 50 mg/mL.

(Figure 4D).

Growth profile of transfectants S1 [60sRL23a+pXG-

’GFP+] and cell cycle analysis. Growth curve of transfectants

revealed proliferation in S1 [60sRL23a+pXG-’GFP+] as com-

pared to the transfectants having vector alone as well as WT (S1).

60sRL23a over expression was more when grown in presence of

50 mg/mL G418. The proliferation potential of S1

[60sRL23a+pXG-’GFP+] increases with the G418 concentration.

The proliferative potential of transfectants was also replicated in

amastigote stage (Figure 4F). The S1 transfected with empty vector

has growth curve same as that of S1 (Figure 4E).

Since, the growth curve of both parasite stages exhibited higher

proliferation, we investigated whether 60sRL23a protein is

associated with accelerating cell cycle. Cell cycle analysis of

transfectants revealed that S1 [60sRL23a+pXG-’GFP+] parasites

showed an accumulation in ‘G2M’ phase as compared to S1

Table 1. In vitro sensitivity profile of clinical isolates to Sb(V) and Sb(III).

Mean Resistance index ± SD

Strains Collection Area Clinical Drug Response SbIII SbV

S2 Laboratory Strain Sensitive 1a 1b

S1 Muzaffarpur Sensitive 0.76760.150 0.91960.099

R1 Muzaffarpur Resistant 3.85460.162 2.25860.071

R2 Muzaffarpur Resistant 3.61760.064 2.65360.113

R3 Muzaffarpur Resistant 3.06060.099 1.99760.114

S, sensitive; R, resistant.
1a, IC50, 24.4663.875 mg/mL.
1b, IC50, 94.1262.099 mg/mL.
Sb(III) and Sb(V) resistance indices were calculated using the formula IC50 isolates/IC50 Dd8.
doi:10.1371/journal.pntd.0002527.t001

Figure 1. Efficacy of SAG (80, 40, 20 mg/kg) against L.donovani
clinical isolates in golden hamsters: Parasitic burden was
estimated by splenic biopsy on day +7 post treatment and
percentage inhibition of parasite multiplication was calculated
in comparison to parasitic burden of untreated animal. NI, no
inhibition.
doi:10.1371/journal.pntd.0002527.g001

Table 2. Percent identity of Ld60sRL23a with different sp. of
Leishmania and Homo sapiens.

Species Percent identity

L.major 97.86

L.mexicana 95.86

L.infantum 93.79

L.braziliensis 84.08

H.sapiens 46.94

doi:10.1371/journal.pntd.0002527.t002
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containing vector [pXG-’GFP+] alone when analyzed by

flowcytometry at 0 h, 3 h, 6 h and 12 h. The S1(60sRL23a+
pXG-’GFP+) has 9, 13, 18, 43% of parasites in ‘G2/M’ phase and

19, 20, 18, 23% of parasites in ‘S’ phase. Whereas S1(pXG-’GFP+)

has 6, 10, 11, 13% of parasites in ‘G2/M’ phase and 14, 17, 23,

23% parasites in ‘S’ phase (Figure 4G). The proportion of

S1(pXG-’GFP+) in G0/G1 phase was 1.14, 0.5, 0.31 and 0.02%

whereas 1.19, 1.62, 1.42 and 1.10% of S1(60s+pXG-’GFP) in G0/

G1 phase at different time interval.

In vitro SAG sensitivity of transfectants
In vitro SAG sensitivity of transfectants maintained at 0, 20,

50 mg of G418 were assessed with both Sb (V) in macrophage

amastigote model and with Sb (III) in promastigotes. The

sensitivity profile of the transfectants to Sb (V) and Sb (III) is

depicted in (Figure 5A and 5B). S1 containing episomal over

expressed 60sRL23a growing at 50 mg/mL of G418 has IC50 i.e.

158.06664.28 for Sb(V) than of S1 expressing vector alone i.e.

92.50665.7. S1 [60sRL23a+pXG-’GFP+] growing at 20 mg/mL

of G418 also exhibited higher IC50 (123.265.117) as compared to

S1 (78.5566.5) containing vector alone. Whereas S1

[60sRL23a+pXG-’GFP+] growing at 0 mg/mL demonstrated the

IC50 comparable to S1[pXG-’GFP+] and S1. The sensitivity of

transfectants to Sb (III) and Sb (V) patterns were similar to each

other. The Sb (III) IC50 of S1 [60sRL23a+pXG-’GFP+] i.e.

61.5867.23 was found to be greater than S1 [pXG-’GFP+] i.e.

17.6761.71 at 50 mg/mL of G418, whereas at 20 mg/mL of G418

it was 47.3462.54 and S1 having empty vector has similar IC50 at

all concentrations of G418. In absence of G418 the IC50 of

transfectants were comparable.

Sensitivity profile of transfectants to other
antileishmanials (in vitro)

The transfectants were further checked for their sensitivity

towards other antileishmanial compounds (miltefosine, para-

momycin and amphotericin B) (Figure 6). S1 [60sRL23a+

Figure 2. Molecular characterization of L. donovani 60s Ribosomal L23a (60sRL23a). (A) PCR amplification of Ld60sRL23a. M: 1 kb
molecular mass marker; Lane 1&2: PCR amplificon of 60sRL23a; 3: negative control. (B) Clone confirmation of Ld60sRL23a in TA vector. M: 1 kb
molecular mass marker; Lane1: KpnI and HindIII digested TA-Ld60sRL23a; Lane2: Undigested TA-Ld60sRL23a. (C) Clone confirmation of Ld60sRL23a in
pTriEx-4 vector. M: 1 kb molecular mass marker; Lane1: KpnI and HindIII digested pTriEx-4 -Ld60sRL23a; Lane2: Undigested pTriEx-4-Ld60sRL23a. (D)
Expression (in E.coli), purification and elution of r60sRL23a at 200 mM of imidazole concentration of 60sRL23a and separation in 12%SDS
PAGE. M: Molecular wt. Markers, Lane 1 Whole cell lysate (WCL) of uninduced E.coli and Lane2: WCL of E.coli induced at 37uC and 1 mM IPTG; Lane3:
wash fraction; Lane 4, 5,6and7: purified protein (E) western blot analysis using anti r60sRL23a antibody. M: Molecular mass marker; Lane1:
WCL before IPTG induction; Lane2, WCL after IPTG (1 mM) induction at 37uC; Lane3: Purified protein; Lane 4: WCL of Ld. (F) Immunolocalization of
60sRL23a in Ld. F1: image of permeablized Ld with anti r60sRL23a and then FITC conjugated secondary antibody, F2: Image of non permeablized
Ld with anti r60sRL23a and then FITC conjugated secondary antibody, F3: negative control. (G) and (H) Superimposition of homology model (in
cyan color) on template (in green color) with RMSD of 0.667 Å. (I) Alignment between L. donovani 60S ribosomal protein L23a of Ld and 60S
ribosomal protein L25 of Saccharomyces cerevisiae.
doi:10.1371/journal.pntd.0002527.g002
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pXG-’GFP+] showed ,7 fold decreased sensitivity towards

miltefosine (67.3869.64 mg/ml) and ,2.4 fold towards para-

momycin (142.1668.76 mg/ml). S1 [pXG-’GFP+] demonstrat-

ed IC50 of 8.661.44 for miltefosine and 57.11611.58 for

paramomycin. Whereas the transfectant showed comparable

IC50 for amphotericin B (0.20160.003 mg/ml for S1 [pXG-

’GFP+] and 0.174860.093 mg/ml for S1 [60sRL23a+pXG-

’GFP+]).

Discussion

The emergence of SAG resistance and the limited knowledge of

the mechanism by which parasite acquire resistance are the major

obstacle for the control of VL. Several SAG resistance studies were

done on the basis of differential proteomics or/and transcriptomics

and microarray to understand the parasite strategy to escape the

drug pressure. These studies led to the identification of several

Figure 3. Differential expression of 60sRL23a in clinical isolates by real time PCR. (A1) Relative expression of 60sRL23a in different
isolates to that of S1 as detected by real time PCR. The data are the mean of 6 SD of three independent fold expression estimated through three
independent RNA preparations. (Asterisks denotes highly significant differences from S1) (A2) Relative fold expression of Ld-actin (internal
control) in several clinical isolates. (B1) Differential pattern of expression of 60sRL23a in different isolates as analyzed by Western blot. (B2)
Fold expression of 60sRL23a in several clinical isolates as demonstrated through densitometric values (C) Ld-actin is used as internal control.
(the experiment was repeated three times with three independent whole cell lysate preparations of promastigotes along with their respective
loading control).
doi:10.1371/journal.pntd.0002527.g003
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Figure 4. Over expression of 60sRL23a in S1. (A) Clone confirmation of Ld60sRL23a in pXG-’GFP+ vector. M: 1 kb molecular mass marker;
Lane1: BamHI and EcoRV digested pXG-’GFP+Ld60sRL23a+; Lane2: Undigested pXG-’GFP+Ld60sRL23a+; (B) Western blot analysis using anti
r60sRL23a antibody. M: Molecular mass marker; Lane1: WCL of S1(WT); Lane 2: WCL of S1(pXG-’GFP+); Lane 3: WCL of S1(pXG-’GFP+Ld60sRL23a+);
(C) Western blot analysis using anti GFP antibody. M: Molecular mass marker; Lane1: WCL of S1(WT); Lane 2: WCL of S1(pXG-’GFP+); Lane 3:
WCL of S1(pXG-’GFP+Ld60sRL23a); (D) Western blot analysis of transfectants (D1) at different concentration of G418 using anti r60sRL23a
antibody (D2) at different concentration of G418 using anti Ld-actin antibody. (E) Growth curve of transfectants (Promastigote) (F) Growth
curve of transfectants (amastigote) (G) Cell cycle analysis of Transfectants.
doi:10.1371/journal.pntd.0002527.g004

Figure 5. SAG sensitivity profile of transfectants. (A) with Sb(V); (B) with Sb(III) (The results are the mean 6SD of three independent IC50

estimation experiment of each group.)
doi:10.1371/journal.pntd.0002527.g005
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proteins, playing crucial role in liberating the drug pressure,

including ribosomal proteins [6–8]. . The enhanced expression of

ribosomal proteins has been reported in tumors such as breast

cancers, prostate cancers and hepatocellular cancers [32]. These

ribosomal proteins have not been studied in detail in relation to

SAG resistance in Leishmania. In this study, therefore, we have

evaluated the involvement of 60sRL23a in SAG resistance using

five clinical isolates which were isolated from kala-azar patients

(Muzaffarpur) and their SAG sensitivity was further verified in vitro

(macrophage and amastigote model) and in vivo (hamster model).

SAG sensitivity profile of sensitive and resistant isolates in vitro and

in vivo was comparable. S2 (Dd8), a WHO reference laboratory

strain of L.donovani was used in this study to assess the resistance

index of isolates. Resistance index of different resistant clinical

isolates (R1, R2, R3) revealed that their response to Sb (V) and Sb

(III) were similar. In vivo response of the resistant isolates to SAG in

hamster model exhibited no inhibition even at higher concentra-

tion of SAG where as the S1, S2 exhibited 94.9762.0% and

96.91560.84% inhibition. The sensitive isolates responded even at

the lower doses of SAG (20 and 40 mg/kg65i.p.). In vitro and in

vivo SAG sensitivity profile of all the isolates replicated the patients’

response and confirmed the persistence of SAG response of clinical

isolates even after several passages in hamster. In order to assess

the association of 60sRL23a in SAG resistance we cloned,

expressed and purified the protein which exhibited very close

homology with L.major 60sRL23a to the tune of 95% and 45%

identity with humans indicating towards the difference among the

humans and parasite’s entity. The protein’s mismatched homology

with humans can present the protein as a potential drug target.

Immunoblot study of L.donovani promastigote lysate with the

polyclonal anti-rLd60sRL23a antibody has revealed one dominant

protein of 16 kDa mol wt. This protein was identified earlier at

lower molecular weight range in proteomic studies which is

approximately identical to its observed molecular mass [10]. The

protein has been observed to have a cytosolic localization in the

parasite, though earlier in the proteomic study it was identified in

the membrane fraction. The protein is a well known member of

large subunit of ribosomes so it is obvious for its attachment to

endoplasmic reticulum thus it would have eventually been

identified in the membrane fraction in the proteomic study. To

study the expression level of 60sRL23a in different clinical isolates

real time and immunoblot analysis was done and it revealed the 2

fold expression of the transcript and protein in the resistant strain

as compared to the sensitive one, verifying the differential

proteomics finding [10]. Differential regulation of ribosomal

proteins has been utilized by cells to cater their needs such as

replication, transcription, delaying apoptosis and proliferation,

thus helping the cell to escape the stress conditions [33]. In this

study whether 60sRL23a could modulate the SAG sensitivity

profile of parasite, protein has been over expressed in S1 in pXG-

’GFP+ vector having GFP tag in C-terminus end of the protein.

Immunoblot analysis with 60sRL23a polyclonal antibody revealed

the ,43 kDa protein in the lysate of S1 transfected with

60sRL23a gene containing vector, verifying over expression of

GFP tagged 60sRL23a. The immunoblot analysis with the GFP

antibody identified two protein bands at ,43 kDa and ,27 kDa,

indicating the detachment of GFP protein from combined entity of

60sRL23a+pXG-’GFP+ after expression (Figure 4C). This ensures

the expression of protein returns in its original length after fusion

protein expression. Transfectants expression profile in increasing

G418 concentration indicated the increased protein expression

pattern with increasing amount of G418 (Figure 4D) i.e. , two

fold expression of GFP tagged 60sRL23a in parasites growing in

50 mg/mL G418 as compared to parasites residing with 20 mg/mL

G418, whereas no expression of GFP tagged 60sRL23a has been

seen in 0 mg/mL of G418. Transfectants growth profile was

analyzed by counting parasites per day for each transfectants and a

clear proliferation has been observed in 60sRL23a over expressing

parasites. The transfectants S1(60sRL23a+pXG-’GFP+) growing

at 50 mg/mL of G418 has more proliferative potential as

compared to transfectants growing at 0 mg/mL and 20 mg/mL

of G418, indicating the increasing expression of protein leading

the parasite proliferation. As the growth curve results exhibited

greater number of parasites in transfectants over expressing

60sRL23a, thus the cell cycle progression of a synchronized

transfected and control parasite population was analyzed to

identify its relation with 60sRL23a expression. Parasites exhibited

the tendency towards ‘G2/M’ phase as increasing number of

parasites are seen in this phase wherein parasite progresses at

different time intervals in compared to the control S1

Figure 6. Sensitivity profile of transfectants with other antileishmanial drugs. (A) Amphotericin B, (B) Miltefosine and Paramomycin ( The
results are the 6SD of three independent IC50 estimation experiment of each group.)
doi:10.1371/journal.pntd.0002527.g006
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(pXG-’GFP+) one. The different proportion of both parasites

[S1(pXG-’GFP+) and S1(60s+pXG-’GFP+)] in S phase were

approximately same at different time interval. In G0/G1 phase

number of parasites were decreased in S1 (60s+pXG-’GFP+) as

compared to S1(pXG-’GFP+) revealing no arrest and a smooth

progression to G2M phase. Whereas in G2M phase at 8 hrs and

12 hrs the S1(60s+pXG-’GFP+) progressively increased in com-

parison to S1(pXG-’GFP+) leading to rapid proliferation of

parasites. Cell cycle progression pattern of transfectants recon-

firmed the proliferation of S1(60sRL23a+pXG-’GFP+). Cellular

proliferation as one of the extra ribosomal functions of ribosomal

proteins have been reported to alter the cell cycle by interacting

with cyclin-dependent kinases (Cdk) and regulatory molecules of

cell cycle check points [34,35]. Although Cdk are absent in

Leishmania still apoptosis like cell death has been evidenced in

Leishmania [36–38]. Transfectants were checked for their SAG

sensitivity in vitro in macrophage-amastigote model Sb (V) as well

as in the promastigotes for Sb (III) directly. Results revealed the in

vitro SAG sensitivity of transfectants maintained at 0, 20, 50 mg of

G418 were assessed with both SbV in macrophage amastigote

model and with Sb (III) in promastigotes. The sensitivity profile of

the transfectants to Sb (V) and Sb (III) is depicted in (Figure 5A,

5B). S1 containing episomally over-expressed 60sRL23a growing

at 50 mg/mL showed 1.7 fold higher IC50 (158.06664.28) for Sb

(V) than IC50 (92.50665.7) of S1 expressing vector alone.

S1(pXG-’GFP+60sRL23a) growing at 20 mg/mL of G418 also

exhibited higher IC50 (123.265.117) which is 1.5 fold as compared

to S1(78.5566.5). Whereas S1 (pXG-’GFP+60sRL23a) growing at

0 mg/mL of G418 demonstrated the IC50 comparable to S1

(pXG-’GFP+) and S1. The sensitivity of transfectants to Sb (III)

and Sb (V) patterns were similar to each other. The Sb (III) IC50

(61.5867.23) of S1 (pXG-’GFP+60sRL23a) was 3.5 fold higher

than S1 (pXG-’GFP+) (17.6761.71) at 50 mg/mL of G418,

whereas at 20 mg/mL of G418 it was 2.7 fold higher. In absence of

G418 the IC50 of transfectants were comparable. The IC50 of

S1(pXG-’GFP+60sRL23a) growing at 50 mg/mL was 1.2 fold

higher than the IC50 of transfectants growing at 20 mg/mL. This

sensitivity profile of transfectants to Sb (V)/Sb (III)and increasing

expression pattern of 60sRL23a in response to varying G418

concentration revealed the SAG sensitivity profile and 60sRL23a

expression pattern is inversely correlated. The IC50 values of

transfectants, were ,1.3 to 1.8 fold higher for Sb (V) and ,1.2 to

1.4 fold higher for Sb (III) to all the three resistant isolates,

depicting the comparable resistance acquired by the transfectants

to that of resistant isolates. Since SAG helps in sustaining innate as

well as adaptive immunity against Leishmania by generating ROS

and NO, higher proliferating capacity would increase the chances

of the parasite to survive the intracellular host killing mechanism

and combating the drug pressure [39]. Cellular proliferative

potential of 60sRL23a and decreased SAG sensitivity of

transfectants further emphasized the need to check its sensitivity

profile for other antileishmanial drugs such as miltefosine,

paramomycin and amphotericin B (Figure 6). Results revealed

the decreased sensitivity of transfectants towards miltefosine and

paramomycin. Whereas transfectants retained unaltered sensitivity

towards amphotericin B. Paramomycin in general is known to

inhibit protein synthesis by targeting ribosomal proteins and

resistant strains of paramomycin revealed upregulated translation-

al/ribosomal proteins to combat the drug pressure [8]. On the

other hand the resistance mechanism of miltefosine involves

several defect in inward translocation and increased efflux of drugs

[40]. Since paramomycin is known to inhibit protein synthesis and

the exact working mechanism of miltefosine and SAG is still

unknown, the pathways of these drugs may do the cross talk

somewhere or the toxicity of these drugs could have been

overtaken by the parasite through increased cellular proliferation.

In the light of above observation increased proliferative potential

may strengthen the parasite to redistribute or lower the drug

pressure hence providing a prospect to escape the drug pressure.

Amphotericin B being the most successful drug among these and

no resistance cases reported till date, further revealed its unique

mechanism unbeatable by the parasite. Despite of its peerless

therapeutic results, its toxicity and cost factors further compelled

us to rejuvenate the safe traditional drugs. Down regulation of

60sRL23a could validate the finding of the present study but as

RNAi machinery is absent in L.donovani and only knockout remains

the only way to study the down regulation effect of the gene, but

knockout 60sRL23a would be futile due to multicopy of the gene

present in the genome of Leishmania. Presence of multicopy of

60sRL23a again indicates the protein to be an essential

component of parasite that could be used by the parasite in

different ways as and when so ever needed. Hence this study could

only confirm the after effects of up regulation of 60sRL23a. Study

further revealed that parasite could use its usual protein to perform

an unusual function such as cellular proliferation to combat

pressure of different drugs carrying out different anti-parasitic

pathway. Indian subcontinent is now relying on several other drug

combinations other than SAG, but parasites had developed

resistance against these drug combinations under laboratory

conditions [41]. To win the battle against Leishmaniasis searching

new drugs or combinations against Leishmania is not sufficient but

our understanding for the resistance mechanism has to be

explored enough to strengthen the new chemotherapeutic strategy.

SAG has not been in use for some time on the Indian

subcontinent, and although the removal of drug pressure is

expected to allow the return of the sensitive parasites by natural

selection, although this is not universally accepted [42,43,4,5]. Our

understanding regarding resistance mechanism is in its infancy,

this study will help to focus on the substantial role played by the

ribosomal proteins in disease progression by assisting the parasite

to escape the drug pressure.
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