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Abstract: Widespread pathologies such as atherosclerosis, metabolic syndrome and cancer are associ-
ated with dysregulation of sterol biosynthesis and metabolism. Cholesterol modulates the signaling
pathways of neoplastic transformation and tumor progression. Lanosterol 14-alpha demethylase
(cytochrome P450(51), CYP51A1) catalyzes one of the key steps in cholesterol biosynthesis. The fairly
low somatic mutation frequency of CYP51A1, its druggability, as well as the possibility of interfering
with cholesterol metabolism in cancer cells collectively suggest the clinical importance of CYP51A1.
Here, we show that the natural flavonoid, luteolin 7,3′-disulfate, inhibits CYP51A1 activity. We also
screened baicalein and luteolin, known to have antitumor activities and low toxicity, for their ability
to interact with CYP51A1. The Kd values were estimated using both a surface plasmon resonance
optical biosensor and spectral titration assays. Unexpectedly, in the enzymatic activity assays, only
the water-soluble form of luteolin—luteolin 7,3′-disulfate—showed the ability to potently inhibit
CYP51A1. Based on molecular docking, luteolin 7,3′-disulfate binding suggests blocking of the
substrate access channel. However, an alternative site on the proximal surface where the redox
partner binds cannot be excluded. Overall, flavonoids have the potential to inhibit the activity of
human CYP51A1 and should be further explored for their cholesterol-lowering and anti-cancer
activity.

Keywords: lanosterol 14-alpha demethylase; flavonoids; enzyme inhibition; surface plasmon reso-
nance; spectral titration; molecular docking

1. Introduction

Cholesterol is a major source of bioactive sterols. Cholesterol modulates the signaling
pathways of neoplastic transformation and tumor progression by covalently modifying
hedgehog and smoothened family proteins [1,2] and it is also involved in atherosclerosis
and metabolic syndrome progression [3]. Tumor growth is accompanied by a significant
increase in the expression level of cholesterol biosynthetic enzymes, including lanosterol
14-alpha demethylase (cytochrome P450(51), CYP51A1) [4]. CYP51A1 belongs to the
evolutionarily conserved family of cytochrome P450 and catalyzes the oxidative removal
of the alpha-methyl group at the C14-position of the steroid substrate in three steps [5].
According to the COSMIC (http://cancer.sanger.ac.uk/cosmic accessed on 29 June 2020)
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resource, the CYP51A1 gene has a fairly low somatic mutation frequency (<0.1%) in various
cancers. It has been shown that CYP51A1 gene expression correlates with the estrogen
and progesterone receptor status of breast cancer [6] and could be one of the factors in
assessing the survival rate of patients with gastric adenocarcinoma [7]. CYP51A1 catalyzes
the production of 4,4-dimethyl-5α-cholesta-8,14,24-triene-3β-ol (follicular fluid meiosis-
activating sterol, FF-MAS), one of the modulators of meiosis [8]. The ploidy disturbance
characteristic for cancer cells is caused by processes similar to meiosis [9]. Thus, FF-MAS
might be linked to the ploidy balance of tumor cells. CYP51A1 gene knockout blocked de
novo cholesterol synthesis [10], while CYP51A1 inhibition led to the induction of apoptosis
in cancer cells [11], indicating the clinical significance of this protein.

We analyzed the potential of natural flavonoids (Figure 1) as modulators of CYP51A1
function using purified human protein. Baicalein and luteolin are flavonoids that were
originally isolated from plants of the Scutellaria and Reseda genus. The inhibitory activity
of baicalein and luteolin was demonstrated for some cytochrome P450 isozymes [12–14].
Baicalein exhibited broad antifungal activity [15] and demonstrated strong synergy with
fluconazole [16], a known inhibitor of fungal CYP51A1. Luteolin possesses an antibacterial
effect in vivo, increasing membrane permeability [17], but does not directly perturb the
model membranes in vitro [18,19]. Both baicalein and luteolin possess antitumor activ-
ity [20,21] and, as well as their derivatives, have been used in preclinical studies and
in experimental oncology [22–27]. Epidemiological studies showed that foods rich in
polyphenolic compounds (flavonoids, phenolic acids, lignans and stilbenes) included in
the diet reduced the total risk of cancer by up to 50% [28]. Overall, 14 clinical trials were
initiated to study baicalein and luteolin as dietary supplements (https://clinicaltrials.gov/,
accessed on 1 March 2021). The G.B. Elyakov Pacific Institute of Bioorganic Chemistry has a
broad collection of natural compounds from unique Far-Eastern plants and marine species
with a wide range of biological activities. Luteolin 7,3′-disulfate, a water-soluble luteolin
derivative originally obtained from the seagrass Zostera marina [29], also exhibits antitumor
activity [30,31]. It was shown that sulfation at the 7-position of the luteolin molecule
decreases cytotoxicity [32]. Moreover, the activity of luteolin 7,3′-disulfate in some cases is
stronger than that of luteolin [30,33,34], possibly due to bypassing the stage of conjugation
by intestinal and liver cells. Cholesterol is a crucial component of membranes, maintaining
their permeability and fluidity. We hypothesized that flavonoids might target its synthesis
via CYP51A1 and selected baicalein, luteolin and luteolin 7,3′-disulfate for testing. Using
surface plasmon resonance (SPR), we showed that only luteolin 7,3′-disulfate interacted
with CYP51A1 with high affinity. However, in the spectral binding experiments luteolin
7,3′-disulfate does not induce spectral changes. In contrast, baicalein and luteolin induce a
reverse type I response in the difference absorption spectra of CYP51A1, indicating changes
around heme iron. In the reconstituted enzymatic assay, among the three tested flavonoids,
only luteolin 7,3′-disulfate inhibited the lanosterol 14α-demethylase activity of human
CYP51A1 with significant potency. The binding mode distant from the heme was predicted
for luteolin 7,3′-disulfate by the performed molecular docking, showing the binding not in
the hydrophobic active site but rather in the access channel. The inhibitory effect of the
most hydrophilic form of tested flavonoids—luteolin 7,3′-disulfate—is quite unusual. We
suggest that, besides the predicted binding, luteolin 7,3′-disulfate could also bind to the
proximal surface of CYP51A1, interfering with the interaction to the redox partner. The
obtained data open up a new valuable source of flavonoid modulators of CYP51A1 activity
as an alternative to the classic inhibition by azole compounds.

https://clinicaltrials.gov/
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CYP51A1 to bind ligands. With the CYP51A1 immobilized on the biosensor chip surface, 
we were able to detect the interaction with baicalein, luteolin and luteolin 7,3′-disulfate 
(Figure 2). 

 
Figure 2. Typical surface plasmon resonance sensorgrams of binding between immobilized 
CYP51A1 on the optical chip and baicalein, luteolin and luteolin 7,3′-disulfate at different concen-
trations: 10 (1), 25 (2), 50 (3), 75 (4) and 100 μM (5). Fitting curves (theoretical models) are high-
lighted in black; Chi2 = 25.3 (baicalein), 68.2 (luteolin), 10.2 (luteolin 7,3′-disulfate). 

The equilibrium dissociation constant (Kd) values of CYP51A1/flavonoid complexes 
were in the range of 2.9–20 μM, calculated association and dissociation rate constants are 
shown in Table 1. The obtained Kd value of the CYP51A1/lanosterol complex was 2.4 μM, 
which is comparable with the previously published data [35]. The association rate of the 

Figure 1. Flavonoids used in this work.

2. Results
2.1. Surface Plasmon Resonance

The CYP51A1 complex formation with flavonoids was detected using a SPR-biosensor.
Lanosterol was used as a positive control to confirm the ability of immobilized CYP51A1
to bind ligands. With the CYP51A1 immobilized on the biosensor chip surface, we were
able to detect the interaction with baicalein, luteolin and luteolin 7,3′-disulfate (Figure 2).
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Figure 2. Typical surface plasmon resonance sensorgrams of binding between immobilized CYP51A1
on the optical chip and baicalein, luteolin and luteolin 7,3′-disulfate at different concentrations: 10
(1), 25 (2), 50 (3), 75 (4) and 100 µM (5). Fitting curves (theoretical models) are highlighted in black;
Chi2 = 25.3 (baicalein), 68.2 (luteolin), 10.2 (luteolin 7,3′-disulfate).

The equilibrium dissociation constant (Kd) values of CYP51A1/flavonoid complexes
were in the range of 2.9–20 µM, calculated association and dissociation rate constants
are shown in Table 1. The obtained Kd value of the CYP51A1/lanosterol complex was
2.4 µM, which is comparable with the previously published data [35]. The association
rate of the CYP51A1 complex with luteolin 7,3′-disulfate is seven times faster compared
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to the complex formation with lanosterol, while the dissociation rate is about eight times
higher. The resulting Kd value for both complexes is similar. CYP51A1 complex formation
with baicalein and luteolin is characterized by the increased association rate compared to
lanosterol, but the main differences in the resulting Kd value are due to the great increase
in dissociation rates of the complexes. Overall, the binding of flavonoids is faster compared
to the natural substrate, but the dissociation of the complexes is faster as well. The highest
affinity was detected for luteolin 7,3′-disulfate, which is more soluble.

Table 1. Kinetic and equilibrium parameters of cytochrome P450(51) (CYP51A1) complex formation with lanosterol,
baicalein, luteolin and luteolin 7,3′-disulfate.

Compound kon koff Kd, µM Evaluation Model

lanosterol kon (1/Ms) = 41.4 ± 5.0 koff (1/s × 10−4) = 1.0 ± 0.2 2.4 Langmuir 1:1

baicalein
kon1 (1/Ms) = 146 ± 20 koff1 (1/s × 10−4) = 100 ± 20

12.5 Two state reactionkon2 (1/s × 10−4) = 27 ± 3 koff2 (1/s × 10−4) = 6 ± 1

luteolin
kon1 (1/Ms) = 282 ± 40 koff1 (1/s × 10−4) = 190 ± 30

20.0 Two state reactionkon2 (1/s × 10−4) = 33 ± 4 koff2 (1/s × 10−4) = 14 ± 2

luteolin 7,3′-disulfate kon (1/Ms) = 294.0 ± 32.3 koff (1/s × 10−4) = 8.4 ± 2.0 2.9 Langmuir 1:1

The table shows the average values of the parameters ± standard deviation, n = 3.

2.2. Spectral Titration Analysis

The difference spectra of CYP51A1 were obtained by titration with baicalein, luteolin
and luteolin 7,3′-disulfate in the presence of lanosterol. Baicalein and luteolin induced
a reverse type I spectral response with absorbance minimum at 390 nm and maximum
at 420 nm for luteolin and 436 nm for baicalein (Figure 3). These spectral changes are
consistent with the previously detected interaction of cytochrome P450 1B1 with com-
pounds of flavonoid class [36]. Titration with luteolin 7,3′-disulfate (up to 30 µM) does not
cause changes in the difference spectrum of CYP51A1. The apparent dissociation constant
(Kdapp) values of the complexes of CYP51A1 with baicalein and luteolin were 8.2 ± 0.4
and 5.1 ± 0.5 µM, respectively. It should be noted that the Kd values from spectrophoto-
metric titration experiments differ from those obtained using SPR. These differences can
be attributed to the different affinities of the complexes in solution and immobilized on
the surface of the optical chip. Interaction with the different sites of the enzyme cannot be
excluded during SPR measurements and the measured Kd reflects all possible interactions
between the ligand and enzyme, while spectral assays detect interactions of ligand only
within close vicinity of the heme cofactor buried in the CYP active site.
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2.3. Enzyme Activity Assay

Lanosterol 14α-demethylase activity of human CYP51A1 in the presence of flavonoids
was determined in the reconstituted system. Only luteolin 7,3′-disulfate can inhibit the ac-
tivity of the CYP51A1 (Table 2). Surprisingly, luteolin, being a more hydrophobic molecule
compared to its sulfated derivative, does not have a similar effect. The apparent IC50 for
luteolin 7,3′-disulfate is greater than 25 µM. At the same time, the level of inhibition by
ketoconazole (94.6% at a concentration of compound of 5 µM) significantly exceeds the
effect of luteolin 7,3′-disulfate (50.1% at a concentration of compound of 25 µM). Overall,
the inhibition of CYP51A1 utilizing highly hydrophobic substrate by the water-soluble
luteolin 7,3′-disulfate could not be predicted. This observation suggests a different mode of
binding in the active site. To visualize the binding of luteolin and its disulfate in the active
site we performed molecular docking.

Table 2. Effect of compounds on catalytic activity of human CYP51A1 (lanosterol 14α-demethylase)
in the reconstituted system in vitro.

Compound Relative Activity, %

No compound 100.0
Baicalein (25 µM) 89.4
Luteolin (25 µM) 92.6

Luteolin 7,3′-disulfate (25 µM) 49.9
Ketoconazole (5 µM) 5.4

The final concentrations of CYP51A1 and cytochrome P450 reductase (CPR) were 0.5 and 2.0 µM, respectively.
The final concentration of lanosterol was 50 µM.

2.4. Molecular Docking

We used a CYP51A1 crystal structure Protein Data Bank (PDB) ID: 3LD6 for molecular
docking. The resulting models were selected based on the higher values of scoring function.
The obtained docking poses are shown in Figure 4. Based on the docking results, luteolin
binds very close to the heme coordinating iron (less than 3 Å) by the 3-OH-group of
the phenyl ring. In contrast, luteolin 7,3′-disulfate binds at >8.5 Å from the heme. The
docking results are consistent with the spectral titration data—luteolin induces reverse
type I spectra, while luteolin 7,3′-disulfate does not change the spectral response.
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Asp231 (C-terminal part of the F-helix) H-bonded to luteolin and is important for the
enzymatic activity of CYP51 [37]. The negative charge in this position is highly conserved in
Prokaryotes and Eukaryotes [38]. Residues Leu310 (part of I-helix), Met378 and Ile379 (both
K-helix–β1-4 loop) are involved in the interaction with luteolin 7,3′-disulfate. Residues
Leu310 and Met378 are conservative among Chordata, and Ile379 is conservative among
primates [38]. Notably, these structural elements were shown to interact with the elongated
azole inhibitors (PDB ID: 3LD6, 4UHI and 6Q2T), suggesting that several residues of the
active site are utilized for the distant binding of luteolin 7,3′-disulfate.

The docking pose obtained for luteolin 7,3′-disulfate showed binding in the access
channel (Figure 4). Thus, the inhibition effect could be the result of blocking of the substrate
access channel. However, the inhibition of CYP51A1 by luteolin 7,3′-disulfate does not
exclude the modulation of interaction with its redox partner. The proximal surface of
CYP51A1—where the redox partner, cytochrome P450 reductase, is binding—contains
positively charged amino acids which can interact with the negatively charged sulfate
groups of luteolin 7,3′-disulfate.

3. Discussion

Plant flavonoids have a variety of biological activities in animals. However, despite
numerous studies in this field, the mechanism/s of action of flavonoids remain poorly un-
derstood. Using animal models, it was shown that some flavonoids, luteolin in particular,
may mitigate the toxicity of drugs [13,39]. However, the protective effect of flavonoids in
humans has not been reliably ascertained [13]. There have been a number of studies re-
porting the effect of flavonoids, mostly on xenobiotic transformation by CYP enzymes and
drug–drug interactions. In particular, baicalein showed an inhibition activity to CYP1A,
CYP2B and CYP3A4, with IC50 values in the range of 0.5–36 µM [12,40]. Both baicalein
and luteolin inhibit diclofenac 4′-hydroxylase activity in the CYP2C9 RECO system, with
baicalein acting as a competitive inhibitor of CYP2C9 [41]. The most effective luteolin inhi-
bition was shown for CYP2C8, while its close homologs, CYP2C9 and CYP2C19, were less
effectively inhibited [13]. The activity of CYP1A2, CYP3A, CYP2B6, CYP2E1 and CYP2D6
was also inhibited by luteolin, with an IC50 in the range of 1.6–132.6 µM [13,42]. Notably,
luteolin selectively inhibits CYP2D6-mediated metabolism with different substrates. For
example, O-demethylation of 3-[2-(N,N-diethyl-N-methyl-ammonium)ethyl]-7-methoxy-
4-methylcoumarin was inhibited to 40% by the administration of 20 µM luteolin, while
the same concentration of luteolin showed less than a 5% inhibition in reaction with dex-
tromethorphan [14]. Overall, the baicalein and luteolin inhibitory concentration on drug
metabolizing CYPs is in the micromolar range.

The inhibition effect of flavonoids was also shown for CYPs involved in the biosyn-
thesis of steroid hormones, neurosteroids, prostaglandins, as well as other regulatory
metabolites. The effect of different flavonoids was evaluated on cortisol production in
human adrenocortical H295R cells, and the competitive mechanism of inhibition was estab-
lished for CYP21B1 [43]. The inhibition effect of luteolin was shown for human aromatase
CYP19 [44]. A synthetic analogue of dihydrodaidzein, NV-52, inhibited the thromboxane
A2 synthase CYP5A1 [45], while isoflavonoids inhibited the oxidation of vitamin D3 by
CYP24A1 [46].

Sulfation, methylation and glucuronidation, occurring in the enterocytes and liver,
are major factors affecting flavonoid bioavailability and are crucial for their transport via
the blood [47]. Non-conjugated flavonoids are generally not present in plasma, however,
there is an indication that a small amount of non-conjugated flavonoids can be transported
through the blood system [48]. To the best of our knowledge, no studies have been
conducted on the inhibition of CYP activity by sulfated forms of baicalein and luteolin.
The inhibitory potential of other sulfated derivatives was probed with drug-metabolizing
CYPs. It was shown that sulfated derivatives of quercetin and chrysin can inhibit several
CYPs in vitro. In particular, quercetin 3′-sulfate has a selective concentration-dependent
inhibition activity to CYP2C19 and CYP3A4 up to 30 µM, but the inhibition effect did
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not exceed 50% and overall was less than that of ticlopidine and ketoconazole (used as
positive controls) [49]. Chrysin 7-sulfate has an IC50 value of 2.7 µM to CYP2C9, which
is comparable to that of the positive control sulfaphenazole [50]. Additionally, chrysin
7-sulfate showed a slight inhibition effect on CYP2C19 and CYP3A4 [50].

CYP51A1 is considered as a potent target for cholesterol-lowering drugs [51]. There
is an indication that the regulation of CYP51A1 function could be important to the treat-
ment of oncological pathologies [11]. It was shown that anticancer drugs, abiraterone and
galeterone, which are steroidal inhibitors of CYP17A1, can interact with human CYP51A1.
However, their inhibition potential was not estimated. The Kdapp values determined for
the abiraterone and galeterone, were 22 and 16 µM, respectively [52], and are significantly
higher than those for baicalein and luteolin obtained in this work (8.2 and 5.1 µM, respec-
tively). In contrast, non-steroidal pyridine derivative LK-935 [53] and azole inhibitors,
ketoconazole and econazole [38], have an affinity in the submicromolar range due to direct
coordination with heme iron. However, azole derivatives have a poor bioavailability and
relatively low selectivity which might cause adverse reactions.

We showed the inhibition of CYP51A1 activity by the sulfated derivative of luteolin
isolated from seagrass within the family Zosteraceae (Zostera marina and Zostera asiatica).
It was previously demonstrated that luteolin 7,3′-disulfate has a wide range of biological
activities that might be linked to its higher bioavailability [33,54]. Considering that natural
flavonoids and their biological activities are currently a subject of great interest and in light
of our data, it is plausible to suggest that CYP51A1 activity could also be modulated by
this group of compounds. Obtained data on inhibition by luteolin 7,3′-disulfate could be
further explored for the development of a new class of CYP51A1 inhibitors.

4. Materials and Methods
4.1. Samples

Highly purified (>95% by SDS-PAGE) recombinant human CYP51A1 protein was
expressed and purified as previously described [38]. Low molecular weight compounds:
lanosterol (PubChem CID 246983, CAS Number 79-63-0), natural substrate of CYP51A1,
and ketoconazole (PubChem CID 456201, CAS Number 65277-42-1), azole inhibitor of
CYP51A1, were obtained from Cayman Chemicals (Ann Arbor, MI, USA), baicalein (Pub-
Chem CID 5281605, CAS Number 491-67-8) was obtained from Sigma Aldrich (St. Louis,
MO, USA), luteolin (PubChem CID 5280445, CAS Number 491-70-3) and luteolin 7,3′-
disulfate (PubChem CID 44258153) were purified in the G.B. Elyakov Pacific Institute
of Bioorganic Chemistry (Vladivostok, Russia) by water–alcohol extraction, followed by
chromatographic purification from the sea plants of Zosteraceae genus [55,56].

4.2. Surface Plasmon Resonance

SPR analyses were carried out at 25 ◦C using the optical biosensors Biacore T200
and Biacore 8K (GE Healthcare, Chicago, IL, USA) and sensor chips of CM5 series S
type (Cytiva, Marlborough, MA, USA). HBS-N (10 mM HEPES, 150 mM NaCl, pH 7.4)
(Cytiva) was used as a running buffer for CYP51A1 immobilization. Carboxyl groups
of biosensor chip dextran were activated for 5 min by injection of the 1:1 mixture of
0.2 M 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and 0.05 M
N-hydroxysuccinimide (NHS) at a flow rate of 5 µL/min, followed by 1 min wash with
HBS-N buffer at the same flow rate. Next, CYP51A1 (25 µg/mL) in 10 mM sodium acetate
(pH 5.0) was injected into the working channel of the biosensor for 5 min at a flow rate of
5 µL/min. The final level of immobilization was 13,500 RU (13.5 ng of protein). Reference
channel without immobilized CYP51A1 was used to correct the effects of the non-specific
binding of analytes to the chip surface.

Baicalein and luteolin were prepared as 10 mM stock solutions in 100% dimethyl
sulfoxide (DMSO). Experimental samples of baicalein and luteolin were prepared in an
HBS-N buffer at the concentration range 10–100 µM and 1% DMSO. The same amount of
solvent was added to the HBS-N running buffer to minimize bulk-effects introduced by the
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difference between the refractive indexes of the running buffer and the experimental sam-
ples. Refractive indexes of running buffer and experimental samples were matched with a
precision refractometer RX-5000 (Atago, Saitama, Japan). If needed, the concentration of
solvent in the running buffer was corrected according to the equation:

C(DMSO)running bu f f er = C(DMSO)sample ×
η1 − η2

η3 − η2
,

where C(DMSO)running buffer—DMSO final concentration in running buffer, C(DMSO)sample
—DMSO concentration in experimental sample, η1—analyzed sample refractive index,
η2—HBS-N buffer refractive index, η3—HBS-N buffer containing the DMSO of the same
concentration as experimental sample refractive index.

Luteolin 7,3′-disulfate 10 mM stock solution and experimental samples at final concen-
trations of 10–100 µM were prepared with HBS-N buffer without organic solvent. The same
buffer was used as a running buffer with luteolin 7,3′-disulfate to minimize the bulk-effects
on the obtained experimental data. A total of 10 mM stock solution of lanosterol was pre-
pared in ethanol. Lanosterol experimental samples at the final concentrations of 10–100 µM,
as well as the running buffer, were prepared by the same protocol as for baicalein and
luteolin but in ethanol instead of DMSO.

Low molecular weight compounds were injected through biosensor channels (working
and reference) at a flow rate of 10 µL/min (luteolin 7,3′-disulfate) and 50 µL/min (baicalein
and luteolin) for 6 min. Dissociation of the formed CYP51A1/compound complexes were
registered at the same flow rate for no less than 6 min after the sample injection. After each
biosensor cycle, a bound analyte was removed with two-times injection of regenerating
solution (2 M NaCl, 1% CHAPS) at a flow rate of 30 µL/min for 30 s.

SPR sensorgrams were processed in Biacore T200 Evaluation Software v.1.0 (GE
Healthcare) and BIAevaluation Software v 4.1.1 (GE Healthcare) using “1:1 (Langmuir)
binding” and “Two-state (conformational change) binding” data processing models. The
1:1 (Langmuir) binding model is a model for the 1:1 interaction between compound (C)
with immobilized protein (P), and is equivalent to the Langmuir isotherm for adsorption
to a surface: C + P↔ CP. Two-state (conformational change) binding model describes a 1:1
binding of compound (C) to immobilized protein (P) followed by a conformational change
in the complex (CP↔ CP*). It is assumed that the conformationally changed complex can
dissociate only through the reverse of the conformational change: C + P↔ CP↔ CP*. The
final kinetic parameters were obtained from the models with best fit of the experimental
curves according to the minimum of the obtained chi2 value. The equations describing
used models are as follows:

(1) 1:1 (Langmuir) binding [57]: Kd =
ko f f
kon

, where Kd—equilibrium dissociation constant,
koff—dissociation rate constant, kon—association rate constant.

(2) Two-state (conformational change) binding [58]: Kd =
ko f f 1
kon1
× (1 + kon2

ko f f 2
)
−1

, where Kd—
equilibrium dissociation constant, koff1—dissociation rate constant, kon1—association
rate constant, kon2—forward rate constant for CP↔ CP* transition, koff2—backward
rate constant for CP↔ CP* transition.

4.3. Spectral Titration Analysis

Spectrophotometric titration was used to determine the apparent dissociation con-
stants (Kdapp) for the enzyme–ligand complexes. The spectral measurements were per-
formed on Cary Series UV-Vis-NIR (Agilent Technologies, Santa Clara, CA, USA) spec-
trophotometer using tandem quartz cuvettes (1 cm optical path) to exclude the absorption
of ligands. Natural substrate, lanosterol, at final concentration 5 µM was added before
the titration to the CYP51A1 (final concentration 4 µM) in 50 mM potassium phosphate
buffer, pH 7.4. For titration, the ligand solution was added to the experimental cuvette
(baicalein and luteolin 7,3′-disulfate were added up to a final concentration of 30 µM,
luteolin was added up to a final concentration of 15 µM) and an equal volume of solvent
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was added to the control cuvette. The difference spectra were recorded after each addition
of ligand at room temperature in the range of 350–500 nm. The apparent dissociation
constants were determined by plotting the absorbance changes in the difference spectra
versus the concentration of free ligand and evaluated by using the Hill equation (OriginPro
8.1 statistical data analysis package):

Aobs = Amax ×
(

S× n
Kdapp × n + S× n

)
,

where Aobs—the observed change in the absorption, Amax—the absorbance change at ligand
saturation, Kdapp—the apparent dissociation constant for the ligand–enzyme complex,
S—the ligand concentration, n—a Hill coefficient.

4.4. Enzyme Assay

Lanosterol 14-alpha-demethylase activity of human CYP51A1 was determined at 37 ◦C
in 50 мM KPB, 4 mM MgCl2, 0.1 mM DTT in presence of lipids (0.15 мg/mL mixture 1:1:1
of L-α-dilauroyl-sn-glycero-3-phosphocholine, L-α-dioleoyl-sn-glycero-3-phosphocholine
and L-α-phosphatidyl-L-serine). The final concentrations of CYP51A1 and CPR were 0.5
and 2.0 µM, respectively. Aliquots of concentrated recombinant proteins were mixed and
preincubated for 5 min at room temperature. Lanosterol (10 mM stock solution in ethanol)
was added to the reaction mixture at a final concentration of 50 µM. Tested compounds
were added to the reaction mixture at a final concentration of 25 µM. To estimate the
apparent IC50, the following concentrations of luteolin 7,3′-disulfate were used: 5, 10, 25,
50 and 100 µM. Ketoconazole at a concentration of 5 µM was used as a positive control.
After 10 min of preincubation at 37 ◦C, the reaction was started by adding NADPH at a
final concentration of 0.25 mM. Aliquots (0.5 mL) were taken from the incubation mixture
at chosen time intervals. Steroids were extracted with 5 mL of ethyl acetate. The mixture
was vigorously mixed, the water and organic phases were separated by centrifugation at
3000 rpm for 10 min. The organic layer was carefully removed and dried under argon
flow. A total of 50 µL of methanol was added to the pellet and steroids were analyzed on a
computerized Agilent 1200 series HPLC instrument (Agilent Technologies, USA) equipped
with Agilent Triple Quad 6410 mass spectrometer (Agilent Technologies). Samples were
analyzed by gradient elution on Zorbax Eclipse XDB C18 column (4.6 × 150 mm; 5 µm)
(Agilent Technologies). A total of 0.1% (v/v) FA in water was used as the mobile phase A
and 0.1% (v/v) FA in methanol:1-propanol mix (75:25, v/v) as mobile phase B. The gradient
was 75–100% B in 0–5 min. The flow rate was 500 µL per min. The column temperature was
maintained at 40± 1 ◦C. Mass spectrometry experiments were performed with atmospheric
pressure chemical ionization source (APCI) at positive ion mode. The following APCI
settings were used: gas temperature 200 ◦C, vaporizer 250 ◦C, gas flow 7 L/min, nebulizer
pressure 40 psig, Vcap 4000 V, corona 4 µA, fragmentor 100 V. The data acquisition mode
was MS2Scan from 200 to 550 Da.

4.5. Molecular Docking

Crystal structure of CYP51A1 PDB ID 3LD6 was used for docking. 3D structures
of luteolin (CID 5280445) and luteolin 7,3′-disulfate (CID 44258153) were obtained from
the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on 7 November
2020). Removal of water and ligand molecules from the original protein PDB files and
molecular docking over the entire surface of CYP51A1 were performed automatically in
the Flare software package (Cresset, Litlington, UK) with default settings [59]. Docking
hypotheses were arranged according to score functions values: Lead Finder (LF) Rank
Score, LF dG, LF VSscore. The lower is the LF Rank Score, the higher is the likelihood
that the docked pose reproduces the crystallographic pose. LF dG has been designed
to perform accurate estimation of the free energy of protein–ligand binding for a given
protein–ligand complex. LF VSscore has been designed to produce maximum efficiency in

https://pubchem.ncbi.nlm.nih.gov/
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virtual screening experiments, i.e., to assign higher scores to active ligands (true binders)
and lower scores to inactive ligands. Molecular graphics visualization tool Maestro version
12.5.139 (Schrödinger, New York, NY, USA) was used to analyze the selected docking
hypotheses.

5. Conclusions

In this work, we identified a new ligand of human CYP51A1 among natural flavonoid—
luteolin 7,3′-disulfate—that inhibits 14α-demethylase activity. Potential inhibitory mecha-
nisms include blocking of either a substrate access channel or the interaction with a redox
partner. Obtained results suggest further exploration of polyphenols for the cholesterol
lowering ability and anti-cancer potential via CYP51A1.
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