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algorithm for quorum planted motif search
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Abstract

Background: Given a set of t n-length DNA sequences, q satisfying 0 < q ≤ 1, and l and d satisfying 0≤ d < l < n,
the quorum planted motif search (qPMS) finds l-length strings that occur in at least qt input sequences with up to
d mismatches and is mainly used to locate transcription factor binding sites in DNA sequences. Existing qPMS
algorithms have been able to efficiently process small standard datasets (e.g., t = 20 and n = 600), but they are too time
consuming to process large DNA datasets, such as ChIP-seq datasets that contain thousands of sequences or more.

Results: We analyze the effects of t and q on the time performance of qPMS algorithms and find that a large t or a small q
causes a longer computation time. Based on this information, we improve the time performance of existing qPMS
algorithms by selecting a sample sequence set D’ with a small t and a large q from the large input dataset D and then
executing qPMS algorithms on D’. A sample sequence selection algorithm named SamSelect is proposed. The experimental
results on both simulated and real data show (1) that SamSelect can select D’ efficiently and (2) that the qPMS algorithms
executed on D’ can find implanted or real motifs in a significantly shorter time than when executed on D.

Conclusions: We improve the ability of existing qPMS algorithms to process large DNA datasets from the perspective of
selecting high-quality sample sequence sets so that the qPMS algorithms can find motifs in a short time in the selected
sample sequence set D’, rather than take an unfeasibly long time to search the original sequence set D. Our motif discovery
method is an approximate algorithm.
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Background
DNA motif discovery is a key factor in locating regula-
tory elements (e.g., transcription factor binding sites) in
DNA sequences [1–4]. The quorum planted motif
search (qPMS) [5, 6], a widely studied formulation for
motif discovery, defines a motif as an l-length string
(l-mer) m that occurs in at least qt out of t n-length
(n > l) input sequences with up to d (0 ≤ d < l) mis-
matches, where q (0 < q ≤ 1) is the proportion of the
input sequences containing motif occurrences; m and its
occurrences in the sequences are called an (l, d) motif
and its instances, respectively. Given a set of t n-length
DNA sequences D= {s1, s2, …, st} containing a motif m
and the parameters l, d and q describing m, the task of

qPMS is to find all (l, d) motifs present in D such that m
must exist in the found motifs.
qPMS is NP-complete [7]. Over the past two decades,

there have been many studies on qPMS algorithms
[8–11]. The qPMS algorithms are based on searching
possible combinations of motif instances or possible
candidate motifs and are either sample driven or pat-
tern driven. The sample-driven qPMS algorithms,
such as WINNOWER [5], DPCFG [12] and RecMotif
[13], have an initial search space of (n – l + 1)tt-tuples
(x1, x2, …, xt) in the case of q = 1; each t tuple is
composed of t l-mers from t input sequences, i.e., a
group of possible motif instances. The pattern-driven
qPMS algorithms have an initial search space of 4l

candidate motifs and verify if each candidate motif is
an (l, d) motif. Because of the much smaller initial
search space, the pattern-driven qPMS algorithms* Correspondence: hwhuo@mail.xidian.edu.cn
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usually exhibit better time performance than the
sample-driven qPMS algorithms.
The time performance of the pattern-driven qPMS

algorithms depends mainly on two aspects: the number
of candidate motifs and the efficiency of candidate motif
verification. To speed up candidate motif verification,
the suffix tree-based pattern driven (stpd) qPMS algo-
rithms, such as Speller [14], Weeder [15], RISOTTO
[16] and FMotif [17], construct a suffix tree of input
sequences. The basic procedure for verifying a candidate
motif m is then as follows: match m along different
paths from the suffix tree root and record the current
number of mismatches e on each path; if e is greater
than d, then terminate the match on the corresponding
path; and if the l-length paths with e ≤ d correspond to a
group of strings that can span at least qt input
sequences, then m is determined to be an (l, d) motif.
With a focus on reducing the number of candidate

motifs, some algorithms combine the sample-driven and
pattern-driven approaches. These are called sample-pat-
tern-driven (spd) qPMS algorithms. In the sample-driven
phase, these algorithms use t – qt + h reference se-
quences, which must contain at least h motif instances,
and traverse all the h-tuples (x1, x2, …, xh) in these refer-
ence sequences. An h-tuple consists of h l-mers from
different reference sequences, i.e., a group of h possible
motif instances. In the pattern-driven phase, these algo-
rithms generate common d-neighbors of each h-tuple (a
d-neighbor of an h-tuple is an l-mer y such that the
Hamming distance between y and each l-mer xi in the
h-tuple is less than or equal to d), and take them as can-
didate motifs to verify one by one. The existing spd
qPMS algorithms can be classified according to the dif-
ferent values of h, as follows: PMSP [18] and PMSprune
[6] have h = 1, PairMotif [19], qPMS7 [20] and TravStrR
[21] have h = 2, iTriplet [22] and PMS5 [23] have h = 3,
and PMS8 [24] and qPMS9 [25] have h ≥ 3.
The existing qPMS algorithms currently perform well

when processing traditional standard DNA datasets [5]
(e.g., t = 20, n = 600), even for challenging (l, d) problem
instances [26]. However, these algorithms encounter bot-
tlenecks when processing large DNA datasets, such as
the ChIP-seq datasets [9, 27], which typically contain
thousands of DNA sequences or even more. ChIP-seq
datasets enable the identification of transcription factor
binding sites within the genome but present a significant
computational challenge for qPMS. First, the sample-
driven qPMS algorithms undergo a combinatorial explo-
sion because the search space grows exponentially with
the number t of DNA sequences. Second, for the stpd
qPMS algorithms, the running time shows quadratic
growth as t increases and also increases as q decreases
(see the analysis in the section Why to Select Sample Se-
quences). Third, for the spd qPMS algorithms, there are

too many h-tuples to be considered in the t – qt + h ref-
erence sequences, greatly extending the time required.
Therefore, it is necessary to accelerate the existing qPMS
algorithms for large DNA datasets.
As described above, the time performance of the

qPMS algorithms is affected by both the number t of
input sequences and the proportion q of the input
sequences containing motif instances; specifically, a large
t or a small q will increase the computation time for
both the stpd and the spd qPMS algorithms. Consider a
dataset D of a motif m such that there are qt sequences
containing instances of m in a total of t sequences and a
subset D’ of D such that there are q’t’ sequences contain-
ing instances of m in a total of t’ sequences, satisfying 0
< t’ < t and 1 ≥ q’ > q > 0. It is not difficult to find that
when a qPMS algorithm is executed on D and D’ separ-
ately, the motif m can be found in both cases, and
the running time on D’ can be significantly smaller
than that on D. Based on this consideration, given a
large DNA dataset D, one way to effectively improve
the time performance of qPMS algorithms is to select
a portion of the sequences from D to form a sample
sequence set D’, making the proportion of the se-
quences containing motif instances higher in D’ than
in D, and then execute qPMS algorithms on D’ to
perform motif discovery.
In this paper, we analyze why the selection of sample

sequences for the qPMS algorithms is important. Then,
we propose a method of selecting sample sequences.
Additionally, we use both simulated data and real data
to validate the ability of the qPMS algorithms to perform
motif discovery on the selected sample sequences, i.e.,
whether they can find the implanted or real motifs in a
significantly shorter time.

Methods
Why to select sample sequences
The notations frequently used in this paper are summa-
rized in Table 1.
Fixing (l, d) and the length n of a single sequence, we

analyze the effects of the number t of input sequences
and the proportion q of the input sequences containing
motif instances on the time performance of qPMS algo-
rithms. We analyze the stpd and the spd qPMS
algorithms.
The stpd qPMS algorithms construct a suffix tree of t

n-length input sequences [14]. In the tree, each edge is
labeled with a non-empty substring of the input
sequences, and each node v corresponds to a string strv
representing the concatenation of the substrings on the
path from the root of tree to v. If v is a leaf, then strv is
a suffix of input sequences; otherwise, strv is a common
prefix of the suffixes represented by all leaves under v.
The suffix tree has exactly tn leaves, representing tn
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suffixes of input sequences. For each node v of the tree, the
IDs of sequences in which strv occurs exactly are stored by
using a vector of t bits for good storage efficiency.
In addition to the suffix tree, these algorithms also use

a pattern tree, a complete quadtree of depth l represent-
ing all the patterns over Σ with length ranging from 1 to
l. Then, they perform a depth-first search on the pattern
tree. When visiting a node v corresponding to a pattern
p, they use the suffix tree to obtain the IDs of sequences
in which all d-neighbors of p occur exactly, i.e., the IDs
of sequences in which p occurs with up to d mis-
matches. If the number of the sequence IDs obtained is
greater than or equal to qt and the length of p is less
than l, they continue to visit the children of v corre-
sponding to the patterns pb (b ∈ Σ) and otherwise prune
the subtree of v. Finally, they output all the l-length
patterns that span at least qt sequences.
The time and space complexity of the stpd qPMS algo-

rithms can be evaluated as follows [14]. The suffix tree
of t n-length sequences has tn leaves and thus up to tn
nodes of l-length strings; for each such node v in the
suffix tree, at most |Bd(strv)| patterns in the pattern tree
have up to d mismatches with strv; for each such pattern
y, when it is verified as a candidate motif, the node v needs
to be visited once, and the binary OR operation is exe-
cuted on the vector of t bits in O(t) time. Therefore, the
time complexity is O(t2n|Bd(strv)|), which is approximately
O(t2nld4d). Since a vector of t bits is stored in each of

O(tn) nodes of the suffix tree, the space complexity is
O(t2n/w), where w is the word size of the computer.
We find that t has a strong effect on both the time

and space performance of the stpd qPMS algorithms,
i.e., both the running time and the storage space show
quadratic growth as t increases. Furthermore, although q
does not appear in the time complexity evaluated above,
it also affects the time performance because it affects the
pruning efficiency when searching the pattern tree. As
described above, the subtree of a node v corresponding
to a pattern p that cannot span at least qt sequences is
pruned. If q is small, then p has a higher probability
Pspan of spanning at least qt sequences (Pspan is calcu-
lated by (1), where Pd is the probability that the Ham-
ming distance between two random l-mers is less than
or equal to d), which is detrimental to pruning. There-
fore, the smaller the value of q, the higher is the compu-
tational time of the stpd qPMS algorithms.

Pspan ¼
Xt
i¼qt

t
i

� �
1− 1−Pdð Þ n−lþ1ð Þ
� �i

1−Pdð Þ n−lþ1ð Þ
� �t−i

ð1Þ

Pd ¼
Xd
i¼0

l
i

� � Pj j−1ð ÞiPj jl
ð2Þ

Table 1 Notations used in this paper

Notation Explanation

|x| The length of a string or the size of a set.

Σ The DNA alphabet, Σ = {A, C, G, T}.

l-mer An l-length string over Σ.

s[i] The ith character in the string s.

s[i..j] A substring of the string s from the ith position to the jth position.

s∙s’ The concatenation of two strings s and s’.

x ∈ls The string x is an l-length substring of the string s. In other words, x is an l-mer in the string s.

x ∈lD The string x is an l-length substring of the sequence set D. In other words, there exists s ∈ D such that x ∈ls.

D = {s1, s2, …, st}, t, n, q, l, d Notations for the input. D is the input DNA sequence set, where each sequence si is an n-length string over
Σ; t = |D|; n = |si| for 1 ≤ i≤ t; q is the proportion of the input sequences containing motif instances in D; l is the
motif length and d is the maximum number of mismatches between a motif and its instance.

D’, t’, q’ Notations for the output. D’ is a sample sequence set selected from D, i.e., D’ ⊂ D; t’ = |D’|; q’ is the proportion of
the input sequences containing motif instances in D’.

countk(x) The count (number of occurrences) of a string x in D with up to k mismatches, represented by (4).

count(x) The count (number of occurrences) of a string x in D.

dH(y, x) The Hamming distance between two strings y and x of equal length.

Bk(x) The set of k-neighbors of a string x, i.e., the set of strings with Hamming distance no more than k from
x. Bk(x) = {y: y ∈ Σ|x|, dH(y, x) ≤ k}.

stn(y) The integer obtained by conversion from a string y over Σ. The characters A, C, G and T are converted to
binary numbers 00, 01, 10 and 11, respectively. Because of the need to compute countk(y), y is first reversed and
then converted to an integer. For example, if y = AC, then y is converted to the binary number 0100, i.e., the decimal
number 4.
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The time performance of the spd qPMS algorithms de-
pends mainly on the number of generated candidate mo-
tifs. These algorithms use all h-tuples in t – qt + h
reference sequences to generate candidate motifs. That
is, they must consider all possible combinations of h ref-
erence sequences in t – qt + h reference sequences; the
number of possible combinations is denoted by Ncom

and calculated by (3). For a given algorithm, the value of
h (h ≥ 1) is generally fixed, so Ncom is mainly affected by
t and q. Obviously, when t increases or q decreases, Ncom

will increase, leading to more candidate motifs and a
higher computation time.

Ncom ¼ t−qt þ h
h

� �
¼

Yh
i¼1

t−qt þ ið Þ

h!
ð3Þ

Based on the above analysis, both t and q have the
same effect on the stpd qPMS algorithms as on the spd
qPMS algorithms: a large t or a small q will increase the
computation time. Large DNA datasets, such as
ChIP-seq datasets (see Tables 2 and 3), typically contain
thousands DNA sequences or even more; that is, t is
very large. On the other hand, the proportion of se-
quences containing motif instances is not large, that is, q
is small. The two aspects make qPMS algorithms too
time consuming to process large DNA datasets.
One way to effectively improve the time performance

of qPMS algorithms is to select a sample sequence set D’
with a larger proportion of sequences containing motif in-
stances from the given dataset D and then to execute
qPMS algorithms on D’ to perform motif discovery. Ac-
cordingly, the problem to be solved is described as follows.

Sample sequence selection problem
Given a set of t n-length DNA sequences D= {s1, s2, …,
st} containing instances of a motif m, along with the pa-
rameters l, d and q describing m (see Table 1 for the ex-
planation of these parameters), the task is to select a
portion of the sequences from D to form a sample se-
quence set D’ (let t’ = |D’|, and let q’ be the proportion

of sequences containing instances of m in D’), so that t’
< t and q’ > q.

How to select sample sequences
Basic concept
Because of the conservation of DNA motifs, the
instances of a particular motif are similar to each other.
Thus, if a substring x in the input sequences overlaps a
motif instance, the occurrence frequency of x is gener-
ally higher than that of a substring y with |y| = |x| in the
background sequences. Based on this difference in fre-
quency, our basic idea is to convert the problem of
selecting sample sequences containing motif instances
into the problem of selecting sample sequences contain-
ing high-frequency substrings. That is, we test whether a
sequence contains a high-frequency substring to deter-
mine whether the sequence contains a motif instance.
Since most of the motif instances are similar but not

exactly the same, the occurrence frequency of a sub-
string x is evaluated by the count of x in D with up to k
mismatches, denoted by countk(x), i.e., the number of
substrings y in D satisfying dH(y, x) ≤ k. Notably, the
time complexity of computing countk(x) for a sub-
string x grows dramatically as k increases; moreover,
we need to compute countk(x) for all substrings of a
specified length w in the input sequences. Therefore,
the value of k cannot be large if good time complex-
ity is to be achieved. When k is small, the length w
should also be small to obtain enough substrings
overlapping motif instances.
The length w is generally smaller than the motif

length l, and a motif instance in a sequence may
produce multiple overlapped high-frequency w-mers.
Therefore, after fetching high-frequency w-mers, a
step is needed to combine multiple overlapped
w-mers into one high-frequency substring. The length

Table 2 Real datasets selected from the ENCODE TF ChIP-seq data

Dataset Motif (l, d) t q

egr1 CCGCCCCCGCA (11, 3) 15,400 0.68

elf1 AACCCGGAAGT (11, 3) 8611 0.54

hnf4 GGGTCAAAGTCCA (13, 4) 11,045 0.53

myc ACCACGTGCTC (11, 3) 4542 0.49

nfy ACTAACCAATCAG (13, 4) 9781 0.44

sp1 GGGGCGGGG (9, 2) 14,779 0.52

srf TGACCATATATGGTC (15, 5) 4903 0.36

yy1 CGGCCATCT (9, 2) 2077 0.49

Table 3 Real datasets in the mESC data

Dataset Motif (l, d) t q

c-Myc GCACGTGGC (9, 2) 3422 0.60

CTCF CCACCAGGGGGCG (13, 4) 39,601 0.58

Esrrb GGTCAAGGTCA (11, 3) 21,644 0.54

Klf4 GGGTGTGGC (9, 2) 10,872 0.61

Nanog CCTTGTCATGC (11, 3) 10,342 0.26

n-Myc GCACGTGGC (9, 2) 7181 0.57

Oct4 CATTGTTATGCAAAT (15, 5) 3775 0.29

Smad1 CCTTTGTTATGCA (13, 4) 1126 0.36

Sox2 CATTGTTATGCAAAT (15, 5) 4525 0.39

STAT3 TTCCCGGAA (9, 2) 2546 0.61

Tcfcp2I1 CCGGTTCAAACCG (13, 4) 26,907 0.29

Zfx GCTAGGCCGCG (11, 3) 10,336 0.49
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of the combined high-frequency substrings may not
be equal but is generally greater than l. A
high-frequency substring is expected to cover a motif
instance.
Furthermore, the obtained high-frequency substrings

need to be grouped. To guarantee a large value of q’, a
sample sequence set is expected to contain only
instances of a single motif. However, the input sequences
may contain multiple motifs and the disturbance of ran-
dom high-frequency substrings; that is, in general, the
obtained high-frequency substrings are composed of
instances of multiple motifs and some random high-fre-
quency substrings. Therefore, we use a clustering method
to divide the obtained high-frequency substrings into
groups and thus may obtain two or more high-quality
sample sequence sets so that a sample sequence set exists
corresponding to the motif to be found.
Based on these considerations, SamSelect consists of the

following three steps: i) word count with mismatches,
used to fetch high-frequency w-mers; ii) high-frequency
substring obtainment, used to obtain high-frequency sub-
strings by combining overlapped w-mers; and iii) high-fre-
quency substring grouping, used to obtain sample
sequence sets by clustering high-frequency substrings.

Word count with mismatches
We compute countk(x) for all w-mers x in the input se-
quences. Given a w-mer x, countk(x) is represented as

countk xð Þ ¼
X
y∈wD

Iy; ð4Þ

where Iy is an indicator variable and it is 1 if dH(y, x) ≤ k,
0 otherwise.
Our method for computing countk(x) is based on the

count operation (computing the number of occurrences
of a string y in D, i.e., count(y)) of FM-Index [28]. That
is, countk(x) is converted into the sum of the number of
occurrences of all k-neighbors of x:

countk xð Þ ¼
X

y∈Bk xð Þ
count yð Þ: ð5Þ

FM-Index is a self-indexed data structure. Let [Ly, Ry]
denote the ranking interval of the suffixes of input se-
quences prefixed by a string y. With [Ly, Ry], count(y) =
Ry– Ly + 1 can be obtained immediately. The process of
computing [Ly, Ry] is to traverse w characters of y from
right to left (i.e., backward search); when the ith (1 ≤ i ≤
w) character y[i] is visited, the interval [Lφ, Rφ] for φ =
y[i..w] is obtained in O(log|Σ|) time based on the inter-
val [Lφ’, Rφ’] for φ’ = y[i + 1..w] through FM-Index. Thus,
count(y) is computed in O(wlog|Σ|) time.
The count of a single w-mer can be computed effi-

ciently with FM-Index, but if we obtain countk(x) by

independently computing the count of each w-mer in
Bk(x), then the backward search on the common suffixes
of w-mers in Bk(x) will be performed repeatedly. For
example, when computing count1(x) for a 3-mer x =
ACG, if we independently compute the counts of the
four 3-mers ACG, CCG, GCG and TCG in B1(x), then
the backward search on the common suffix CG will be
performed four times. Moreover, our goal is to obtain
countk(x) for all w-mers x in the input sequences, making
the number of repeated backward searches even larger.
To address this problem, we design a method to

minimize the number of repeated backward searches. As
shown in Fig. 1, we first efficiently compute the values
of count(y) for all w-mers y in the input sequences by
using Algorithm 1 and store them in a Table T of size
4w, where T[i] stores the value of count(y) for the w-mer
y with stn(y) = i; then, we obtain countk(x) for a given
w-mer x by querying T |Bk(x)| times and summing
T[stn(y)] for each y in Bk(x). In Algorithm 1, we obtain T
by searching a quadtree of depth w. The leaves and in-
ternal nodes of the quadtree correspond to all w-length
strings over Σ and their common suffixes, respectively.
All elements in T are initialized to zero; in searching the
quadtree, when the value of count(y) for a w-mer y is
greater than zero, T[stn(y)] is updated to count(y).

Algorithm 1 is able to minimize the number of re-
peated backward searches. When an arbitrary node v of
the quadtree is being visited (let φ be the string corre-
sponding to v), the interval [Lφ’, Rφ’] for φ’ = φ[2..|φ|] has
already been obtained, and only O(log|Σ|) time is needed

Yu et al. BMC Bioinformatics  (2018) 19:228 Page 5 of 16



to obtain the interval [Lφ, Rφ] for φ. Therefore, for all
strings with a common suffix φ, the backward search on
the suffix φ is only executed once. Moreover, we use
pruning technology in the search process. Once count(φ)
for a string φ that corresponds to a node v is 0, the sub-
tree of v is pruned.
To guarantee good space and time performance of

word count with up to k mismatches, it is necessary
to select appropriate values of w and k. Except for
building FM-Index, which is not affected by w and k,
the space complexity is O(4w), which is mainly used
to store the Table T. The time complexity Tcount de-
pends on two parts, T1 and T2. T1 is involved in
building T by visiting every node of the w-depth
quadtree in the worst case. T2 is used to compute

countk(x) for each w-mer x in t n-length sequences by
querying T |Bk(w-mer)| times.

T count ¼ O T 1 þ T 2ð Þ

¼ O
Xw
i¼0

4w log Σj j þ tn Bk w−merð Þj j
 !

¼ O
Xw
i¼0

4w log Σj j þ tn
Xk
i¼0

w
i

� �
Σj j−1ð Þi

 !

ð6Þ
Because k affects the time T2, it is expected to be

kept as small as possible; on the other hand, since
the instances of a particular motif are a group of sub-
strings similar to each other, it is more meaningful

Fig. 1 Illustration of word count with mismatches. This figure shows an illustration of word count with up to k mismatches
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that k is greater than or equal to 1. The value of w
affects both the space and time performance of the
word count with up to k mismatches. According to
empirical studies, w should be less than 15 to guaran-
tee good performance by a personal computer. In
SamSelect, we set w and k to 12 and 1, respectively.
With this setting, in addition to the guarantee of
good space and time performance, we would also like
to obtain more motif information, as the probability
analysis shows that count1(12-mer) for a motif in-
stance is significantly larger than that for a back-
ground substring [29].

High-frequency substring obtainment
We use high-frequency substrings in input sequences to
represent the corresponding sequences, and make the
following considerations for obtaining high-frequency
substrings. First, we select the w-mers x in input se-
quences with countk(x) greater than a certain threshold f,
combine the overlapped w-mers to one substring and
store the substrings of length greater than or equal to l
in a set A. Second, to guarantee good time performance
of the substring clustering in the next step, we set the
total number of substrings to no more than 5000,
which is much larger than the number of outputted
sample sequences; if we obtain more than 5000
substrings, we will increase f repeatedly by a small
amount. Third, we need to segment long high-fre-
quency substrings because they may contain instances
of two or more adjacent different motifs. This div-
ision guarantees that the substrings in a particular
group correspond to the instances of the same motif;
after segmentation, we store the substrings of length
greater than or equal to l to a set A’.
The overall process of this step is shown in Fig. 2. The

initial value of threshold f is set to the sum of Nr and
Nm, where Nr and Nm are countk(w-mer) for a back-
ground substring and a motif instance for a random
case, respectively; the calculation method of Nr and
Nm is given in [29]. For any two overlapped w-mers,
if the length of the overlap is greater than or equal to
w/2, we combine the two w-mers into one substring.
Notably, some substrings are obtained by combining
more than two overlapped w-mers (e.g., the substring
of st in Fig. 2).
Next, we describe how to segment substrings. We first

give some definitions. A |φ| – l + 1 size table denoted by
attractTableφ is built for each substring φ in A. To ex-
plain this table, we define the distance dis(φ, φ’) between
two given substrings φ and φ’ as the minimum Ham-
ming distance between two l-mers x ∈lφ and x’ ∈lφ’;
dis(φ, φ’) is calculated by (7). The ith element of the
table attractTableφ[i] is calculated by (8), where

minPosφ(φ’) is the set of all positions of the l-mers in φ
leading to dis(φ, φ’).

dis φ;φ
0� �

¼ min
x∈lφ;x 0 ∈lφ 0 dH x; x

0� �
ð7Þ

attractTableφ i½ � ¼ φ
0
: φ

0
∈A− φf g; i∈minPosφ φ

0� �n o��� ���
ð8Þ

minPosφ φ
0� �

¼ arg min
1≤ i≤ φj j−lþ1

dis φ i…iþ l−1½ �;φ 0� �
ð9Þ

The process of segmenting a substring φ is given in
Algorithm 3. Let x be the l-mer in φ with the pos-
ition of the maximum element in attractTableφ. Since
some deviations may occur between the position of x
and that of the corresponding motif instance, we cut
out x from φ and form a new substring by extending
up to 3 characters from both the left and the right
side of x. After cutting out x, if the length of the
remaining left/right part of φ is still greater than or
equal to l, we recursively segment the remaining left/
right part of φ.

The computation time of this step is mainly deter-
mined by the following two aspects. First, we scan all
w-mers in the entire dataset in O(tn) time to obtain the
initial high-frequency substrings and store them to the
set A. Second, in segmenting substrings, we need to cal-
culate the distance between each pair of substrings in A
in O(L2) time, where L is the average length of the sub-
strings in A. Therefore, the time complexity of this step
is O(tn + |A|2 L2).
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Fig. 2 Illustration of obtaining high-frequency substrings. This figure illustrates the process of obtaining high-frequency substrings. Nr and Nm are
countk(w-mer) for a background substring and a motif instance in the random case, respectively
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High-frequency substring grouping
We mainly use the clustering method to obtain sample
sequence sets. The process is described in Algorithm 4,
which includes three stages.

In the first stage (line 1), we cluster the high-frequency
substrings to distinguish substrings corresponding to dif-
ferent motifs. The AP algorithm [30] is used for clustering;
it can automatically determine the number of clusters and
obtain cluster centers. For each cluster, we take the cluster
center as the substring that is most similar to the motif
and use it to filter out random high-frequency substrings
in the cluster. In clustering, the similarity sim(φ, φ’) be-
tween two substrings φ and φ’ is evaluated as follows.

sim φ;φ
0� �

¼
−dis φ;φ

0� �
; if dis φ;φ

0� �
≤2d

−dis φ;φ
0� �

� 10; otherwise

8<
: ð10Þ

In the second stage (lines 2 to 11), the resulting clusters
are combined, since multiple clusters may correspond to
the same motif. For two clusters c and c’ (|c| ≥ |c’|), we use
the cluster center φ of c to compare each substring φ’ in
c’; in terms of (11), if the number of φ’ satisfying dis(φ,
φ’) ≤ d is significantly larger than the number under ran-
dom case Pd|c’|, we combine c and c’. Multiple clusters
are combined by using a greedy strategy.

φ
0
: φ

0
∈c

0
; dis φ;φ

0� �
≤d

n o��� ��� > Pd c
0�� ��þ 20% c

0�� �� ð11Þ

In the third stage (lines 12 to 17), we obtain sample se-
quence sets. For each cluster c, we sort the substrings in
c in ascending order according to their distance from
the cluster center and update c by keeping the first t’
substrings. The value of t’ is specified by the user and

should be less than or equal to the maximum number of
sequences containing motif instances qt. Then, to
maximize the possibility that c corresponds to a set of
motif instances, we use the following three rules in turn
to test c and filter out a portion of substrings to make c
satisfy these rules. Thus, the final value of t’ may be less
than the specified value. Finally, for each cluster c, after
filtering, we obtain a sample sequence set D’ consisting
of the input sequences from which substrings in c are
obtained. If we obtain two or more sample sequence
sets, we rank them in descending order by size, since a
large sample sequence set is more likely to contain a
highly conserved motif.

Rule 1
The distance between any two substrings in c is less than
or equal to 2d.

Rule 2
The distance between each substring in c and the cluster
center is less than or equal to 3d/2.
The reason for adopting these two rules is as follows.

For any two motif instances, their Hamming distance is
less than or equal to 2d. The cluster center usually con-
tains a motif instance of high conservation that is close
to the motif and at distance < d from the motif. There-
fore, a more stringent distance constraint (≤ 3d/2)
should be observed between each substring in c and the
cluster center.

Rule 3
The set c is a motif set.
The set c satisfying Rule 1 is called a pairwise bounded

set. If c is a set of motif instances, a consensus m should
exist such that the distance between m and each sub-
string in c is less than or equal to d; such set c is called a
motif set. A pairwise bounded set that is not a motif set
is called a decoy set.
The work of Boucher and King [31] shows a clear dif-

ference between the weight of motif sets and that of
decoy sets (the weight is calculated by (12)), so the ma-
jority of motif sets and decoy sets can be distinguished
with statistical methods. Specifically, for a given pairwise
bounded set c, if w(c) ≤ am or w(c) ≥ ad, where am and ad
(am < ad) are two thresholds obtained by statistical
methods, c is determined as a motif set or a decoy set.
Otherwise, an exhaustive method is required to deter-
mine whether c is a motif set. In our work, to maximize
the possibility that c is a motif set, it is determined as a
motif set if w(c) ≤ am; otherwise, ten substrings are re-
moved from c iteratively. We use the following method
to set the threshold am: randomly generate 1000 sam-
ples, each containing |c| motif instances; then, compute
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the mean μ and the standard deviation σ of the weights
of these samples; finally, set am to μ + σ.

w cð Þ ¼
X
φ;φ 0 ∈c

dis φ;φ
0� �

ð12Þ

For each obtained sample sequence set D’, t’ = |D’|, and
the value of q’ is set to 0.9 to 0.95 according to the in-
tensity of the disturbance information in the processed
data. Although we maximize the possibility that D’ cor-
responds to a motif set, q’ cannot be set to 1. The rea-
sons are as follows. First, the statistical method is used
to determine a cluster of substrings as a motif set. Second,
the distance between two substrings φ and φ’ is defined as
the minimum Hamming distance between two l-mers x
∈lφ and x’ ∈lφ’; thus, when the distance of φ is calculated
from different φ’, the l-mer in φ leading to dis(φ, φ’) may
not come from a fixed position, which also affects the ac-
curacy of determining a set as a motif set.
The computation time of this step is mainly deter-

mined by clustering the high-frequency substrings ob-
tained in the previous step, i.e., the substrings stored in
the set A’. To obtain the similarity matrix for clustering,
we need to calculate the distance between each pair of
substrings in A’ in O(L’2) time, where L’ is the average
length of the substrings in A’. Then, given the similarity
matrix, the time complexity of the AP clustering algo-
rithm is O(|A’|2r) [30], where r is the number of itera-
tions. Therefore, the time complexity of this step is
O(|A’|2(L’2 + r)).
The overall time complexity of SamSelect, denoted by

TSamSelect, is obtained by adding up the time complexity
of the three steps of SamSelect. Since each sequence
contains constant occurrences of high-frequency sub-
strings, the number of obtained high-frequency sub-
strings is O(t). Then, we have |A| =O(t) and |A’| =O(t).
According to empirical studies, we have L =O(l) and L’
=O(l). Therefore, TSamSelect is given as follows.

TSamSelect ¼ O
Xw
i¼0

4w log Σj j þ tn
Xk
i¼0

w
i

� �
Σj j−1ð Þi þ t2l2

 !

ð13Þ

Results and discussion
Data, experimental setting and evaluation
Both the simulated data and real data are used in our
experiment. The simulated data are generated as follows
[5]: randomly generate t n-length DNA sequences and
an l-length motif m; then, randomly select qt sequences,
each implanted with a random instance m’ of m in a
random position. The Hamming distance between m
and m’ is less than or equal to d. To control the motif
conservation, an instance m’ of m is generated as fol-
lows: randomly select d positions of m, and then, for

each selected position i, change m[i] to a different char-
acter with probability g; a large g leads to lower motif
conservation.
According to the settings of (l, d), t, q and g, three

groups of simulated datasets are generated. The first
group of simulated datasets is used to test qPMS algo-
rithms under different (l, d) problem instances by fixing
t = 3000 and q = 0.5, varying (l, d) from (9, 2) to (19, 7)
and taking g as 0.2, 0.5 and 0.8 to represent high, inter-
mediate and low conservation, respectively. The second
group of simulated datasets is used to test qPMS algo-
rithms under different proportions of sequences contain-
ing motif instances by fixing (l, d) = (9, 2), t = 3000 and g
= 0.8 and varying q from 0.2 to 0.9. The third group of
simulated datasets is used to test qPMS algorithms with
a different scale of input by fixing (l, d) = (9, 2), g = 0.8
and q = 0.5 and varying t from 3000 to 10,000. For each
combination of (l, d), t, q and g, the result is the average
obtained on five randomly generated datasets.
Eight Homo sapiens datasets selected from the EN-

CODE TF ChIP-seq data [32] and twelve mouse datasets
in the mouse embryonic stem cell (mESC) data [33] are
used as the real data. As shown in Tables 2 and 3, these
datasets, each named for the corresponding transcrip-
tion factor, have different numbers t of sequences, ran-
ging from 1126 to 39,601. We use the following method
to obtain the proportion q of sequences containing motif
instances for each dataset: determine a consensus motif
m (see the second column of Tables 2 and 3) according
to the published motif (see Figs. 3 and 4), and set its
value of (l, d) to a challenge problem instance [25]; then,
scan the entire dataset using m to obtain the number Q
of sequences containing at least one occurrence of m
with up to d mismatches; finally, take q as Q/t. Note
that, the actual value of q will be less than Q/t because
the sequences contain random occurrences of m. We
find that, although more sequences in ChIP-seq datasets
than in traditional small datasets containing motif in-
stances, the proportion q of sequences containing motif
instances in ChIP-seq datasets is small. That is, a
ChIP-seq dataset contains many background sequences.
For the simulated data, the stpd qPMS algorithms

(FMotif [17]) and spd qPMS algorithms (TravStrR [21]
and qPMS9 [25]) are tested separately to verify the effect
of using the sample sequences. FMotif is designed to
handle ChIP-seq datasets based on the suffix tree,
whereas TravStrR and qPMS9 show good time perform-
ance when identifying motifs of large (l, d) on traditional
datasets. For the real data, since the qPMS algorithms
report the same results, we use a representative algo-
rithm FMotif to verify that we can find real motifs in a
reasonable time.
For each dataset D, the experiment uses SamSelect to

select the sample sequence sets D’ from D, and then
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qPMS algorithms are executed separately on D and D’.
When determining a sample sequence set D’, the
number of sample sequences t’ is set to 100, and the
proportion q’ of the sequences containing motif in-
stances in D’ is set to 0.95 and 0.9 under the simu-
lated and real data, respectively. Note that we use a
smaller q’ for real data because more disturbance in-
formation is present in real data. The experimental
environment is a 2.60 GHz 24-core platform with 64
Gbyte memory. SamSelect and FMotif are executed
on a single core. TravStrR and qPMS9 are executed
on 24 cores.
The sample sequence selection is evaluated in terms

of the following two goals. The first is to compute
the speedup of running time TD/Ts + TD’, where Ts is
the time of selecting sample sequences using

SamSelect, and TD and TD’ are the running time of a
particular qPMS algorithm on D and D’, respectively.
The speedup can be fairly large as the number of se-
quences grows. The second is to verify whether the
qPMS algorithms can find the implanted or real mo-
tifs m on D’; for FMotif, since it can output the rank
of the identified motifs, we also compare the rank of
m among the motifs obtained on D and that on D’.
Note that in the case of two or more D’, TD’ is the
total time on each D’. For the simulated data, the
rank of m among the identified motifs is obtained on
the first D’, since experimental results show that m is
always present in the first D’; for the real data, both
the rank of D’ containing m (denoted by D’m) among
all D’ and the rank of m among the motifs obtained
on D’m are reported.

Fig. 3 Results on the ENCODE TF ChIP-seq data. This figure shows the results on the eight Homo sapiens datasets selected from the ENCODE TF
ChIP-seq data
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Results of accelerating suffix tree-based pattern-driven
qPMS algorithms
Since the maximum number of sequences processed by
FMotif is limited to 3000, we only perform experiments
on the first and second groups of simulated datasets,
and the results are shown in Tables 4 and 5, respectively.
We find that using the sample sequences selected by
SamSelect to accelerate FMotif is effective. On the one
hand, for each dataset D, the implanted motif m can be
found on the selected sample sequence sets D’; in par-
ticular, the rank of m among the (l, d) motifs obtained
on D’ can hold that on D, except for a few cases with a
slight rise. On the other hand, the execution of FMotif

on D’ achieves a good speedup (in some cases, the
speedup can be more than 200); moreover, the running
time of SamSelect is very small, generally negligible rela-
tive to the running time of qPMS algorithms on D.
We perform the following further analysis according

to the results. First, the use of D’ can effectively reduce
the effect of (l, d) on the time performance of FMotif.
As shown in Table 4, although the running time of FMo-
tif increases dramatically with increasing (l, d), which is
easily explained by the time complexity of the stpd
qPMS algorithms, the largest (l, d) problem instances
processed by FMotif within 48 h on D and D’ are (15, 5)
and (19, 7), respectively. Second, the use of D’ can

Fig. 4 Results on the mESC data. This figure shows the results on the 12 mouse datasets in the mESC data
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effectively reduce the effect of q on the time perform-
ance of FMotif. As shown in Table 5, the running time
of FMotif increases as q decreases for D of the same size,
whereas FMotif executed on D’ can have efficient and
stable time performance because the sizes of D’ and q’
obtained by SamSelect are nearly fixed. Third, the

speedup is relatively small when processing small (l, d)
problem instances with large q (e.g., (l, d) = (9, 2) and q
= 0.9). In this case, the running time of SamSelect is lar-
ger than that of the FMotif executed on D’ but still
smaller than that of FMotif executed on D. Finally, as
shown in Table 4, for a particular (l, d), the higher
the conservation of implanted motifs the larger the
running time of SamSelect. This difference occurs be-
cause a high conservation of implanted motifs leads
to the accumulation of more substrings to be clus-
tered, thus increasing the time cost of clustering.
We also perform experiments on the simulated datasets

of non-challenging (l, d) instances. Except for (l, d), the
settings of t, q and g for this group of simulated datasets
are the same as those for the first group of simulated data-
sets. The results are shown in Table 6. We find that using
the selected sample sequences to accelerate FMotif is also
effective for non-challenging (l, d) instances. It should be
noted that, the speedup is less than 1 for the (9, 1) in-
stance, which is a non-challenging instance with a small (l,
d). In this case, the running time of FMotif is small even
on the entire dataset and it is not necessary to further
accelerate FMotif using the selected sample sequences.

Table 4 Results of stpd qPMS algorithms on the first group of
simulated datasets

(l, d) Conservation Ts FMotif

TD RD TD’ RD’ Speedup

(9, 2) High 33.0 s 1.6 m 1 1.2 s 1 3

Intermediate 17.0 s 1.7 m 1 0.7 s 1 6

Low 12.8 s 1.7 m 1 0.5 s 1 8

(11, 3) High 26.8 s 21.1 m 1 7.0 s 1 37

Intermediate 18.0 s 21.1 m 1 6.0 s 1 53

Low 13.0 s 21.3 m 1 5.7 s 1 68

(13, 4) High 28.8 s 3.0 h 1 1.0 m 1.2 119

Intermediate 20.2 s 3.0 h 1 1.0 m 1 130

Low 13.0 s 3.4 h 1 56.2 s 1.2 174

(15, 5) High 29.4 s 37.7 h 1 10.4 m 1 208

Intermediate 20.2 s 34.1 h 1 9.6 m 1 207

Low 13.0 s 35.9 h 1 10.5 m 1 200

(17, 6) High 29.4 s N N 1.7 h 1.2 > 28

Intermediate 19.8 s N N 1.5 h 1 > 31

Low 13.0 s N N 1.3 h 1 > 36

(19, 7) High 32.0 s N N 17.3 h 1 > 3

Intermediate 21.0 s N N 15.9 h 1 > 3

Low 12.8 s N N 13.0 h 1 > 4

s seconds, m minutes, h hours, N no result because the running time exceeds
48 h; Ts: running time of SamSelect; TD and TD’: running time of a qPMS
algorithm on the original dataset D and the sample sequence sets D’,
respectively; RD and RD’: the rank of the implanted motif among the identified
motifs obtained on D and D’, respectively; speedup: TD / Ts + TD’

Table 5 Results of stpd qPMS algorithms on the second group
of simulated datasets

q Ts FMotif

TD RD TD’ RD’ Speedup

0.2 13.0 s 2.4 m 1 0.5 s 1 11

0.3 13.2 s 2.2 m 1 0.5 s 1 10

0.4 13.0 s 2.0 m 1 0.5 s 1 9

0.5 13.0 s 1.9 m 1 0.6 s 1 8

0.6 13.0 s 1.2 m 1 0.5 s 1 5

0.7 14.0 s 1.1 m 1 0.5 s 1 4

0.8 14.0 s 1.0 m 1 0.7 s 1 4

0.9 14.0 s 54.9 s 1 0.5 s 1 4

s seconds, m minutes, Ts: running time of SamSelect; TD and TD’: running time
of a qPMS algorithm on the original dataset D and the sample sequence sets
D’, respectively; RD and RD’: the rank of the implanted motif among the
identified motifs obtained on D and D’, respectively; speedup: TD / Ts + TD’

Table 6 Results on the simulated datasets of non-challenging
(l, d) instances

(l, d) Conservation Ts FMotif

TD RD TD’ RD’ Speedup

(9, 1) High 27.6 s 8.7 s 1 0.1 s 1 < 1

Intermediate 22.8 s 7.6 s 1 0.1 s 1 < 1

Low 15.8 s 7.7 s 1 0.2 s 1.2 < 1

(11, 2) High 21.2 s 2.1 m 1 1.1 s 1 6

Intermediate 15.4 s 2.0 m 1 0.9 s 1 7

Low 12.0 s 2.1 m 1 1.0 s 1 10

(13, 3) High 18.2 s 18.0 m 1 11.2 s 1.2 37

Intermediate 15.0 s 18.2 m 1 10.1 s 1 43

Low 12.0 s 18.1 m 1 9.7 s 1 50

(15, 4) High 18.2 s 3.4 h 1 1.7 m 1.2 102

Intermediate 15.0 s 3.4 h 1 1.6 m 1 111

Low 11.0 s 3.3 h 1 1.5 m 1 116

(17, 5) High 18.0 s 37.5 h 1 15.7 m 1 141

Intermediate 15.0 s 40.6 h 1 16.3 m 1 147

Low 10.8 s 38.8 h 1 13.8 m 1 166

(19, 6) High 21.0 s N N 2.9 h 1 > 17

Intermediate 16.2 s N N 2.3 h 1 > 21

Low 10.6 s N N 2.1 h 1 > 22

s seconds, m minutes, h hours, N no result because the running time exceeds
48 h; Ts: running time of SamSelect; TD and TD’: running time of a qPMS
algorithm on the original dataset D and the sample sequence sets D’,
respectively; RD and RD’: the rank of the implanted motif among the identified
motifs obtained on D and D’, respectively; speedup: TD / Ts + TD’
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Results of accelerating sample-pattern-driven qPMS
algorithms
Tables 7, 8 and 9 give the results of testing spd qPMS
algorithms (qPMS9 and TravStrR) on the first, second
and third groups of simulated datasets, respectively.
Since they output the same motifs as FMotif, they can
also find the implanted (l, d) motifs, and thus we mainly
consider their running time.
On the whole, both qPMS9 and TravStrR show poor

time performance on D, spending more than 48 h for all
(l, d) problem instances except small ones with large q.
Therefore, a large speedup on D’ is achieved. The use of
D’ can effectively reduce the effects of (l, d), q and t on
the time performance. Furthermore, we perform the
following analysis. First, as shown in Table 7, for a par-
ticular (l, d), spd qPMS algorithms require more time to
solve problem instances of high conservation because
the motif instances contained in D’ are more similar in
the case of high conservation, and too many h tuples
are needed to generate candidate motifs. Therefore,
it is not surprising that, for the case of (l, d) = (19,
7) with high conservation, qPMS9 executed on D’
still takes more than 48 h. Second, as shown in
Table 9, the running time of SamSelect increases
slightly as the data scale increases but is still very
small when t = 10,000.

Results on real data
We use FMotif to validate that qPMS algorithms identify
real motifs by using the selected sample sequence sets
D’. For the sake of fairness, a uniform parameter setting
is used for each data set D in the experiments: we set q
= 0.3, (l, d) = (13, 4) and t’ = 100 to execute SamSelect.
After obtaining D’, we set q’ = 0.9 and use FMotif to
search (13, 4) motifs in D’.
In Figs. 3 and 4, we give the experimental results, in-

cluding the running time of SamSelect, the running time
of FMotif on D’ and the predicted motifs. The found
motif that is most similar to the published motif is taken
as the predicted motif, shown in the form of a sequence
logo [34]. Let D’m denote the sample sequence set con-
taining the predicted motif. Figures 3 and 4 also show
the number of sample sequence sets obtained, the rank
of D’m (R1) and the rank of the predicted motif among
the motifs present in D’m (R2). For the real data, R2 is
obtained by sorting the motifs present in D’m in ascend-
ing order according to their enrichment P-value [35].
The sequence logo of the predicted motif is drawn by
using the substrings similar to the motif in the entire
dataset, i.e., the substrings with a Hamming distance no
more than d / 2 from the motif. We find that FMotif
executed on D’ can find the real motifs in a short time.
It should be noted that the rank R1 and R2 differ greatly

Table 7 Results of spd qPMS algorithms on the first group of simulated datasets

(l, d) conservation Ts qPMS9 TravStrR

TD TD’ Speedup TD TD’ Speedup

(9, 2) high 33.0 s N 2.3 s > 4895 N 0.3 s > 5189

intermediate 17.0 s N 1.8 s > 9191 N 0.2 s > 10,047

low 12.8 s N 1.7 s > 11,917 24.2 h 0.1 s 6766

(11, 3) high 26.8 s N 3.5 s > 5703 N 0.6 s > 6307

intermediate 18.0 s N 3.1 s > 8190 N 0.3 s > 9443

low 13.0 s N 3.0 s > 10,800 N 0.3 s > 12,992

(13, 4) high 28.8 s N 8.4 s > 46,456 N 2.8 s > 5468

intermediate 20.2 s N 7.6 s > 6216 N 1.9 s > 7819

low 13.0 s N 7.0 s > 8640 N 1.4 s > 12,000

(15, 5) high 29.4 s N 25.3 s > 3159 N 29.5 s > 2934

intermediate 20.2 s N 13.6 s > 5112 N 10.6 s > 5610

low 13.0 s N 12.5 s > 6776 N 5.6 s > 9290

(17, 6) high 29.4 s N 9.1 m > 300 N 6.4 m > 415

intermediate 19.8 s N 47.8 s > 2556 N 36.8 s > 3053

low 13.0 s N 16.1 s > 5938 N 14.0 s > 6400

(19, 7) high 32.0 s N N N N 1.1 h > 43

intermediate 21.0 s N 5.0 m > 541 N 4.5 m > 598

low 12.8 s N 30.7 s > 3972 N 42.1 s > 3148

s seconds, m minutes, h hours, N no result because the running time exceeds 48 h; Ts: running time of SamSelect; TD and TD’: running time of a qPMS algorithm
on the original dataset D and the sample sequence sets D’, respectively; speedup: TD / Ts + TD’
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on some of the real datasets. The reasons are as
follows. First, both the co-regulated motifs and the
spurious motifs can disturb finding the motif to be
identified. Second, the intensity of the disturbance,
which affects the rank R1 and R2, is usually different
for different datasets.

Applicability of SamSelect
Our motif discovery method is not an exact algorithm.
Although our method can find the implanted (l, d)
motif, it does not guarantee finding all (l, d) motifs
present in the entire dataset D. Besides the implanted (l,
d) motif, some spurious (l, d) motifs may also be present
in D by chance and are usually less conserved than the
implanted motif. Our method selects sample sequences
by mining high-frequency substrings, which are more
likely to be the instances of highly conserved motifs.
Therefore, it may miss some spurious (l, d) motifs.

Moreover, some reported motifs present in the sample
sequence set D’ may not be the (l, d) motifs present in
D, but it is not difficult to eliminate such motifs by veri-
fying them in D.
Our method is particularly designed for large DNA

sequence datasets. When processing traditional datasets
(t = 20, n = 600), the existing qPMS algorithms have
already performed well, even for challenging (l, d)
problem instances. Therefore, it is not necessary to use
our method to accelerate existing qPMS algorithms on
small datasets.
Moreover, the setting of q’ is discussed as follows. In

general, the proportion q of sequences containing motif
instances in large datasets is relatively small. For
example, the maximum value of q for the ChIP-seq data-
sets given in Tables 2 and 3 is 0.68. For the sample se-
quence set selected by our method, the value of q’ is set
to 0.9 to 0.95 as described in the section Methods.
When q > 0.95, we still use our method to select the
sample sequence set and set q’ = q. For a special case
when q = 1, the reported motifs present in the sample se-
quence set must contain all the (l, d) motifs present in
the entire dataset.

Conclusions
To address the problem that existing qPMS algorithms
are too time consuming for motif discovery on large
DNA sequence datasets, we propose an algorithm to se-
lect a sample sequence set D’ from D such that D’ has a
larger proportion of input sequences containing motif
instances. Executed on D’, the qPMS algorithms are able
to find implanted or real motifs in a significantly shorter
time. In our future work, we will design the parallel ver-
sion of SamSelect and the extended SamSelect algorithm
for motif discovery on large alphabet datasets, e.g., pro-
tein datasets.
Notably, qPMS10 [36, 37] is also a work of sample se-

quence selection for the quorum planted motif search.
The main difference between qPMS10 and our work is
as follows. qPMS10 adopts random sampling to select a
sample sequence set with t’ ≤ t and q’ ≤ q. In our work,
we analyze that for a particular t, a small q will cause lar-
ger computation time. Therefore, we use word count
and clustering methods to select sample sequence sets
with t’ < t and 1 ≥ q’ > q.
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Table 9 Results of spd qPMS algorithms on the third group of
simulated datasets

t Ts qPMS9 TravStrR

TD TD’ Speedup TD TD’ Speedup

3000 13.0 s N 1.7 s > 11,755 24.3 h 0.1 s 6671

4000 14.0 s N 1.7 s > 11,006 N 0.1 s > 12,255

5000 15.0 s N 1.7 s > 10,347 N 0.1 s > 11,444

6000 15.8 s N 1.7 s > 9874 N 0.1 s > 10,868

7000 16.4 s N 1.7 s > 9547 N 0.1 s > 10,473

8000 17.0 s N 1.8 s > 9191 N 0.1 s > 10,105

9000 18.0 s N 1.7 s > 8772 N 0.1 s > 9547

10,000 18.8 s N 1.8 s > 8388 N 0.2 s > 9095

s seconds, h hours, N no result because running time exceeds 48 h; Ts: running
time of SamSelect; TD and TD’: running time of a qPMS algorithm on the
original dataset D and the sample sequence sets D’, respectively; speedup: TD
/ Ts + TD’

Table 8 Results of spd qPMS algorithms on the second group
of simulated datasets

q Ts qPMS9 TravStrR

TD TD’ Speedup TD TD’ Speedup

0.2 13.0 s N 1.3 s > 12,084 N 0.1 s > 13,191

0.3 13.2 s N 1.5 s > 11,755 N 0.1 s > 12,992

0.4 13.0 s N 1.7 s > 11,755 41.8 h 0.1 s 11,490

0.5 13.0 s N 1.7 s > 11,755 24.3 h 0.1 s 6671

0.6 13.0 s 24.2 h 1.7 s 5919 11.2 h 0.1 s 3088

0.7 14.0 s 7.2 h 1.7 s 1651 3.1 h 0.1 s 785

0.8 14.0 s 1.5 h 1.7 s 338 1.5 h 0.1 s 377

0.9 14.0 s 9.2 m 1.7 s 35 4.1 m 0.1 s 17

s seconds, m minutes, h hours, N no result because the running time exceeds
48 h; Ts: running time of SamSelect; TD and TD’: running time of a qPMS
algorithm on the original dataset D and the sample sequence sets D’,
respectively; speedup: TD / Ts + TD’
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