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A single neuron subset governs 
a single coactive neuron circuit 
in Hydra vulgaris, representing 
a possible ancestral feature 
of neural evolution
Yukihiko Noro, Hiroshi Shimizu, Katsuhiko Mineta & Takashi Gojobori*

The last common ancestor of Bilateria and Cnidaria is believed to be one of the first animals to develop 
a nervous system over 500 million years ago. Many of the genes involved in the neural function of 
the advanced nervous system in Bilateria are well conserved in Cnidaria. Thus, the cnidarian Hydra 
vulgaris is a good model organism for the study of the putative primitive nervous system in its last 
common ancestor. The diffuse nervous system of Hydra consists of several peptidergic neuron subsets. 
However, the specific functions of these subsets remain unclear. Using calcium imaging, here we show 
that the neuron subsets that express neuropeptide, Hym-176, function as motor circuits to evoke 
longitudinal contraction. We found that all neurons in a subset defined by the Hym-176 gene (Hym-
176A) or its paralogs (Hym-176B) expression are excited simultaneously, followed by longitudinal 
contraction. This indicates not only that these neuron subsets have a motor function but also that a 
single molecularly defined neuron subset forms a single coactive circuit. This is in contrast with the 
bilaterian nervous system, where a single molecularly defined neuron subset harbors multiple coactive 
circuits, showing a mixture of neurons firing with different timings. Furthermore, we found that the 
two motor circuits, one expressing Hym-176B in the body column and the other expressing Hym-176A 
in the foot, are coordinately regulated to exert region-specific contraction. Our results demonstrate 
that one neuron subset is likely to form a monofunctional circuit as a minimum functional unit to build 
a more complex behavior in Hydra. This simple feature (one subset, one circuit, one function) found in 
Hydra may represent the simple ancestral condition of neural evolution.

The evolution of the nervous system in animals persists as one of the most intriguing and significant mysteries 
in modern biology. Recent molecular phylogenetic studies indicate that there are two conflicting scenarios as 
to when the first nervous system evolved; it evolved either before Ctenophora was diverged from the rest of 
metazoans1,2 or after Porifera was diverged from them3,4, depending on the controversial phylogenetic position 
of Ctenophora. In either case, however, since the cnidarian/bilaterian nervous system differs a lot from the 
ctenophore’s one5 and some nerve-less phyla (Placozoa and Porifera) evolved after Ctenophora, the ctenophore’s 
nervous system might evolve independently from the cnidarian/bilaterian one. Thus, one of the first nervous 
systems probably evolved in the last common ancestor of Cnidaria and Bilateria over 500 million years ago. 
Despite these millions of years of divergence, an almost complete set of the neural genes needed to build the 
advanced nervous system in bilaterians is well conserved in cnidarians6. Therefore, the cnidarian Hydra is a good 
model organism for the study of the primitive nervous system and how it has evolved into the advanced one.

The nervous system of Hydra is a net-like structure extending throughout the body and consists of multiple 
subsets of neurons. All subsets that have been studied so far are peptidergic (Supplementary Fig. S1). There 
are at least four neuropeptides, GLWa7, Hym-3558, RFa9 and Hym-17610,11, present in the Hydra nerve net. The 
genes for GLWa and Hym-355 are co-expressed in the same neurons, which are scattered in the ectodermal layer 
all over the body. However, in the hypostome, there are some GLWa-positive and Hym-355-negative neurons 
together with the double-positive neurons12,13. RFa (PreproA)-expressing neurons are found in the tentacle, 

OPEN

Computational Biosciences Research Center, King Abdullah University of Science and Technology, 
Thuwal 23955‑6900, Kingdom of Saudi Arabia. *email: takashi.gojobori@kaust.edu.sa

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-89325-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10828  | https://doi.org/10.1038/s41598-021-89325-x

www.nature.com/scientificreports/

the hypostome, the upper body column, and the peduncle. The Hym-176 gene (Hym-176A) is expressed in the 
neurons of the hypostome, the body column, and the peduncle. PreproA and Hym-176A are only co-expressed 
in the peduncle neurons10,12. Neither RFa-expressing nor Hym-176-expressing neurons are overlapped with 
GLWa/Hym-355 double-positive neurons12,13.

In addition to these observations, we recently demonstrated that the four-gene paralogs of Hym-176A are 
expressed in neurons in the tentacle (Hym-176E), the body column (Hym-176B), and the peduncle (Hym-176C 
and Hym-176D)14. Hym-176B, Hym-176C, and Hym-176D are all co-expressed with Hym-176A. Therefore, as 
summarized in Supplementary Fig. S1, there are at least seven mutually exclusive molecularly defined neuron 
subsets (classical subsets) in the ectodermal layer in Hydra (subset I; GLWa/Hym-355, subset II; prepro A/C, 
subset III; prepro A/B, subset IV; Hym-176A/B, subset V; Hym-176A/C/D/prepro A, subset VI; Hym-176A/C/
prepro A, subset VII; Hym-176E). Furthermore, a recent single-cell RNA-seq study of Hydra15 revealed a more 
precise molecular definition of nine neuron subsets (new subsets) in the ectodermal layer: subset I is further 
divided into subset ec3A, ec3B, and ec3C; subset III is further divided into subset ec4A and ec4B; both subsets 
V and VI form one single subset ec5; and the remaining subsets II/IV/VII correspond to subset ec2/ec1A/ec1B, 
respectively (Supplementary Fig. S1).

Despite the comprehensive anatomical features of the Hydra nervous system, the function of the neuron sub-
set is entirely unknown. The three neuron subsets (ec1A, ec1B, and ec5) expressing Hym-176A and its paralogs 
(Hym-176B, C, D, E) cover the whole body of the animal in a region-specific manner (ec1A in body, ec1B in the 
tentacle, and ec5 in the peduncle), suggesting that these neuron subsets are related to region-specific functions. 
Therefore, here we focus on these neuron subsets and examine their localized function by raising transgenic 
Hydra expressing the calcium indicator, GCaMP6s16, in each neuron subset.

Results
Functional characterization of neuron subsets expressing neuropeptide Hym‑176 gene and its 
paralogs.  We raised transgenic Hydra expressing the calcium indicator, GCaMP6s, in the neurons express-
ing each one of the Hym-176 gene paralogs (Hym-176A, B, C, and D) under the control of the gene regulatory 
regions of these paralogs, as described previously14. The transgenic line, Hym-176B::GCaMP, visualized sub-
set IV (ec1A) in the body column (Supplementary Fig.  S1). The transgenic line, Hym-176A::GCaMP, Hym-
176C::GCaMP, and Hym-176D::GCaMP, all visualized the same subset, i.e., subset V and VI (ec5) in the pedun-
cle. We were unable to visualize subset VII (ec1B) in the tentacle due to the difficulty in generating the transgenic 
line, Hym-176E::GCaMP.

These subset-specific GCaMP6s expressions showed clear excitation patterns in each neuron subset (Movie 
1–4). The shape of the blinking neurons and their resulting net-like structure were especially visible in the 
close-up view (Movie 5). We quantified the timing and the intensity of the excitation visible in the recorded 
movies. For example, we selected 18 neurons from the Hym-176A-expressing subset (ec5) in Movie 6 (Fig. 1A); 
their excitation patterns for 15 s are shown (Fig. 1B, Supplementary Fig. S2A). Each of the 18 neurons fired 
simultaneously at 2.22, 4.79, 6.81, 9.38, and 12.50 s (vertical dotted lines). The simultaneous firings in this subset 
(ec5) and the other subset (ec1A) were also visualized by the transgenic lines, Hym-176C::GCaMP (Fig. 1E,F, 
Supplementary Fig. S2C, Movie 8), Hym-176D::GCaMP (Fig. 1G,H, Supplementary Fig. S2D, Movie 9) for ec5, 
and Hym-176B::GCaMP for ec1A (Fig. 1C,D, Supplementary Fig. S2B, Movie 7). This simultaneous firing was 
confirmed by the distribution of the spike timing between all the tested neurons (Fig. 2B,E,H,I). For more than 
80% of spikes (22/27), the spike timing of the tested neurons in the IQR (interquartile range) varied by less than 
0.06 s. The neurons in the bud were all excited at the same time but different from those in the parental polyp 
(cell# 41,42, 45, 46, 49, and 54 in Fig. 1F, Supplementary Fig. S2C). These results suggest that each of the two 
neuron subsets (ec1A and ec5) forms a single coactive circuit and that the circuit in the bud at this developmental 
stage is independently regulated from the circuit in the parental polyp. 

Although the timing of the firing was the same between neurons in a subset, the intensity of the firing and its 
time course profile varied between the neurons, e.g., high (cell #19, #24) or low intensity (cell #3, #10), and steady 
(cell #12, #18) or decaying (cell #4, #5, #23, #24) or atypical (cell #14) oscillation in the Hym-176A-expressing 
neuron subset, ec5 (Fig. 1B, Supplementary Fig. S2A). We observed these differential excitation profiles in the 
same subset with different transgenic lines (Fig. 1F,H, Supplementary Fig. S2C,D) and also in the different sub-
set, ec1A (Fig. 1D, Supplementary Fig. S2B). These results indicate that neurons in a coactive circuit respond 
synchronously but differentially.

Quantitative analysis also demonstrated that the simultaneous excitation of neurons in each of the two 
subsets, ec1A and ec5, was well correlated with or was mostly followed by the longitudinal contraction. We 
evaluated the contraction by measuring the distance between the two designated neurons, usually the upper-
most and the lowermost neuron in each subset (blue lines in Fig. 2A,D,G,J). Second-order differences in the 
distance (red lines in Fig. 2A,D,G,J) indicate a contraction status, i.e., fully relaxed at the local minimum and 
completely shrunk at the local maximum. Thus, fully relaxed at the local minimum indicates the start of contrac-
tion (vertical dashed red line in Fig. 2A,D,G,J). Cross-correlation between the representative neuron excitation 
(green line in Fig. 2A,D,G,J) and the second-order difference of the distance was above the 95% confidence 
interval cut-off (horizontal dashed blue line in Fig. 2C,F,I,L). Most (24 out of 27) of the neural excitations 
(vertical dashed black lines) were followed by longitudinal contractions (vertical dashed red lines) in less than 
0.4 s (Fig. 2A,D,G,J). This delay between spike and contraction was far beyond the dispersion of spike timing 
among all tested neurons (median IQR: 0.06 s). For instance, for more than 74% (20/27) of spikes, contraction 
started later than Q3 (3-quantile) + 1.5 × IQR. For more than 51% (14/27) of spikes, contraction started later 
than Q3 + 3 × IQR (Fig. 2B,E,H,K). These results suggest that the dispersion of spike timing is minimal (almost 
at the same time) among the tested neurons in a subset, compared to the timing of the start of the contraction, 
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Figure 1.   Simultaneous neuronal excitation of the peptidergic neuron subsets expressing neuropeptide gene 
Hym-176 paralogs. Hym-176A-expressing neuron subset (A,B). Hym-176B-expressing neuron subset (C,D). 
Hym-176C-expressing neuron subset (E,F). Hym-176D-expressing neuron subset (G,H). Position of tested 
neurons (A,C,E,G). Neuronal activity (total intensity of GCaMP) is shown, with the vertical dashed lines 
indicating the average starting time of excitation of all tested neurons in each subset (B: 2.22, 4.79, 6.81, 9.38, 
12.50 s; D: 1.09, 5.75, 11.72, 18.59 s; F: 2.13, 5.57, 7.98, 9.72, 11.60, 13.00, 14.83, 16.94, 19.45, 22.27, 26.26, 33.86 
s; H: 7.37, 10.70, 13.37, 15.32, 17.41, 19.77, 22.80, 26.15 s) except neuron #41–54 in F (see text). The number in 
the strip and the color of the excitation profile for each subset correspond to cells in each one of A, C, E and G. 
Bar: 30 µm in A, 200 µm in C, 100 µm in E and 50 µm in G.
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Figure 2.   Neuronal activity in the Hym-176 peptidergic neuron subsets is associated with longitudinal contraction. 
Hym-176A-expressing neuron subsets (A–C). Hym-176B-expressing neuron subsets (D–F). Hym-176C-expressing 
neuron subsets (G–I). Hym-176D-expressing neuron subsets (J–L). Representative neuronal excitation in green; 
cell #24 in Fig. 1B (A), cell #16 in Fig. 1D (D), cell #7 in Fig. 1F (G) and cell #0 in Fig. 1H (J). Vertical dashed black 
lines show the spike train (A,D,G,J), as shown in Fig. 1B,D,F,H, respectively. Change in the distance between the two 
designated neurons in each subset is shown in blue (A,D,G,J); cell #14 and #17 in A, cell #3 and #150 in D, cell #13 
and #149 in G, cell #0 and #8 in J. Second-order differences of the distance in red with 95% confidence interval (gray). 
Starting points of contraction (vertical red dashed line; A: 2.37, 4.92, 7.05, 9.45, 12.66 s; D: 1.59, 6.06, 11.94, 18.81 s; 
G: 5.40, 8.07, 9.87, 11.76, 13.14, 14.91, 17.19, 19.68, 22.26, 25.86 s; J: 7.53, 10.89, 13.56, 15.57, 17.58, 20.01, 22.89, 26.34 
s). Box plot of the spike timing of all tested neurons for each spike (B, E, H, and K). The horizontal dashed black line 
indicates average spike timing, corresponding to the vertical dashed black line in (A,D,G,J). The horizontal dashed 
red line indicates the start of contraction, corresponding to the vertical dashed red line in (A,D,G,J). The horizontal 
dotted blue line indicates Q3 (3-quantile) + 1.5/3.0 × IQR (interquartile range). Cross-correlation (C,F,I,L) between 
representative neuronal excitation (solid green line) and longitudinal contraction (solid red line) in A, D, G, and J, 
respectively. The horizontal dashed blue line indicates the 95% confidence interval cut-off.
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and that contraction indeed followed the preceding simultaneous excitation. These results demonstrate that the 
neuron subsets, ec1A and ec5 expressing the Hym-176 gene paralogs, function as coactive motor circuits that 
evoke longitudinal contraction.

Besides those contractions associated with the preceding simultaneous excitation, we found some of the con-
tractions were not associated with excitation (e.g., the contractions at 29.19, 32.07, 35.43, and 39.33 s in Fig. 2G). 
We do not yet entirely understand these unassociated contractions, but they may result from responses to the 
residual neurotransmitter released by the preceding contraction-associated excitation because they were mostly 
observed only after a series of the associated excitation. The contraction-unassociated excitation at 33.86 s in 
Fig. 2G may not have been able to evoke contraction due to epitheliomuscular desensitization of the neuronal 
excitation.

Two independent motor circuits coordinately function to regulate their region‑specific con-
tractions.  Since both of the two coactive motor circuits, ec1A in the body column and ec5 in the pedun-
cle, evoked longitudinal contraction, we examined whether these two circuits form a single coactive circuit or 
they function independently. At the onset of the quick and continuous longitudinal contraction (contraction 
burst17,18) in a double transgenic line or an operative chimera of single transgenic lines, we found that all the 
tested neurons in the peduncle (foot) neuron circuit only were simultaneously excited at their first spike (cell 
#13–#19 at 0 s in Fig. 3A,B, Supplementary Fig. S3A, Movie 10, cell #19–#89 at 6.42 s in Fig. 3C,D, Supplemen-
tary Fig. S3B, Movie 11). In contrast, those in the body neuron circuit were mostly silent, except for only a few 
neurons (cell #1 and #6 in Fig. 3D). This suggests that the two circuits were independently regulated without 
forming a single coactive circuit. Furthermore, with the spike only found in the foot circuit, 2–4 times stronger 
contraction of the foot than the body column was evoked (green arrows, at 0 s in Fig. 4A and 6.5 s in Fig. 4C). 
This indicated that the foot motor circuit was excited independently of the body motor circuit and evoked mostly 
foot contraction, at least at the onset of contraction burst. Subsequent contractions were synchronized again 
between the two circuits, following their synchronized excitation (Fig. 4C). However, sometimes subsequent 
contractions were anti-synchronized, especially when the foot was attached to the substrate, where it seemed 
like the foot tried to contract in vain because the body contraction simultaneously hampered it (Fig. 4A). These 
repelling contractions also indicate the independent motor function of these two circuits.

Although only the foot circuit was excited at the onset of contraction burst, the subsequent excitations 
were completely synchronized between the body and the foot circuits. We found that procaine, a voltage-gated 
sodium channel blocker, uncoupled the synchronized firing of these two circuits. The double transgenic line or 
the operative chimera of single transgenic lines treated with 1% procaine stopped contraction but maintained 
excitation. We observed a phase shift between the two coactive circuits: body one (blue) first and foot one (red) 
next (Figs. 3E–H, 4E–H, Supplementary Fig. S3C,D, Movies 12, 13), although sometimes foot one at 17.16 s 
preceded the body one at 17.28 s (spike_4 in Fig. 3G,H). These inter-circuit phase shifts (0.435 s on average for 
Fig. 4E,F and 0.262 s on average for Fig. 4G,H) were significantly larger than the intra-circuit dispersion of spike 
timing (0.087 s and 0.038 s on average, respectively). These shifts were not observed in the absence of procaine 
(Fig. 4B,D). We also found an irregular spike in the body neuron circuit at 16.31 s (Fig. 4G). All these results 
suggest that the two coactive motor circuits are not a single coactive circuit regardless of their inter-circuit syn-
chronous firing that results from well-coordinated regulation of the two circuits.

Light‑activated signaling center and unidirectional neurotransmission in the body neuron cir-
cuit.  Besides the inter-circuit phase shift described above, we found that the prolonged procaine treatment 
also shifted the intra-circuit phase of excitation. For each of the four spikes, when we plotted the spike timing 
of all the tested neurons in the body circuit against the position of the neurons along the body axis, numbered 
in order beginning from head to foot, the cells closer to the lower end of the body column (in pink) were then 
excited later than the cells below the head (in blue) (Fig.  5A–C). This suggested that the wave of excitation 
transmitted unidirectionally from just below the head down to the foot (Movie 14). This unidirectional neuro-
transmission was probably too quick to be detected without the procaine, which slowed down the transmission.

Although the body neuron circuit is a single coactive motor circuit, as we mentioned above, we found that 
a group of neurons in the tentacle base and around the neck was excited earlier than the rest of the neurons in 
the circuit at the onset of the body contraction (Fig. 5D, Movie 15). This preceding excitation occurred more 
easily with more intense (off-filtered) blue light for the excitation of GCaMP (Fig. 5E), suggesting these neurons 
responded to light as a part of a light-sensing system to trigger the excitation of the motor circuit and subsequent 
longitudinal contraction. We believe these neurons belong to a subset different from the subset ec1A because 
detecting light or mediating the light-sensing requires an additional gene expression.

Taken together, the light-activated neurons near the head function as a signaling center to integrate light 
stimulation, and the body neuron circuit transfers the signal unidirectionally down to the foot.

Discussion
Before the calcium imaging technique became widely available, functional analysis of the nervous system in 
Hydra was quite limited, except for a series of pioneering studies by Josephson and Passano17,18, who used intra-
cellular electrical recordings. They showed that there are two types of action potentials in Hydra: one type is 
correlated with movement (e.g., contraction burst (CB) and tentacle pulse) while the other type is not correlated 
with movement (e.g., rhythmic potential (RP)). In their first successful attempt at calcium imaging of the Hydra 
nervous system, Dupre and Yuste functionally identified almost all of the neurons in Hydra. They categorized 
them into five coactive circuits, some of which seemed to correspond to the aforementioned action potentials. 
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Figure 3.   Simultaneously visualized neuronal activity of body and foot circuit. Double transgenic line of Hym-176B::GCaMP 
and Hym-176C::GCaMP with (E,F) or without (A,B) procaine treatment. The operative chimera of Hym-176B::GCaMP and 
Hym-176A::GCaMP with (G,H) or without (C,D) procaine treatment. Position of tested neurons (A,C,E,G). Neuronal activity 
(normalized intensity of GCaMP) with vertical dashed black lines indicating coactive neuronal excitation of both circuits 
((B) 0, 5.84, 8.71, 11.11, 13.19 s; (D) 6.42, 11.99, 16.28, 19.08, 22.31, 25.61, 28.85 s). Neuronal activity (normalized intensity 
of GCaMP) with vertical dashed lines indicating coactive body neuron excitation in blue ((F) 1.94, 4.74, 7.94, 10.66, 13.32, 
16.40, 19.42 s; (H) 3.25, 9.84, 15.30, 16.31, 17.28, 23.92, 29.00 s) and coactive foot neuron excitation in red ((F) 2.39, 5.16, 8.42, 
11.11, 13.79, 16.78, 19.81 s; (H) 3.53, 10.09, 15.65, 17.16, 24.13, 29.21 s). The number in the strip and the color of the excitation 
profile for each animal correspond to cells in each one of (A,C,E,G) (body neuron circuit in blue and foot neuron circuit in 
red). Bar: 100 µm in (A,E,G) and 200 µm in (C).
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Figure 4.   Coordinated interaction between body and foot neuronal circuit. Double transgenic line of Hym-176B::GCaMP 
and Hym-176C::GCaMP with (E,F) or without (A,B) procaine treatment. The operative chimera of Hym-176B::GCaMP and 
Hym-176A::GCaMP with (G,H) or without (C,D) procaine treatment. Normalized neuronal activity of representative neurons 
from body circuit in blue and foot circuit in red; cell #1 and #16 in Fig. 3B (A), cell #15 and #89 in Fig. 3D (C), cell #5 and 
#83 in Fig. 3F (E), cell #2 and #9 in Fig. 3H (G). Vertical dashed black/blue/red lines are as described in Fig. 3. Normalized 
distance between the three designated neurons in each animal was calculated for cell #9, #14 and #16 in Fig. 3B (A), and 
cell #7, #21 and #87 in Fig. 3D (C). Normalized distance between the first two neurons, shown by the dashed blue line, and 
between the last two neurons, shown by the dashed red line, indicates body and foot length, respectively. Box plot of the spike 
timing of all tested neurons in the body (blue) and foot (red) circuit for each spike (B,D,F,H). The horizontal dashed black 
line in (B,D) indicates the average spike timing of all tested neurons in both circuits, corresponding to the vertical dashed 
black line in (A,C), respectively. The horizontal dashed blue/red line in F and H indicates the average spike timing of all 
tested neurons in the body/foot circuit, corresponding to the vertical dashed blue/red line in (E,G), respectively. Statistical 
significance of the difference between average spike timings of body and foot circuit was evaluated by two-sided Student’s 
t-test; NS: no significant difference; *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 5.   Unidirectional signal transmission in the body neuron circuit. Hym-176B::GCaMP transgenic 
animal was treated with procaine. Tested neurons are numbered according to their position, ascending from 
head to foot (cell#) (A). Neuronal activity (total intensity of GCaMP) with vertical lines indicating individual 
excitation spikes of each neuron (B). For each spike, the starting time is plotted against the cell# (C). The 
number in each strip, the color of the excitation profile in B, and the color of dots in C correspond to cells in A. 
The solid black line indicates loess regression with the 95% confidence interval in gray. Light-activated neurons 
in Hym-176B::GCaMP transgenic animal (D). Bar: 100 µm both in A and D. Box plot of time, which was taken 
by light-activated neurons to start excitation when exposed to blue light with or without dark filter (E). Three 
independent experiments were conducted (n = 22 for exp_1 and 2, and n = 14 for exp_3). Statistical significance 
of the difference between the average time to the beginning of excitation with and without a dark filter was 
evaluated using two-sided Student’s t-test; NS: no significant difference; *p < 0.05; **p < 0.01; ***p < 0.001.
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They named the five coactive circuits CB, STN, RP1, RP2, and Others19. However, the molecular identities of 
these circuits remain unknown.

In this study, we characterized subset-specific neuronal activity to reveal the relationship between function-
ally identified circuits and molecularly identified subsets. These two are not always identical. We found that each 
one of the two peptidergic neuron subsets (one expressing Hym-176B in the body column (ec1A) and the other 
expressing Hym-176A/C in the peduncle (ec5)) is a coactive motor circuit because the simultaneous excitations 
of almost all neurons in each subset were followed by longitudinal contractions (Figs. 1, 2, Movies 6–9). This find-
ing demonstrates that a subset consists of a single circuit in Hydra (Fig. 6). In contrast, multiple circuits usually 
share a molecularly defined neuron subset in the bilaterian nervous system20,21. Therefore, we propose here that 
this notion of “one subset, one circuit” is a characteristic feature of the nervous system in Hydra.

The circuit CB is the only circuit that Dupre and Yuste identified to be correlated with the longitudinal con-
traction. The circuit is distributed throughout the whole body except in the tentacle and the basal disk19. Their 
findings on the circuit CB appear to correspond to the two motor circuits that we identified in this study, even 
though the CB is one single coactive circuit. This may be because the two motor circuits are closely associated 
with each other temporally. We found that procaine is useful to distinguish the two motor circuits, demonstrating 
that they are indeed two circuits that are synchronously regulated (Figs. 3, 4). This inter-circuit synchronicity 
was broken at the onset of contraction burst to exert region-specific motor function (Fig. 4A,C). Alternatively, 
even with synchronous firing, subsequent contractions were not always synchronized between the circuits due 
to a physical restriction that prevented simultaneous contraction of the body and the foot (Fig. 4A). These find-
ings demonstrate that the two circuits function independently as region-specific motor circuits. Therefore, we 
expand the notion mentioned above to the following upgraded notion: “one subset, one circuit, one function”.

The coordinated regulation of the region-specific motor circuits may be required to build a more complex 
behavior, such as somersaulting in Hydra22, in which several simple behavioral units are sequentially executed. 
Standing animals first attach to the floor with their tentacles (step 1), detach the foot from the floor (step 2), 
contract the body column to find a new place (step 3), and finally attach the foot to a new place (step 4). The initial 
foot-specific contraction we observed at the onset of contraction burst may reflect the second and third steps of 
somersaulting (Figs. 3A–D, 4A–D). Responding to light with the circuit in the head and the unidirectional neuro-
transmission from head to foot (Fig. 5) implies how light may be one of the triggers for this complex movement.

Nerve-free polyps contract following mechanical stimulation demonstrating that nerve cells are not required 
to finish longitudinal contraction but required to initiate spontaneous contractions23. This may imply that the two 
Hym-176-related circuits found here are just motor circuits rather than the general motor neurons that finally 
finish contraction at the neuromuscular junction. However, synaptic contacts of RFa-expressing neurons to the 
myoneme of epitheliomuscular cells in the peduncle are demonstrated by Koizumi24. Besides, RFa and Hym-176 
are co-expressed in the peduncle neurons12. Thus, the Hym176A/C/D-expressing neuron subset in the peduncle 
is more likely to be a motor neuron.

Finally, it may require more supporting evidence and exhaustive comparisons between different species of 
cnidarians to demonstrate that this simple feature found here in Hydra, “one subset, one circuit, one function” 
represents an ancestral trait of the nervous system in the last common ancestor between Bilateria and Cnidaria. 
The wide conservation of neural genes between them usually implies that this simple feature in Hydra has been 
evolved not by loosing the unnecessary neural genes in the last common ancestor but by developing them dif-
ferently from bilaterians. However, it may also be possible that the nervous system in the common ancestor has 

Figure 6.   One subset, one circuit in the primitive nervous system. Neuron subset is a molecularly defined 
group of neurons expressing a common marker gene set. A neuron circuit is a physiologically defined group 
of neurons, firing simultaneously to function. Usually, a neuron subset harbors multiple neuron circuits in an 
advanced nervous system while a neuron subset harbors a single neuron circuit for their motor function in 
Hydra.
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long been no need to change during its evolution to the current nervous system in Hydra, because it has been 
sufficient for Hydra to survive until the present day.

In summary, we demonstrated that a molecularly defined peptidergic neuron subset serves as a single coac-
tive motor circuit in the manner of “one subset, one circuit, one function.” This would contribute to understand 
fundamental traits in nervous systems and underlying mechanisms to construct more complex behaviors by 
assembling functional subsets as behavioral units.

Methods
Ethical approval and animal management.  All experiments in this study were designed according to 
ARRIVE guidelines and conducted following the institutional guideline with the approval of the Institutional 
Biosafety and Bioethics Committee under the identification number 17IBEC13.

Animals and culture.  The transgenic strain AEP of Hydra vulgaris was used in all experiments, which were 
raised and cultured as described below or previously14,25.

Transgenic reporter lines.  Transgenic Hydra was generated using a modified method derived from Wit-
tlieb et al.26 as described previously14. Briefly, we replaced GFP in the previously reported expression vectors 
(Hym-176A::GFP; Acc# LC426372, Hym-176B::GFP; Acc# LC426373, Hym-176C::GFP; Acc# LC426374, Hym-
176D::GFP; Acc# LC426375) with the calcium indicator, GCaMP6s (mGCaMP/#40753, Addgene or hGCaMP/
codon-optimized, DNA2.0), so that it could be expressed in the neuron subsets expressing each one of the 
Hym-176 gene paralogs (Hym-176A, B, C, and D). The 1- to the 2-cell stage of embryos were microinjected 
with the vectors. The hatched F0 polyps were screened to select the GCaMP positive polyps, which were then 
mated to each other or wild AEP to obtain F1 transgenic lines. The transgenic lines, Hym-176B::mGCaMP and 
Hym-176C::hGCaMP were F1. The transgenic lines, Hym-176A::hGCaMP and Hym-176D::hGCaMP were F0. 
The double transgenic line (Hym-176B::GCaMP × Hym-176C::GCaMP) were obtained by crossing F1 polyps 
of Hym-176B::mGCaMP and Hym-176C::hGCaMP. The operative chimera of Hym-176B::mGCaMP and Hym-
176A::hGCaMP (Hym-176B::GCaMP + Hym-176A::GCaMP) was made by grafting the upper half of the Hym-
176B::mGCaMP line and the lower half of the Hym-176A::hGCaMP line.

Signal detection and quantitative analysis of excitation and longitudinal contraction.  Trans-
genic animals were sandwiched between two slide glasses with a spacer (0.1 mm thick). The GCaMP signals were 
detected under the fluorescent dissection microscope (SMZ25, Nikon, Japan) equipped with epi-fluorescence 
attachments and a CMOS camera (ORCA-Flash4.0 v2, Hamahoto, Japan). Neuron firings visualized by GCaMP 
were recorded at the speed of 30 ms/frame and tracked frame by frame using the Fiji27 plugin, TrackMate28 with 
its default setting (LoG detector; msb: 15–50, threshold: 0.01–4, and Simple LAP tracker). We manually edited 
the automated tracking results afterward. The tracking data (intensity and position of each neuron at each frame) 
were analyzed by R29 and visualized by its graphic package, ggplot230. The relative intensity was calculated by 
normalizing the total intensity with min–max feature scaling. The longitudinal contraction was evaluated as 
the change in the distance between two designated neurons through all frames, usually the uppermost and 
the lowermost neuron in each neuron subset. The distance was also normalized by min–max feature scaling. 
The second-order difference of the normalized distance was used to determine the start of contraction at its 
local minimum. Cross-correlation was calculated with function ccf in R. To compare the firing timing between 
body and foot circuits (Fig. 4B,D,F,H) or with and without attenuation of blue light (Fig. 5E), we carried out a 
two-sided Student’s t-test using the R package, ggsignif31. Boxplot elements are defined as follows: center line, 
median; cross mark, mean; box limits, the first and third quartiles (the 25th and 75th percentiles); whiskers, 
1.5 × interquartile range; points, outliers (data beyond the end of the whiskers).

Procaine treatment.  Animals were soaked in 1% procaine hydrochloride (P9879, Sigma-Aldrich) in a 
culture medium. The voluntary longitudinal contraction was stopped after a few minutes while the voluntary 
excitation was intact. The inter-circuit phase shift of excitation was first observed. Then, the intra-circuit phase 
shift was observed with prolonged incubation. This effect of procaine was reversible because animals contracted 
once again in the absence of procaine.

Light‑sensitivity test.  Hym-176B::GCaMP transgenic animals without buds were first exposed to visible 
light for 1 min under a microscope to remove overly sensitive animals. The animals that did not contract in 
response to visible light were subsequently exposed to the blue excitation light, with or without a black filter, to 
attenuate the intensity by 75%. We measured the time when the light-sensitive cell population started to glow 
under a microscope with × 30 magnification. Since it usually took more than 2 min for the filtered blue light to 
trigger excitation, we removed the filter after 1 min exposure. Thus, for the filtered group, if the exposure time 
before excitation was more than 1 min, the filter was removed after 1 min, and the population was thus exposed 
without the filter. Three independent experiments were conducted (n = 22 for exp_1 and 2, and n = 14 for exp_3). 
Statistical significance of the difference between the average time to the beginning of excitation with and without 
a dark filter was evaluated using a two-sided Student’s t-test with the R package, ggsignif31.
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