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Abstract

We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics
of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were
pulse dosed intraruminally in four rumen-cannulated lactating dairy cows receiving four contrasting ryegrass silage
treatments that differed in nitrogen fertilization level (45 or 90 kg nitrogen ha21) and maturity (early or late). Passage
kinetics through the gastrointestinal tract were derived from the d13C (i.e. the ratio 13C:12C) in apparently undigested fecal
material. Isotopic enrichment was observed in a wide range of long-chain n-alkanes (C27–C36) and passage kinetics were
determined for the most abundant C29, C31 and C33 n-alkanes, for which a sufficiently high response signal was detected by
combustion isotope ratio mass spectrometry. Basal diet treatment and carbon chain length of n-alkanes did not affect
fractional passage rates from the rumen (K1) among individual n-alkanes (3.71–3.95%/h). Peak concentration time and
transit time showed a quantitatively small, significant (p#0.002) increase with carbon chain length. K1 estimates were
comparable to those of the 13C labeled digestible dry matter fraction (3.38%/h; r = 0.61 to 0.71; p#0.012). A literature review
has shown that n-alkanes are not fermented by microorganisms in the rumen and affirms no preferential depletion of 13C
versus 12C. Our results suggest that 13C labeled n-alkanes can be used as nutrient passage tracers and support the reliability
of the d13C signature of digestible feed nutrients as a tool to measure nutrient-specific passage kinetics.
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Introduction

Production animals need to be fed according to their nutritional

requirements in order to reach their maximum performance,

reduce the loss of waste products into the environment from

undigested feed nutrients, and prevent nutrient-related disorders

due to an unbalanced or insufficient supply of nutrients.

Knowledge on the behavior of ingested feed nutrients in the

different compartments of the gastrointestinal tract is essential to

understand the fate of nutrients and related digestive mechanisms

[1]. In ruminants, which are particularly adapted to yield energy

from poor-quality forages, the reticulorumen is the main site of

fermentative degradation of nutrients through the action of

microorganisms, mixing of the ingesta and particle size reduction.

Once ingested feed particles reach a specific particle size [2] and

specific density [3], they pass in aboral direction into the following

digestive compartment at specific fractional rates (i.e., as a fraction

per hour; %/h) depending on a number of feed and animal

characteristics [4,5]. If quantified accurately, knowledge on the

fractional passage rate from the reticulorumen may be used to

predict the extent of degradation and excretion of nutrients [1].

Fractional passage rates are, therefore, an essential part of modern

feed evaluation systems as well as of mechanistic models describing

the dynamics of microbial population in the rumen and their

contribution to methane emissions from ruminants [6]. Yet,

quantitative knowledge on feed- and nutrient-specific passage

kinetics are limited.

Passage kinetics are commonly estimated by tracer techniques.

External tracers were frequently used but are not intrinsic to the

diet and may, therefore, not reflect the passage behavior of dietary

components. Recently, the carbon isotope signature of feed

nutrients (d13C; i.e. the ratio of the stable isotopes 13C to 12C)

has been proposed as an internal passage tracer [5]. In particular,

d13C in fecally excreted undigested fibers allowed researchers to

quantify nutrient-specific passage in dairy cows. It was further

proposed to use stable isotopes in combination with n-alkanes as an

internal passage tracer [7]. n-Alkanes are saturated aliphatic

hydrocarbon chains naturally present in plant cuticular wax. They

have a high fecal recovery in ruminants depending on the carbon

chain length [8,9], are neither degraded nor synthesized in the

rumen [10,11], and their analytical determination is sensitive and

specific [7]; hence, they possess close-to-ideal tracer characteristics.

The objective of this study was to evaluate whether the d13C

signature of n-alkanes can be used to estimate passage kinetics in

ruminants. To our knowledge no literature is available on the

application of stable isotope labeled n-alkanes as fractional passage
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rate tracers, although d13C of individual n-alkanes were success-

fully employed to assess feed digestibility of ruminants [12]. The

present study describes for the first time in vivo d13C labeled n-

alkanes and their relevance to passage kinetics studies in dairy

cattle.

Materials and Methods

Animals and Housing
The present study was part of a larger experiment on passage

kinetics of nutrients through the gastrointestinal tract of dairy

cows, approved by the Institutional Animal Care and Use

Committee of Wageningen University, Wageningen, The Nether-

lands (no. 2010095). Four multiparous Holstein-Friesian dairy

cows in their second to fourth lactation, fitted with a permanent

rumen cannula (10 cm i.d., Type 1C, Bar Diamond, Parma, ID),

were individually housed in tie stalls. Animals averaged (mean 6

SEM) 561613 kg in bodyweight, and, during measurement weeks

(n = 4), had a dry matter (DM) intake of 17.060.35 kg/d and

produced 26.260.87 kg milk/d. Animals were milked twice daily

during feeding times.

Diet and Treatments
Animals were fed a total mixed ration consisting of 455 g/kg

DM ryegrass silage, 195 g/kg DM corn silage and 350 g/kg

DM of a specifically designed compound feed (Table 1). The

compound feed ingredients originated from cool-season C3

plants to keep the background level of 13C low [13] and similar

to that of the natural levels of the grass silage mixed in the

experimental diet. Grass silage was prepared from perennial

ryegrass (Lolium perenne) from the second regrowth, fertilized at

two nitrogen (N; as potassium phosphorus nitrate) levels, and

harvested at two maturity stages. Levels of fertilization were

either 45 kg N/ha (N45), or 90 kg N/ha (N90). Maturity stages

were set to obtain a target DM yield in the range of 1800–

2000 kg/ha (early) and 4600–4800 kg/ha (late). The grass

plants were harvested in September 2010, wilted and ensiled.

Animals were offered daily rations of the diet as two equal

meals at 0600 and 1700 h, and had free access to water. The

diet was prepared twice weekly; feed ingredient samples were

collected each time the diet was prepared and pooled per

animal over each experimental period.

Tracer Preparation
The external tracer chromium mordanted fiber (Cr-NDF) was

prepared as described by Udén [14] from wheat straw, dried and

ground to pass a 0.5-mm screen. The 13C tracer was prepared

from d13C labeled and ensiled ryegrass originating from the field

that also provided the basal experimental diet. In brief,

representative ryegrass shoots from the second regrowth were

randomly collected from the field and grown on hydroponics (8.6

shoots per m2) under climate-controlled greenhouse conditions in

hermetically sealed isotope assimilation chambers, specifically

designed for homogeneous atmospheric isotope labeling [15].

Grass was continuously enriched under high levels of 13carbon

dioxide (released from 99.98 atom% 13C bicarbonate) from plant

emergence onwards in a commercial facility (IsoLife BV,

Wageningen, The Netherlands). The labeled grass plants were

exposed to similar conditions to the field plants to account for

potential known sources of variation for an altered cell wall

structure and n-alkanes content in temperate forages [16]; e.g., by

adjusting the light schedule in the greenhouse to the field

conditions, and inducing wind stress to the labeled plants. Grass

plants received the identical fertilization regimen and harvested at

a similar physiological stage (172 g DM/m2 and 498 g DM/m2

for early and late maturity stage, respectively) as the field plants.

Plants were subsequently wilted, cut to size (2 cm), placed into

several bags of larger mashed grit gauze (pore size 212 mm; PA-74,

Sefar Nytal, Heiden, Switzerland) and distributed over silage bales

to be ensiled together with the field plants over an 8-week period.

The stable isotope labeling was successfully terminated by

collecting ensiled ryegrass plants enriched up to 7.75–9.21 atom%
13C for the different treatments relative to a background level of

1.01 atom% 13C (SD 0.001) for the unlabeled field plants.

Sampling and Measurements
Four experimental periods of three weeks each were used, which

included an adaptation after diet changeover from day 1 through

14, followed by fecal sampling from day 15 through 19. From day

12 onwards, animals were fed 95% of the individual DM intake

measured during the preceding adaptation days to minimize feed

residuals. Feed and water uptake were monitored daily and

animals were milked twice daily.

Animals received a ruminal pulse dose of 100 g DM Cr-NDF

(45.9 g Cr/kg DM Cr mordant) and 15 g DM d13C labeled grass

silage. Prior to pulse-dosing, the labeled tracer material was cut to

Table 1. Chemical composition of the diet consisting of grass silage of early or late maturity at two nitrogen (N) fertilization levels
(N45:45 kg N/ha; N90:90 kg N/ha), corn silage and compound feed.

N45 N90

Chemical composition1 early late early late Corn silage Compound feed2

Dry matter (g/kg fresh) 366 723 567 520 – –

Dry matter (kg/ha) 1840 4734 2020 4860 – –

Organic matter 879 912 907 903 961 933

Crude protein 197 137 249 168 77 262

Starch – – – – 403 218

Neutral detergent fiber 432 545 429 556 356 293

Acid detergent fiber 294 296 257 326 201 151

1In g/kg dry matter unless specified otherwise (starch not determined for grass silage).
2Ingredients (g/kg dry matter): wheat (80.0), sunflower seeds (140.0), soybean hulls (26.5), palm kernel expeller (90.0), soybeans (185.0), sugar beet pulp (75.0), potato
starch (200.0), rumen-protected soybean meal (185.0; MervoBest, Pre-Mervo, Utrecht, The Netherlands), phosphoric acid limestone (7.5), salt (3.0), mineral premix (8.0).
doi:10.1371/journal.pone.0075496.t001
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pieces of about 0.5 cm to resemble ingested bulk grass silage

particles.

From day 15 onwards, directly after administration of tracers

into the rumen (0900 h), 20 spot samples of feces were collected

after defecation in sampling blocks of three hours each. Ten fecal

samples collected at times t = 0, 12, 18, 24, 30, 36, 48, 72, 96 and

120 h after pulse dose administration were analyzed for their

tracer concentrations. Feces were weighed, thoroughly homoge-

nized by hand and a representative sample of about 400 g fresh

matter was stored at 220uC pending analyses.

Chemical Analyses
All samples were freeze-dried and ground over a hammer mill

to pass a 1-mm screen (Peppink 100 AN, Olst, The Netherlands).

Dry matter, ash, crude protein, starch, NDF and ADF were

analyzed as described by Abrahamse [17,18]. Fecal Cr concen-

trations were determined using an atomic absorption spectropho-

tometer (AA240FS, Varian, Palo Alto, CA) after oxidation by wet-

destruction [5]. n-Alkane extraction was carried out after Mayes

[19] with modifications after Olı́van [20] and Bezabih [21] and

using tetratriacontane (C34) as an internal standard. In brief, test

samples were pulverized (MM2000, Retsch, Haan, Germany;

3 min at 85 Hz) prior to n-alkane extraction. Full base line

separation of n-alkanes (C27 to C36) was achieved using a gas

chromatograph (GC; Finnigan Trace GC Ultra, Milan, Italy)

fitted with a capillary column (40 m x 0.32 mm i.d. fused silica

capillary SPB-1 and 0.10 mm film thickness) and using helium as a

carrier gas at a constant flow of 2.5 ml/min. n-Alkane extracts,

previously diluted with 125 mL of heptane, were injected using a

split/splitless-type injector operating on split mode (split ratio of

1:5). The temperature for the injector was 270uC. The oven

temperature program started at 210uC (maintained for 1 min),

increased at a rate of 7.2uC/min to a temperature of 300uC
(maintained for 6 min). To determine the d13C of individual n-

alkanes, the column outlet was fitted to a combustion interface

(Thermo Finnigan GC Combustion III, Bremen, Germany) that

was connected to an isotope ratio mass spectrometer (IRMS; Delta

V Advantage, Thermo Scientific, Bremen Germany). For d13C

analyses of the apparent undigested fecal DM fraction (13C-DM),

a test sample was pulverized, and d13C was determined by

elemental analysis using an IRMS as describe above. The relative

atom% 13C in the substrate is expressed as the 13C:12C ratio in the

samples relative to the 13C:12C ratio of the international Vienna

Pee Dee Belemnite standard, and presented as d13C. After

correction for natural 13C abundance, fecal excretion patterns of

atom% 13C excess were established.

Curve Fitting and Statistical Analyses
Fractional passage rates were derived from tracer excretion

patterns, fitted iteratively with a nonlinear multicompartmental

model [22]:

Ct~A|e ^ ({K1|t)

|expf{ N{2ð Þe ^ ½{(K2{K1)|t�g

where Ct denotes the fecal tracer concentration at time = t; t is the

average time span of collection after tracer administration; K1 and

K2 refer to the fractional rate constants for the compartment with

the longest (reticulorumen) and the second longest retention time

(proximal colon-cecum) in the gastrointestinal tract, respectively; N

refers to the model-derived number of mixing compartments; and

A forms a scalable parameter dependent on K1, K2 and N.

Before curve fitting, fecal tracer concentrations were scaled to

the tracer peak concentration [23]. Curve fitting was performed

using nonlinear least squares regression procedures of SAS (version

9.2, Cary, NC) based on the least square Levenberg-Marquardt

algorithm. Initial values for the iterative procedure were obtained

through a grid search and curve fits were solved after, on average,

6 to 9 iterations. Transit time (TT; i.e. moment of first appearance

of the tracer in the feces) and moment of peak concentration

(PCT) were derived for fecal tracer excretion patterns from the

estimated parameters as described by Dhanoa [22]. Total mean

retention time (TMRT) in the reticulorumen was calculated as the

sum of the reciprocals of K1 and K2 plus TT; total tracer clearance

time was calculated as described by France [24]. Accuracy of

curve fits were evaluated by comparing predicted tracer concen-

trations with observed values using the root mean squared

prediction error relative to the observed mean, thus obtaining

the mean prediction error (MPE). The MPE was decomposed into

errors due to random variation, errors of central tendency and

errors due to regression [25].

Model parameters were log transformed due to asymmetrical

distribution patterns of residuals and tested by analysis of variance

in a split plot, with factorial main plots in a Latin square and

subplots representing the type of n-alkane, using the mixed model

procedure of SAS (version 9.2, Cary, NC), according to the model:

Yijklm~mzAizPjzSkzMlz S|Mð Þkl

z A|P|S|Mð ÞijklzAlkmz S|M|Að Þklmzeijklm

where Yijklm is the dependent variable; m is the overall mean; Ai

(animal; i = 4), Pj (period; j = 4), Sk (silage; k = 2), Ml (maturity;

l = 2) and its interaction term (S6M)kl represent effects assigned to

the main plots in a Latin square; Alkm (type of n-alkane; m = 3) and

(S 6 M 6 Alk)klm represent effects related to the subplots. Main

plot variables were tested against the interaction term (A 6P 6S

6 M)ijkl and subplot variables were tested against the pooled

residual error (eijklm). Covariance parameters were estimated using

Table 2. Mean background and peak concentrations of d13C
for individual n-alkanes in feces as a mean of four grass silage
treatments.

n-Alkane Background (d) Peak (d) Difference (d)1

Even-chain

C28 233.07 (0.592) 229.84 (0.279) 3.30 (0.531)

C30 235.10 (0.526) 230.29 (0.751) 5.19 (0.512)

C32 233.81 (0.753) 230.03 (0.579) 3.79 (0.611)

C36 229.51 (0.302) 227.86 (0.271) 1.66 (0.370)

Odd-chain

C27 232.90 (0.577) 229.23 (0.611) 3.67 (0.546)

C29 235.58 (0.241) 229.25 (0.714) 6.33 (0.557)

C31 236.08 (0.195) 227.57 (0.888) 8.51 (0.753)

C33 236.69 (0.223) 229.95 (0.800) 6.73 (0.615)

C35 237.27 (0.518) 230.37 (0.840) 6.90 (0.692)

Standard error of the mean given in parenthesis. C34: internal standard. d13C
refers to the relative atom% 13C in the sample relative to the atom% 13C of the
international Vienna Pee Dee Belemnite standard.
1Difference between d13C background and peak concentration based on least
square means.
doi:10.1371/journal.pone.0075496.t002
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the residual maximum likelihood (REML) method and denomi-

nator degrees of freedom were estimated using the Satterthwaite

approximation. Tables report back-transformed values. Passage

kinetics of 13C-n-alkanes were compared to the commonly used

external tracer Cr-NDF and the internal tracer 13C-DM

originating from the same substrate by means of the Pearson

correlation coefficient r.

Results

Concentrations of 13C isotopes were detected in a wide range of

n-alkanes (Table 2). A high signal amplitude voltage by combustion

isotopic ratio mass spectrometry was obtained for the odd-chain n-

alkanes C29, C31 and C33, which were also used to assess fractional

passage (in total, 48 curve fits). The signal amplitude voltage

obtained for the even-chain n-alkanes (C28–C36; amplitude always

below 0.3 V) and for the odd-chain n-alkanes C27 and C35

(amplitude always below 0.5 V, with up to 72% of values below

0.3 V) were below or close to the limit of quantitation (defined here

as 0.3 V) and considered too low to obtain a reliable d13C based on

the analytical procedure and equipment used (Figure 1). Back-

ground levels of d13C (i.e. natural enrichment) decreased with

carbon chain length of odd-chain n-alkanes (Table 2). Differences

between d13C background and peak levels were generally higher for

the odd-chain n-alkanes and highest for C29, C31, C33 and C35.

Fecal excretion patterns of 13C-n-alkanes were characterized by

an initial quickly ascending phase until moment of tracer peak

concentration (PCT) followed by a slowly descending phase

(Figure 2). The 13C concentrations in n-alkanes were close to their

natural abundance when fecal sampling was terminated as shown

Figure 1. Mass spectra for d13C labeled n-alkanes (C27 to C36) collected in feces upon an intraruminal pulse dose. Plots A–B show mass
chromatograms with signal amplitude voltage (V; lower plot segments) of individual n-alkanes for the carbon isotopes 12C and 13C (from lowest to
highest concentration, respectively), and their respective 13C:12C ratio (upper plot segments). C34 is the internal standard. Mass spectra illustrate the
distinctive peaks of the most abundant n-alkanes C29, C31 and C33 originating from a highly enriched fecal sample collected at peak concentration
time (mean d13C 228.84; SEM 1.736). Although signals were detected and distinctive peaks were identified for lesser abundant n-alkanes (plot A), the
13C:12C ratio indicates that the respective d13C levels were below or close to quantitation limit (0.3 V; plot B). Lower enriched fecal samples often
provided no response signal for lesser abundant n-alkanes. Test samples were pre-concentrated by reducing the amount of solvent to 125 mL, and
were injected at a split ratio 1:5 using a split/splitless-type injector operating on split mode to obtain a high peak resolution.
doi:10.1371/journal.pone.0075496.g001
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by the mean total tracer clearance time of 13464.9 h (mean 6

SEM). The 48 curve fits established for 13C-n-alkanes showed a

mean prediction error (MPE) of 9.964.68% (Table 3), of which

92.761.14% were related to errors due to random variation,

2.760.45% to errors of central tendency and 4.660.70% to errors

due to regression. n-Alkane carbon chain length did not affect

MPE of curve fits.

Basal diet had no effect on passage kinetics (Table 3). n-Alkane

carbon chain length did not affect the respective K1 estimates

(3.71–3.95%/h). Quantitatively small, significant changes in some

passage kinetic parameters occurred with increasing carbon chain

length, such as a decrease of K2 (p = 0.002) and an increase in PCT

(p,0.001) and TT (p = 0.047). Total mean retention time

(TMRT) was not different among n-alkanes (43.9–45.3 h;

p = 0.088). The model parameters N (model-derived hypothetical

number of mixing compartments) and A (scalable model param-

eter) as obtained after fitting excretion data with a multi-

compartmental model were 1362.5 and 3.860.42, respectively

(data not shown). Fecal 13C-DM gave a mean K1 value of

3.3860.315%/h, a K2 value of 24.161.84%/h, and a TMRT of

47.162.52 h. Fecal Cr-NDF gave a mean K1 value of

5.2560.490%/h, a K2 value of 31.262.39%/h, and a TMRT of

35.761.91 h (data not shown).

Discussion

The Labeling and Analytical Determination of Carbon
Isotope n-Alkanes

The present study is the first describing stable isotope (13C)

labeled n-alkanes from in vivo isotopic labeled plant material and its

application in digesta passage studies in ruminants. A first attempt

to estimate fractional rumen passage rates in small ruminants from

radioactive isotope (14C/3H) labeled n-alkanes (originating from

fresh perennial ryegrass) has been made by Mayes [26] and was

published as a conference proceedings abstract. Details on the

labeling procedure were not provided but appear to involve

immersion of fresh grass in a solution of 14C labeled acetate

followed by a short exposure to a high-intensity light source [8] for

temporary 14C assimilation.

We quantified passage kinetics for the most abundant 13C-n-

alkanes C29, C31 and C33 in apparent undigested feces. The use of

a combustion isotope ratio mass spectrometer allowed detection of

d13C for the long-chain C27–36 n-alkanes. The even-chain and the

odd-chain C27 and C35 n-alkanes offered particular weak d13C

signals, most probably because of their low natural concentrations

generally observed in plant biomass and feces [19]. In ryegrass

species, concentrations of the most abundant n-alkanes C29, C31

and C33 typically ranged from 77 to 338 mg/kg DM [27,28]. The

GC-IRMS was set up to present a high amount of sample for

analyses (see Figure 1) and thus allow for high analytical

sensitivity. A higher sensitivity of the low enriched n-alkanes was

not feasible due to the relatively high enrichment levels and

corresponding strong signal response of some of the adjacent n-

alkanes approaching the upper analytical detection limit for d13C.

Continuous intrinsic isotope labeling applied in our study was

shown to provide uniformly labeled plant material [15,29].

Differences in d13C background levels between n-alkanes

(Table 2) appeared to depend on the respective chain length

and suggest that carbon isotope discrimination occurs during the

enzymatic n-alkane biosynthesis by decarbonylase in the plant

Figure 2. Fecal dilution curves of d13C labeled C31 n-alkane (�) and chromium mordanted fiber (6). Dilution curves show mean fecal
tracer concentrations with standard error bars upon an intraruminal pulse dose in dairy cows fed grass silages of early and late maturity at two
nitrogen (N) fertilization levels (N45:45 kg N/ha; N90:90 kg N/ha).
doi:10.1371/journal.pone.0075496.g002
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cuticula. Similar observations were reported for the biosynthesis of

lignin [30] and starch [31] in plant tissue. Differential carbon

allocation as observed in the plant tissue does not occur in the

animal organism due to the absence of ruminal synthesis and

degradation of n-alkanes [10,11]. Microbial fermentation in the

hindgut of ruminants is minor [32] and a hypothetical degradation

of n-alkanes and preferential carbon isotope disappearance from

the hindgut is therefore unlikely to affect passage kinetics

estimations of n-alkanes from fecal samples. Disappearance of

some ingested n-alkanes in the gastrointestinal tract has been

reported and generally decreased with carbon chain length [8,9].

However, a literature review suggests that absorption from the

small intestine rather than ruminal degradation accounts for the

main loss of n-alkanes [8].

Passage Kinetics Assessment of Isotope Labeled n-
Alkanes

Basal diet treatments had no effect on passage kinetics in our

study despite a considerable change in the dietary nutritional

composition. The carbon chain length of n-alkanes affected

various passage kinetic parameters but did not affect K1 estimates.

Overall, TMRT and total tracer clearance time from the

gastrointestinal tract were similar among n-alkanes. When

compared to a commonly used external digesta passage tracer,

passage kinetics of 13C-n-alkanes differed considerably from those

of Cr-NDF (on average 3.86 and 5.25%/h, respectively). No

significant correlations between the two tracers were observed for

K1 and TMRT (p.0.10; Figure 3). The discrepancy in TMRT

between the two tracers is in line with observations on 14C/3H

labeled n-alkanes and Cr-NDF in small ruminants [26]. The

discrepancy in K1 between the two tracers might be explained by

potential differences in particle size [33] and the increased feed

particle density [34] with a resulting reduced buoyancy [35]

commonly observed for Cr-NDF particles. The degree of tracer

association with the particulate matter might be a confounding

factor throughout passage studies [36], although Mayes [26] found

a nearly full affinity (0.98) of those tracers.

When compared to an alternative internal digesta passage

tracer, passage kinetics of 13C-n-alkanes was comparable to that of
13C-DM originating from the same labeled plant material

(Figure 3). n-Alkanes were shown to associate well to the

particulate DM pool [26], which, given the few data points in

our study, sustains the overall satisfactory resemblance in passage

kinetics observed for 13C-n-alkanes and 13C-DM. Pearson

correlation coefficient r ranged from 0.61 to 0.71 (p#0.012;

n = 16) for K1 (on average 3.38%/h), and from 0.75 to 0.80

(p#0.001; n = 16) for TMRT (47.1 h). Our K1 estimates are in line

with recent data on d13C labeled ryegrass silage of high and low

digestibility [5]. They reported mean K1 estimates of 3.52–3.85%/

h and 4.76–5.03%/h for 13C-DM and Cr-NDF, respectively. The

Pellikaan [5] study employed two dairy cows fed grass silage and

compound feed, and their 13C labeling approach consisted of pulse

labeling plants up to eight times on field. For even-chain n-alkanes

sprayed onto ryegrass leaves or stems, K1 values were considerably

higher (7.5–9.5%/h [37]), whereas K1 values for Cr-NDF (4.0%/

h) were in line with studies using Cr-NDF in dairy cows [5,38].

These exceptionally high rates for forages were partly explained by

Table 3. Passage kinetics of d13C labeled odd-chain n-alkanes (C29, C31, C33) in dairy cows fed grass silages of early and late
maturity at two nitrogen (N) fertilization levels (N45:45 kg N/ha; N90:90 kg N/ha).

Item K1 K2 PCT TT TMRT MPE

n-Alkanes (Alk)

C29 3.95 (0.158) 21.3 (2.81) 22.6 (2.93) 13.4 (0.37) 43.9 (0.74) 9.7 (2.08)

C31 3.71 (0.148) 20.8 (2.74) 22.7 (2.94) 13.0 (0.36) 44.9 (0.75) 7.8 (1.66)

C33 3.93 (0.157) 18.8 (2.47) 23.9 (3.10) 14.0 (0.39) 45.3 (0.76) 9.8 (2.10)

Fertilization level (F)

N45 4.05 (0.204) 17.0 (3.13) 26.7 (4.89) 13.8 (0.40) 45.0 (1.24) 8.4 (2.40)

N90 3.67 (1.849) 24.2 (4.46) 19.9 (3.64) 13.1 (0.44) 44.3 (1.22) 9.8 (2.81)

Maturity stage (M)

Early 3.76 (0.232) 20.6 (4.65) 22.6 (5.07) 13.1 (0.48) 45.1 (1.15) 12.9 (4.53)

Late 3.96 (0.244) 20.0 (4.51) 23.5 (5.27 ) 13.7 (0.50) 44.3 (1.13) 6.4 (2.23)

P-values1

Main plots

Animal 0.370 0.673 0.614 0.265 0.472 0.746

Period 0.010 0.908 0.771 0.147 0.010 0.424

F 0.216 0.225 0.299 0.332 0.612 0.709

M 0.618 0.936 0.920 0.535 0.680 0.264

F 6M 0.940 0.523 0.379 0.651 0.178 0.667

Subplots

Alk 0.120 0.002 ,0.001 0.047 0.088 0.100

Alk 6 F 6M 0.050 0.173 0.022 0.167 0.018 0.167

K1: fractional passage rate constant (%/h) from the reticulorumen; K2: fractional passage rate constant (%/h) from the proximal colon-cecum; PCT: tracer peak
concentration time (h); TT: tracer transit time (h); TMRT: total mean retention time (h); MPE: mean prediction error (% of observed mean); values represent means (n = 16
per n-alkane type) and respective standard error of the mean in parenthesis.
1Analyses of variance on log-transformed means.
doi:10.1371/journal.pone.0075496.t003
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the binding association of the sprayed n-alkanes onto the plant cell

wall matrix, which can be low for a synthetic matrix [8], resulting

in migration of sprayed n-alkanes to the liquid phase [39].

Observations by Mayes [26] further suggest a considerably lower

binding association of dosed even-chain n-alkanes (0.92) compared

to natural or 14C/3H labeled n-alkanes from ryegrass plants (0.98).

They reported considerably lower K1 values of 2.85–2.98%/h

(based on even-chain n-alkanes sprayed onto ryegrass leaves and

stems), and 2.54–2.56%/h (based on 14C/3H-n-alkanes from

ryegrass) for small ruminants, in contrast to the findings of

Giráldez [37]. Assuming that animal species have a minor effect

on K1 [40,41], differences in feed intake level between the various

studies might explain the somewhat higher K1 values for Cr-NDF

in our study. Reservations on the spraying technique, which

implies an external application of the even-chain n-alkanes, have

been expressed with regard to rare earth elements as it was

observed that plant tissue did not uniformly absorb the sprayed-on

tracer [42]. Passage kinetics are therefore highly dependent on the

absorption capacity of the plant cell wall matrix. In contrast,

intrinsically isotope labeled plants will circumvent this problem, as

the 13C isotopes are homogeneously distributed in the plant tissue

when continuously labeled in a greenhouse [15,29].

The Use of Carbon Isotope Labeled n-Alkanes for Digesta
Passage Kinetic Studies

Various studies have shown that isotopes from intrinsically

labeled plants can be detected in various undigested fractions of

feces and digesta of ruminants, such as in various fiber fractions

[5,43] and starch [44]. In addition to the plant cuticular n-alkanes,

isotopes can be potentially detected in further plant wax

components, such as in long-chain alcohols and very long-chain

fatty acids, which are typically present in considerably higher

concentrations than n-alkanes in perennial ryegrass [27,28]. This

could be of particular interest for quantifying passage kinetics of a

diet composed of plant species containing low concentrations of n-

alkanes such as some of the common temperate grass species (e.g.

Phleum pratense and Dactylis glomerata [8]) and some tropical forages

[12,21].

The use of isotopic labeled n-alkanes could be of particular

interest for comparative passage rate studies to study the rumen

physiology and its evolutionary mechanisms [45,46] of domestic

and wild ruminants [47,48]. The 13C-n-alkane dose can be

adjusted to the original type of diet preferably consumed on

pasture by wild herbivores [12,21] or by using confined animals or

captive zoo animals under controlled housing and dietary

conditions.

n-Alkanes share the linear aliphatic hydrocarbon chain with

fatty acids. As the latter pass through the reticulorumen with the

particle phase [49], it has been suggested that also the flow

characteristics of n-alkanes through the gastrointestinal tract might

be alike [50]. Passage kinetics of n-alkanes through the reticuloru-

men might be therefore similar to that of the common long-chain

C10–C18 fatty acids present in dietary lipids. A direct measurement

of the fractional rumen passage rate of the latter is difficult because

of the substantial transfer of carbon isotopes from the labeled

dietary fatty acid into newly formed fatty acid compounds or

microbial lipids. Knowledge on passage kinetics of n-alkanes might

be therefore a useful indicator of rumen passage kinetics of dietary

long-chain fatty acids bypassing the reticulorumen.

Figure 3. Relationship between d13C labeled n-alkanes and chromium mordanted fiber or d13C labeled dry matter. n-Alkanes: C29 (%),
C31 (#), C33 (D). Pearson correlation coefficients shown in plots. K1 = fractional rumen passage rate (%/h); TMRT = total mean retention time (h). Mean
K1 is (mean 6 SEM) 3.3860.315%/h for d13C labeled dry matter and 5.2560.490%/h for chromium mordanted fiber; mean TMRT is 47.162.52 h for
d13C labeled dry matter and 35.761.91 h for chromium mordanted fiber.
doi:10.1371/journal.pone.0075496.g003
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Incorporation of carbon isotopes into n-alkanes in the rumen

was considered negligible [51], providing further evidence as to

the potential use of isotope labeled n-alkanes to measure rumen

digesta passage. An early in vivo study with dairy cows [10]

suggested that rumen bacteria may incorporate some of the intra-

ruminally dosed 14C-n-alkane C18, although no further metabolic

process was observed for that specific labeled n-alkane [10,52].

Yet, no evidence for microbial incorporation is available with

regard to the more common natural long-chain forage n-alkanes

C27 to C35 used in our study. A recent in vitro study, in which 14C

labeled perennial ryegrass was incubated in buffered rumen fluid

[11], suggested the complete absence of ruminal degradation and

synthesis of long-chain n-alkanes by ruminal bacteria.

In contrast, dietary nutrients are often subjected to extensive

fermentative degradation in the rumen. Isotopes originating from

an isotopic labeled diet may be incorporated into rumen microbial

protein and volatile fatty acids [53]. A bias in the prediction of K1

can occur if tracer migration occurs; for instance, if stable isotopes

from dietary nutrients are incorporated into microbial biomass

[5,54]. Furthermore, imperfect experimental in vivo conditions,

such as an inhomogeneous isotope distribution in the diet, non-

steady state conditions in the rumen or irregular nutrient uptake,

might result in a different d13C of the indigested nutrients relative

to that of the original nutrients ingested by the animal, thereby

affecting respective fractional passage rates. The overall satisfac-

tory resemblance in passage kinetics of 13C-n-alkanes and dietary

13C-DM observed in this study supports earlier studies on the use

of stable isotopes to measure rumen passage of dietary feed

nutrients.

Conclusions

Passage kinetics of 13C labeled n-alkanes are rather comparable

to that of the dietary dry matter originating from stable isotope

labeled ryegrass plants but differs considerably from that of the

external tracer Cr-NDF. In combination with evidence from

literature as to the absence of microbial involvement in the passage

of n-alkanes, our results suggest that stable isotopes are an

appropriate tool to assess passage kinetics of n-alkanes and dietary

nutrients through the gastrointestinal tract of ruminants.
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