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ABSTRACT

Cardiopulmonary late toxicity is of concern in concurrent chemoradiotherapy (CCRT) for esophageal cancer. The
aim of this study was to examine the benefit of proton beam therapy (PBT) using clinical data and adaptive dose—
volume histogram (DVH) analysis. The subjects were 44 patients with esophageal cancer who underwent definitive
CCRT using X-rays (n =19) or protons (n = 25). Experimental recalculation using protons was performed for the
patient actually treated with X-rays, and vice versa. Target coverage and dose constraints of normal tissues were
conserved. Lung V5-V20, mean lung dose (MLD), and heart V30-VS0 were compared for risk organ doses
between experimental plans and actual treatment plans. Potential toxicity was estimated using protons in patients
actually treated with X-rays, and vice versa. Pulmonary events of Grade >2 occurred in 8/44 cases (18%), and
cardiac events were seen in 11 cases (25%). Risk organ doses in patients with events of Grade >2 were significantly
higher than for those with events of Grade <1. Risk organ doses were lower in proton plans compared with X-ray
plans. All patients suffering toxicity who were treated with X-rays (n=13) had reduced predicted doses in lung
and heart using protons, while doses in all patients treated with protons (n=24) with toxicity of Grade <1 had
worsened predicted toxicity with X-rays. Analysis of normal tissue complication probability showed a potential
reduction in toxicity by using proton beams. Irradiation dose, volume and adverse effects on the heart and lung can
be reduced using protons. Thus, PBT is a promising treatment modality for the management of esophageal cancer.

KEYWORDS: esophageal cancer, concurrent chemoradiotherapy, proton beam therapy, DVH analysis,
deformation adaptation

INTRODUCTION

Surgery is the standard treatment for esophageal cancer, but concur-
rent chemoradiotherapy (CCRT) has benefits with regard to progno-
sis, mortality and quality of life after treatment [1-3]. Outcomes of
CCRT are promising, but late adverse events in the heart and lung
are of concern, with reported risks of adverse effects of Grade >3 of
6-46% [2-6]. Reduction of irradiation doses to the organ at risk
(OAR) is a simple and robust method to reduce the rate of adverse

events. In this context, proton beam therapy (PBT) may provide
therapeutic advantages over conformal X-ray therapy for patients
with esophageal cancer [7, 8]. These advantages are based on
the fundamental physical dose distribution of particle-ion beams
[9]. Compared with 4D intensity-modulated radiation therapy
(IMRT), PBT reduces lung VS, V10, V20 and the mean lung dose
(MLD) in dosimetric studies [8]. Thus, previous reports have
shown theoretical therapeutic advantages of PBT [7, 8], but a
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correlation between the dose advantage and clinical outcome has
not been established.

A further problem of previous studies using dose-volume histo-
gram (DVH) analysis is that anatomical changes and planning re-
evaluation during fractionated radiation are not taken in count.
Simple summation of DVH data between different computed tomog-
raphy (CT) scans does not reflect the true DVH, particularly when
beam directions are changed. An adaptive DVH analysis that reflects
close to the true dose—volume relationship is needed by utilization of
CT-CT deformation techniques. In this study, by cross-referencing
treatment plans for each patient using adaptive DVH analysis with
the actual incidence of adverse effects, we compared the possible
adverse effects of X-rays with those in PBT. Then, using normal
tissue complication probability (NTCP) calculations, we examined

the potential therapeutic advantages of PBT over X-rays.

MATERIALS AND METHODS
Patients
Consecutive patients who underwent definitive CCRT utilizing X-
rays (n=19) or protons (n=25) between 2009 and 2011 were
enrolled in the study. Patient characteristics are shown in Table 1.

The staging evaluation of each patient was done with upper GI series,

Table 1. Characteristics of the enrolled patients

X-ray group Proton group

Number of 19 25

patients
Alive/dead 13/6 20/5
Median follow- 20 months 24 months

up period (£ 4.7 months (% 5.1 months

95% CI) 95% CI)
Irradiated dose 60 Gy 60-70 GyE
(Median 60 Gy)

Site Cervical 7 3
Thoracic 12 22
Abdominal 0 0
Stage

(UICC 7th)

0 0 1

1A 4 7

1B 0 3

JIVN 0 1

1IB 1 4

IITA 4 3

I1IB 4 1

IC 6 S

CT scans, esophagogastroduodenoscopy (EGD), and positron emis-
sion tomography (PET)/CT scans. Endoscopic ultrasound was also
used if the depth of invasion was unclear. The X-ray group included
more advanced stage cases than the proton group. The median dose
of radiation was 60 Gy in both groups. Most tumor sites were in the
thoracic esophagus, and all tumors were squamous cell carcinoma.

Immediately after the start of radiotherapy, all patients received
the first cycle of chemotherapy. This consisted of an intravenous infu-
sion of cisplatin (70 mg/m” body surface area) over 3 h followed by
fluorouracil (2800 mg/m?) over 96 h. Therefore, concurrent chemo-
therapy was administered during Days 1 to S of radiotherapy. Add-
itional cycles of chemotherapy were scheduled at 3-week intervals.
Thus, patients received two cycles of chemotherapy during fractio-
nated radiotherapy. Patients in the X-ray group were treated with only
X-rays and chemotherapy, and those in the proton group were treated
with only protons and the same chemotherapy regimen. Thus, no
patient received a combination of X-rays and proton beams.

Radiotherapy systems

The X-ray therapy system consisted of a linear accelerator (Clinac iX,
Varian Medical Systems, Palo Alto, CA, USA) equipped with a 5-10 mm
multileaf collimator (MLC), a rotational treatment couch, and a treat-
ment-planning system (Xio ver. 4.8, Elekta, Stockholm, Sweden). The
PBT system consisted of a 250-MeV synchrotron equipped with an
isocentric rotational gantry, a 15 x 15 cm passive scattering port with
a 5-mm MLC, a rotational treatment couch, a treatment-planning
system (Hitachi 3D Treatment Planning System ver. 2.0, Tokyo, Japan),
a treatment-planning CT scanner, and an X-ray simulator without any
system modification.

Principles of treatment planning

The gross tumor volume (GTV) was defined as all diseased tissue
seen on CT images and other diagnostic imaging. To confirm the
tumor location on CT, two to three metal markers were placed in the
normal esophageal wall at the tumor edges during endoscopy prior to
the initial treatment planning. The initial clinical target volume
(CTV1) included all areas of potential disease spread, such as the
esophageal wall and mediastinal lymph nodes. For cancer of the thor-
acic esophagus (n =34), the whole thoracic esophagus was included
in CTV1 in most patients. The second CTV (CTV2) included the
GTV with 20- to 25-mm margins in the cranial and caudal directions
of the tumor and 10-mm margins in other directions. The lung
contour was defined as the thoracic cavity excluding the bilateral main
bronchus. The heart contour was defined as described by Feng et al.
[10]. In brief, superiorly the heart starts just inferior to the left pul-
monary artery. For simplification, a round structure including the
great vessels was contoured. Inferiorly, the heart blends with the dia-
phragm. The superior vena cava was included for simplification and
consistency.

A total dose of 40 gray (Gy) or gray equivalent (GyE), with rela-
tive biological effectiveness (RBE) set to 1.1 for the proton beam,
was given to CTV1 using conventional fractionation with a fractional
dose of 2 Gy. An additional dose of 20 Gy or GyE in 10 fractions was
given to CTV2. The planning target volume (PTV) was made by
adding adequate margins to the CTVs. The total dose was 60 Gy in
most patients; however, five patients in the proton group received an
additional boost for GTV with a short margin, since an endoscopic
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examination at a total dose of S0 Gy suggested persistent tumor
tissue. If necessary, treatment plans were revised repeatedly to adapt
to tumor volume changes and patient constitutional changes. Replan-
ning was performed using new planning CT scans.

For X-ray planning, a two-field anteroposterior and posteroanter-
ior (AP/PA) beam arrangement was used for CTV1 up to 40 Gy, and
then a two-field right anterior oblique (RAO) and left posterior
oblique (LPO) arrangement was used for the boost to CTV2. Field-
in-field techniques and wedge compensators were sometimes used to
maintain dose distribution uniformity. For PBT planning, a two-field
AP/PA beam arrangement was used throughout treatment in most
thoracic cases. When spinal cord doses became an issue, even in PBT,
an LPO arrangement was used instead of a PA arrangement. RAO
and left anterior oblique arrangements were used in cervical cases. In
cases where the PTV exceeded the maximum field size (14 cm) in our
system, two fields were ‘patched’ using the D-SLIT technique [11]. All
plans were revised and approved by multiple radiation oncology specia-
lists with experience in particle therapy and X-ray therapy.

Experimental planning and cross referencing
Experimental PBT plans were made for patients who received X-ray
therapy, using the actual planning CT. Alternatively, X-ray plans were
made using the planning CT for patients who received PBT. Original
CTVs and PTVs used in the actual treatment were maintained in the
experimental plans. To evaluate cumulative dose and volume from
different planning CT's accurately, all planning CTs and doses linked
to CT images were merged using deformation techniques [12-14].
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Data conversion and translation between systems, CT-CT deform-
ation, and dose volume studies were performed using MIM Maestro
ver. 6 (Cleveland, OH, USA). The concept of dose delivery to the
target and normal tissue was exactly the same in X-ray and proton
planning. Coverage of PTVs was provided by >95% of prescribed
doses, and the maximum spinal dose was restricted up to 44 Gy. After
summation of each X-ray and proton treatment plan, dosimetric
factors such as percentage volume of whole lung, heart receiving
more than a certain dose (Vx), and the mean lung dose (MLD) were
calculated using DVH analysis. The experimental plans were com-
pared with the actual treatment plans. Typical dose distributions and
the total DVH for X-rays and protons are shown in Fig. 1.

Normal tissue complication probability calculation
NTCP was calculated using the Lyman-Kutcher-Burman (LKB)
model following Emami et al. and Burman et al. [15-17]:
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Fig. 1. Typical dose distributions and dose-volume histograms in treatment of esophageal cancer in (A) X-ray 3D-CRT and
(B) PBT. In 3D-CRT, 20 Gy is delivered widely to the lung, 30 Gy is delivered to most of the heart, and 60 Gy is also delivered
widely to the heart. (C) Typical dose-volume histograms of the lung and heart. PBT results in lower irradiation doses in both

OARs.
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TD(v) = TD(1)v — n,
where TD is the tolerance dose and v is the fraction of organ irra-
diated. The model has four parameters: V,.;; TDso, n and m. TDsy is
the dose to the whole organ that gives a complication probability of
50%. Volume dependence is determined by n; the slope of the com-
plication probability vs dose curve is determined by m; and V¢ is the
reference volume for TDs,.

Follow-up

Follow-up included physical examinations, blood tests and imaging
studies. Squamous cell carcinoma antigen was measured as a serum
tumor marker at 1 month after completion of radiotherapy and at
2- to 3-month intervals thereafter. EGD and CT scans were per-
formed 1 to 2 months after radiotherapy for assessment of the initial
tumor response. Similar scans were performed every 3 months for
the first year and every 6 months thereafter for evaluation of tumor
recurrence at lymph nodes and distant organs. Treatment-related
morbidities were evaluated by physical examination and imaging.
Events were assessed using the National Cancer Institute Common
Terminology Criteria for Adverse Effects (CTCAE), ver. 4.

Statistical analysis
Statistical analysis was performed by Student t-test or paired t-test
using R Project software (http://www.r-project.org/). Receiver

Table 2. Clinical outcomes for adverse effects
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operating characteristic (ROC) curves and specificity/sensitivity cal-

culations were also performed using this software.

RESULTS
Adbverse effects

Cardiopulmonary late adverse effects of Grade >2 in all 44 patients
are shown in Table 2. Pulmonary events of this grade occurred in
8 cases (18.2%), and cardiac events such as pericardial effusion
occurred in 11 cases (25.0%). All pulmonary events of Grade >2
were in the X-ray group. Cardiac events of Grade >2 occurred in
10 cases (52.6%) in the X-ray group and in 1 case (4.0%) in the
proton group. Six cases in the X-ray group had both pulmonary and
cardiac events of Grade >2.

Correlation of DVH parameters and adverse effects
DVH parameters such as Vx and MLD for patients with and without
adverse events of Grade >2 are shown in Fig. 2. The irradiated OAR
volume in patients with events of Grade >2 was significantly higher
than in those with events of Grade <1. The data were used to calcu-
late ROC curves, which gave cut-off values of VS 44.1% (specificity
93.1%, sensitivity 69.2%), V10 31.5% (93.1%, 69.2%), V20 22.5%
(93.1%, 69.2%) and MLD 9.78 Gy (86.2%, 76.9%) for the lung; and
V30 35.0% (86.2%, 76.9%), V40 27% (86.2%, 76.9%) and V50 18.9%
(89.7%, 69.2%) for the heart.

All data <Gl G2 G3 G4 GS
Pharmacological pneumonitis 43 (97.7%) 0 0 1(2.3%)
Lung infection 43 (97.7%) 0 0 1(2.3%)
Radiation pneumonitis 40 (90.9%) 3(9.1%) 1(2.3%) 0 0
Pulmonary effusion 42 (95.5%) 1(2.3%) 1(2.3%) 0 0
Pericardial effusion 33 (75.0%) 11 (25.0%) 0 0 0

X-ray group <Gl G2 G3 G4 GS
Pharmacological pneumonitis 18 (94.7%) 0 0 1 (5.3%)
Lung infection 18 (94.7%) 0 0 1(5.3%)
Radiation pneumonitis 15 (78.9%) 3(15.8%) 1(5.3%) 0 0
Pulmonary effusion 17 (89.5%) 1(5.3%) 1(5.3%) 0 0
Pericardial effusion 9 (47.4%) 10 (52.6%) 0 0 0
Proton group <Gl G2 G3 G4 GS
Pharmacological pneumonitis 25 (100%) 0 0 0

Lung infection 25 (100%) 0 0 0
Radiation pneumonitis 25 (100%) 0 0 0
Pulmonary effusion 25 (100%) 0 0 0
Pericardial effusion 24 (96.0%) 1 (4.0%) 0 0 0
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Fig. 2. Parameters in patients with and without adverse events of Grade >2. All parameters were significantly higher in patients
with late adverse events of Grade >2. Bars show the median and 95% CI. Horizontal bars show cut-off lines calculated from

ROC curves.

DVH parameters in the organ at risk based
on cross-referencing of treatment plans
Dose-volume data in actual and experimental treatment plans are
shown in Table 3. Lung V5-V20, MLD, and heart V30-V50 were all
lower in the PBT plans (P < 0.001 by paired t-test). The X-ray group
included more cases with advanced disease, but experimental dose-
volume data calculated for protons were mostly the same as actual
data in the proton group. Similarly, experimental dose-volume data
calculated for X-rays in the proton group were mostly the same as
actual data in the X-ray group. Differences in DVH parameters in
actual treatment and experimental plans in each group are shown in
Fig. 3. All patients in the X-ray group had reduced irradiated lung and
heart volumes using protons (P < 0.001), while irradiation exposure
worsened using X-rays for all patients in the proton group (P < 0.001).

Potential change in dose distribution
DVH parameters for proton treatment in patients in the X-ray group
with adverse events of Grade >2 are shown in Fig. 4. There were 13

cardiopulmonary late adverse events of Grade >2 in this group, and
dose parameters decreased in all these cases in the experimental
proton plans. In the proton group, 24 cases had cardiopulmonary
adverse events of Grade <1, and the mean values of all parameters
increased in all these patients in the X-ray plans.

Calculated normal tissue complication probability
Changes in NTCP for the lung and heart in each patient are shown in
Fig. 5. NTCP decreased in proton plans in the X-ray group and
increased in X-ray plans in the proton group. No case had an increased
NTCP in proton plans or a decreased NTCP in X-ray plans.

DISCUSSION
3D conformal radiation therapy (3D-CRT) using X-rays is a widely
used technique worldwide. However, X-ray treatment of esophageal
cancer results in large parts of the heart and lung being irradiated at
low to medium doses [18, 19] and this causes late adverse events in
these organs [2-6]. Ishikura et al. reported a rate of 11.5% for late
cardiopulmonary toxicity of Grade >3, and the RTOG 85-01 and
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X-ray group

Actual X-ray plan (95% CI) Experimental proton plan (95% CI)
Lung V5 45.57 (40.64-50.50) 18.89 (16.90-20.88) P=14810""
Lung V10 33.36 (28.68-38.04) 15.51 (13.87-17.15) P=215*10"%
Lung V20 23.98 (20.56-27.40) 10.61 (9.36-11.86) P=835*10"°
MLD 12.69 (11.03-14.35) 472 (4.12-5.32) P=3.84*10""°
Heart V30 65.03 (48.58-81.48) 18.84 (11.26-26.42) P=9.10*10"*
Heart V40 55.65 (40.13-71.17) 9.54 (4.42-14.66) P=141*10"*
Heart V50 18.89 (10.33-27.45) 541 (1.65-9.17) P=470*10""

Proton group

Actual proton plan (95% CI) Experimental X-ray plan (95% CI)
Lung VS 19.56 (22.29-16.83) 34.30 (29.89-38.71) P=175*10"%
Lung V10 16.77 (14.33-19.21) 26.77 (23.12-30.42) P=8.01%10"7
Lung V20 12.54 (10.44-14.64) 19.58 (16.83-22.33) P=5.90%10"°
MLD 5.73 (4.73-6.73) 9.32 (8.03-10.61) P=639*10"°
Heart V30 21.51 (16.94-26.08) 63.29 (52.43-74.15) P=822*10"%
Heart V40 15.29 (11.74-18.84) 51.78 (41.45-62.11) P=753*10""
Heart V50 5.51 (2.63-8.39) 28.96 (21.54-36.38) P=2.62*10"*

Intergroup 0123 studies found rates of 28% and 37-46%, respectively,
for any severe late toxicity of Grade >3.

IMRT can be used to focus high dose areas to the target, which
leads to lower heart doses [20] and fewer cardiac late adverse events.
The clinical superiority of IMRT over 3D-CRT has been suggested
using propensity scores [21]. However, the basic physical characteris-
tics of X-rays of multiple field directions leads to wider low-dose
areas, and IMRT results in irradiation of larger areas at low doses than
3D-CRT; this is especially critical in organs with low tolerance doses,
such as the lung [22]. The risk of pneumonitis may also be higher
with IMRT in thoracic irradiation [23, 24]. Additionally, IMRT is
considered unsuitable for treatment of cancer with respiratory move-
ment because it is difficult to apply respiratory gating during IMRT
due to the complicated beam arrangement.

PBT provides distinct therapeutic advantages over 3D-CRT for
esophageal cancer based on DVH studies [7, 8] because it is possible
to reduce OAR doses without affecting the PTV coverage of the pre-
scribed dose. Compared with 4D IMRT, PBT can reduce VS, V10,
V20 and MLD from 49.5% to 13.9%, 32.5% to 12%, 15.6% to 9.8%,
and 9.65 Gy to 4.55 Gy, respectively [8]. However, previous DVH
studies have not examined the correlation with treatment outcomes
in esophageal cancer. The current study provides a link between the
dose distribution superiority of PBT with actual clinical results by
cross-referencing individual patient plans.

In this study, morbidity rates in the heart and lung in the proton
group were lower than those in the X-ray group, consistent with the

lower OAR doses and volumes in the proton group. However, there
were more advanced cases in the X-ray group than in the proton
group, and this may have affected the morbidity rate. Previous Phase
II studies of definitive radiation therapy of 60 Gy/30 fr concurrently
combined with CDDP and S5-FU for advanced esophageal cancer
(JCOG 9906) revealed that late toxicities compromised Grade 3 or
severe pericardial (13%) and pleural effusions (9%) and radiation
pneumonitis (4%) [25].

Furthermore, results of a randomized Phase II study for Stage II-
IVA esophageal cancer was recently reported by Nishimura [26], and
91 patients were treated with radiation therapy of 60 Gy/30fr concur-
rently combined with CDDP plus SFU. In the study, Grade 3 or
severe late toxicities of pericardial and pleural effusions were observed
in 9% and 7%, respectively, but the corresponding rates of a Phase II
study (JCOG9708) performing CCRT using a similar treatment
protocol for Stage I esophageal cancer were 0% and 3%, respectively
[27]. Therefore, there seems to be no doubt that the size of the irradi-
ation fields affects the development of late cardiopulmonary toxicities.

In our study however 11 of 14 patients with Stage IITA-C esophageal
cancer in the X-ray group experienced Grade 2 or severe cardiopulmon-
ary events, whereas none of 9 patients with Stage IIIA-C in the proton
group did. Although some lung dose parameters of the X-ray plans in
the proton group were lower than in the X-ray group, no significant dif-
ference in OAR doses between the two groups was observed.

Furthermore, experimental dose-volume data calculated for
protons in the X-ray group were mostly the same as actual data in the
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Fig. 3. Differences in parameters in the lung and heart in actual treatment plans and experimental plans. All dose parameters were
significantly lower in PBT (P < 0.001 by paired t-test). Horizontal bars show median values and vertical bars show the 95% CI.

proton group. Similarly, experimental dose—volume data calculated
for X-rays in the proton group were mostly the same as actual data in
the X-ray group (Fig. 3). In addition, we also found a clear correlation
between OAR doses and late adverse events in the present study.
Therefore, we think that differences in incidences of the cardiopul-
monary events between X-ray and proton therapy in the study may be
mainly caused by the difference in dose distribution of the different
types of radiation beams.

NTCP is a useful method for estimating adverse effects in radio-
therapy. In this study, we calculated NTCP using the model described
in Burman ef al. [17] using data from Emami ef al. [16]. However,
the rates of observed adverse events in chemoradiotherapy were
higher than those expected from the calculated NTCP. The data in
Enami et al. [16] were obtained from studies using radiotherapy
alone, and this may explain why we observed more adverse events
than expected from the calculated NTCP. Definitive radiotherapy
often includes concurrent chemotherapy, and thus parameters reflect-
ing this approach are in demand.

Clinically, new planning CTs are obtained when tumors shrink
during radiotherapy. This makes it difficult to evaluate the cumulative
doses accurately for two plans based on different CT series. Simple
accumulation of DVH data does not reflect the true DVH,

particularly when beam directions are changed. To evaluate the
cumulative DVH as accurately as possible, and to reflect actual time-
dependent changes of the patient and tumor, we used a CT-CT
deformation technique reported in adaptive RT and 4D CT studies
[12-14]. Therefore, more accurate DVHs of OARs were obtained in
this study compared with previous studies that did not utilize this
deformation technique.

This study does not directly show superiority of PBT over X-rays
because it is a non-randomized retrospective study. However, by
cross-referencing proton and X-ray plans, we believe that bias has
been reduced to a minimal level. Thus, the superiority of PBT for
esophageal cancer with regard to irradiation doses to the heart and
lung and the occurrence of cardiopulmonary adverse effects is appar-
ent from the results of the study. The accumulation of further cases is
required to validate this result, in part because our NTCP data under-
estimate the risk of adverse effects due to the small sample size and
the use of chemoradiotherapy data.
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