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Abstract

The heat resistance of meristematic tissues is crucial for the survival of plants

exposed to high temperatures, as experienced during a forest fire. Although the risk

and frequency of forest fires are increasing due to climate change, knowledge about

the heat susceptibility of buds, which enclose apical meristems and thus enable res-

prouting and apical growth, is scarce. In this study, the heat resistance of buds in two

different phenological stages was experimentally assessed for 10 European tree spe-

cies. Cellular heat tolerance of buds was analyzed by determining the electrolyte

leakage following heat exposure. Further, the heat insulation capability was tested by

measuring the time required to reach lethal internal temperatures linked to bud traits.

Our results highlighted differences in cellular heat tolerance and insulation capability

among the study species. The phenological stage was found to affect both the ther-

mal stability of cells and the buds' insulation. Further, a good relationship between

size-related bud traits and insulation capability was established. Species-specific data

on the heat resistance of buds give a more accurate picture of the fire susceptibility

of European tree species and provide useful information for estimating tree post-fire

responses more precisely.
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1 | INTRODUCTION

The ability of trees to deal with excessive heat becomes increasingly

challenged with climate change. Besides raising the number of

extreme heat waves (Yao, Luo, Huang, & Zhao, 2013), drier and

warmer climatic conditions also enhance the frequency and intensity

of fire events in many forest ecosystems worldwide (IPCC, 2014;

Seidl, Spies, Peterson, Stephens, & Hicke, 2016). Forest fires consti-

tute a particular heat stress situation, where tree individuals are con-

fronted with high amounts of thermal energy released by

combustion. The heat tolerance of a tree mainly derives from its abil-

ity to protect meristematic tissues against lethal heat injuries

(Dickinson & Johnson, 2001; Michaletz & Johnson, 2007). Lateral

meristems are located underneath and in the bark (the vascular cam-

bium and the cork cambium, respectively) and are responsible for

the (re)generation of new xylem, phloem, and bark tissues. If the

bark is not able to sufficiently reduce the heat transfer, the vascular

cambium can exceed critical temperatures, potentially resulting in

limitations to hydraulic and carbohydrate pathways (e.g., Bär,

Michaletz, & Mayr, 2019; Gricar et al., 2020; Mundo, Gonz�alez,

Received: 8 January 2021 Accepted: 4 May 2021

DOI: 10.1111/pce.14097

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2021 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

Plant Cell Environ. 2021;44:2593–2603. wileyonlinelibrary.com/journal/pce 2593

https://orcid.org/0000-0002-0059-3964
mailto:andreas.baer@uibk.ac.at
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/pce


Stoffel, Ballesteros-C�anovas, & Villalba, 2019; Partelli-Feltrin, Smith,

Kolden, Johnson, & Adams, 2020), and ultimately in tree mortality.

Equally important is the protection of apical meristematic tissues,

which are contained in buds, as they are the source for the develop-

ment of above-ground organs, such as shoots, leaves, and flowers.

Depending on the heat transfer processes to the crown (Michaletz &

Johnson, 2006a), fires can cause partial or complete necrosis of buds

including apical meristems, accompanied by loss of active foliage.

Partial bud and foliage necrosis reduce the total leaf area of affected

trees, limiting their photosynthetic carbon assimilation. Limitations of

the carbon pathway can manifest in decreased growth or even mor-

tality if the tree's carbohydrate demand cannot be fully covered by

the remaining foliage (Bär et al., 2019; Hood, Varner, van Man-

tgem, & Cansler, 2018). A complete fire-induced loss of apical meri-

stems restrains a successful reestablishment of green biomass after a

fire, unless the tree is able to form adventitious structures originating

from nonmeristematic tissues at wounding sites (Meier, Saunders, &

Michler, 2012). In fire-prone ecosystems, trees have evolved impor-

tant strategies of apical meristem protection to enhance resprouting

after fire disturbances (Clarke et al., 2013; Pausas & Keeley, 2017).

For example, following fire-induced crown destruction, many fire-

adapted eucalypt species resprout epicormically from dormant buds

buried in the bark or from basal/belowground bud banks, which ben-

efit from the soil's effective insulation ability (Nicolle, 2006; Pausas,

Lamont, Paula, Appezzato-da-Gl�oria, & Fidelis, 2018). Additionally,

the structure and arrangement of foliage influence the heat transfer

towards buds (Michaletz & Johnson, 2006b), and it is known from

fire-resistant coniferous species that long and densely standing

needles provide a shielding of aerial buds from heat (Fernandes,

Vega, Jiménez, & Rigolot, 2008).

Improving the knowledge of forest fire impacts on tree individuals

and predicting post-fire tree mortality are the focus of broad research

activities (e.g., Bär et al., 2019; Brando, Nepstad, & Balch, 2012; Catry,

Rego, Moreira, Fernandes, & Pausas, 2010; Dickinson &

Johnson, 2001; Hood et al., 2018; Michaletz & Johnson, 2007, 2008;

Rigolot, 2004; Woolley, Shaw, Ganio, & Fitzgerald, 2012). Naturally,

most studies contributing to a better understanding of the fire sensi-

tivity of trees focus on species in fire-prone ecosystems and/or areas

where prescribed burning is used as a forest management tool

(e.g., Fernandes et al., 2008; Loram-Lourenço et al., 2020;

Pausas, 2015; van Mantgem & Schwartz, 2003). However, with ongo-

ing climate change, lessfire-prone areas like the European Central Alps

will also face an increased risk of forest fires in the future (Arpaci,

Malowerschnig, Sass, & Vacik, 2014; Lorz et al., 2010; Müller, Vilà-

Vilardell, & Vacik, 2020; Wastl, Schunk, Leuchner, Pezzatti, &

Menzel, 2012). In the Central Alps, forests provide a very important

ecosystem service: the fundamental protection against natural hazards

(Körner, 2012; Tranquillini, 1979). A fire-caused endangerment of this

protective function can have enormous consequences, exposing

human settlements and infrastructure to avalanches, landslides, and

rockfalls. Therefore, obtaining a precise picture of the fire resistance

of Central Alpine tree species will become highly important to accu-

rately estimate future forest dynamics and to better assess fire risks.

In recent years, important steps have been made to quantify the fire

resistance of Alpine trees (Bär & Mayr, 2020; Bauer, Speck, Blömer,

Bertling, & Speck, 2010; Conedera, Lucini, Valese, Ascoli, &

Pezzati, 2010; Dupire, Curt, Bigot, & Fréjaville, 2019; Frejaville, Curt, &

Carcaillet, 2013; Frejaville, Vilà-Cabrera, Curt, & Carcaillet, 2018).

However, while most studies focus on bark properties and the related

capability to protect stem-internal tissues including lateral meristems,

information regarding the heat resistance of crown components is lim-

ited for species in the European Alpine region (Bauer, 1972; Fer-

nandes et al., 2008; Wisniewski, Sauter, Fuchigami, & Stepien, 1997).

In the present study, bud heat resistance data of 10 Central

Alpine tree species in different phenological stages were collected to

gain a more holistic understanding of species-specific fire susceptibili-

ties. The cellular heat tolerance of buds was analyzed by quantifying

cell damages at different heat exposure levels and by assessing the

heat insulation capability of bud samples with measurements of

the times required to reach a critical internal temperature of 60�C, a

threshold where cell mortality is typically assumed (Rosenberg,

Kemeny, Switzer, & Hamilton, 1971). Further, five different bud traits

were measured on each bud sample to explore the respective influ-

ence on the insulation capability using multivariate statistics. We

aimed to (a) identify differences in cellular heat tolerance among study

species, (b) address if there are interspecific variations in the heat

insulation capability, and (c) analyze which bud traits are the best pre-

dictors for the insulation capability. Further, we studied (d) the influ-

ence of the buds' phenological stage on both cellular heat tolerance

and insulation capability.

2 | MATERIALS AND METHODS

2.1 | Plant material

Measurements were conducted on five coniferous and five angio-

sperm European tree species (Table 1) relevant for silviculture and for-

est management within the Central Alpine region. In a previous study

performed by Bär and Mayr (2020), the bark insulation capability was

examined on the same set of species. Between February and May,

bud-bearing branches were collected from a minimum of three differ-

ent mature specimens per species, growing in mixed forest stands sit-

uated near Innsbruck or Praxmar, Tyrol, Austria (for locations, see

Table 1). First, completely closed, winter resting buds were harvested

for all study species. Bud sampling was repeated when buds were

clearly swollen, but bud break had not occurred yet. Sampling dates of

swollen buds were chosen according to the species-specific phenolog-

ical progress. For sampling, branches were cut from lower crown por-

tions, packed in plastic bags and immediately transported to the

laboratory. Branches were then cut into smaller segments and further

processed for the assessment of either the cellular heat tolerance or

the heat insulation capability of buds. To best possibly account for

intraspecific variations, buds were chosen randomly from branch seg-

ments without differentiation between terminal and lateral buds for

both analyses.
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2.2 | Cellular heat tolerance derived from
electrolyte leakage

To determine the buds' cellular heat tolerance, the electrolyte

leakage to the apoplast due to heat-induced cell damages was

assessed by measuring the electrical conductivity of solutions con-

taining heat-exposed bud samples. Bud-bearing branch segments

were exposed to different temperatures (bud-internal target tempera-

tures: 40, 45, 50, 55, 60 and 80�C) in a heat test chamber (MK53,

Binder GmbH, Tuttlingen, Germany) for 15 min. As a reference (20�C),

one sample set of buds remained without heat treatment. Addition-

ally, heat treatments were also performed at 70�C for P. sylvestris

(closed stage) and P. cembra (closed and swollen stage) due to their

comparatively high heat tolerance. Evergreen coniferous branches

were heat treated with their foliage attached. Before each treatment,

three buds of each species were randomly chosen, and copper-

constantan thermocouples (Type T, operating range: �200 to 350�C,

diameter of coated wires: 0.3 mm) connected to a thermometer (PCE-

T390, PCE Deutschland GmbH, Meschede, Germany) were inserted

from the bud base into the centre to monitor internal bud tempera-

tures. These buds were only used for monitoring purposes and were

excluded from further measurements. To avoid any heat conduction

via the thermocouple wires into the buds, the sheathing was only

removed at the wire tips. Thus, only insulated wire parts had contact

with the heated air outside buds. For each treatment, the heating

chamber was preheated according to the desired bud-internal target

temperature, and the integrated fan was set to a speed of 60% to

break down the boundary layer around the buds. As preliminary mea-

surements showed that internal bud temperatures mostly remain

slightly below ambient temperature levels, the heat chamber tempera-

ture was set 1�C above the respective target temperature. Branch

segments and buds for temperature monitoring were then placed in

the heating chamber. The exposure time of 15 min started as soon as

the bud-internal temperature stabilized at the target temperature to

exclude potential insulation effects. The actual measured bud-internal

temperatures were used for further analyses. Heat experiments were

carried out with an exposure time of 15 min to induce pronounced

effects (cellular damages) at each temperature level. It should be taken

into account that such a long heating treatment reflects an extreme

fire situation with a long flame residence time. After heat treatments,

20 buds of every species were cut longitudinally with a sharp razor

blade. Five bisected buds were then each transferred into four test

tubes filled with 15 ml of distilled water and shaken for 24 hr on a

horizontal shaker (ST5 Bidimensional Shaker, CAT, Staufen, Germany)

at 5�C. Afterward, sample solutions were re-equilibrated to room tem-

perature, and their electrical conductivity (C1; μm s�1) was measured

with a conductivity metre (WTW inoLab, Weilheim, Germany). Sam-

ples were then autoclaved at 121�C for 20 min (Tuttnauer autoclave

steam sterilizer 240 ELV, Syntec GmbH, Wettenberg, Germany) and

shaken again for 24 hr at 5�C before the final electrical conductivity

measurement was performed for all sample solutions (C2; μm s�1).

The relative electrolyte leakage (REL; %) was calculated for each sam-

ple by relating C1 to C2, including a correction for the electrolyte

leakage caused by the cutting of buds:

REL¼ C1
C2

�100
� �

�RELref ð1Þ

where RELref (%) is the mean species-specific electrolyte leakage of

untreated reference buds. Assuming that the bud tissue is completely

killed by autoclaving and that no heat-induced cell damages occurred

with minimum REL, the percentage of cellular damage (PCD; %) was

consequently determined as

PCD¼ REL�RELmin

RELmax�RELmin
�100 ð2Þ

where RELmax is the species-specific mean maximum electrolyte leak-

age caused by autoclaving, and RELmin is the mean REL at the temper-

ature step where the minimum leakage was observed. Heat tolerance

curves were then constructed to compare critical thresholds between

species and between phenological stages.

2.3 | Heat insulation capability

The insulation capability of buds was quantified by measuring the internal

temperature dynamics of bud samples to a heat exposure at 80�C. A tem-

perature of 80�C was chosen as it is within the range of heat plume tem-

peratures during low- to moderate-intensity surface fires (Michaletz &

Johnson, 2006a; Seto, Strand, Clements, Thistle, & Mickler, 2014). Per

species and phenological stage, six buds were chosen, cut from branches

and equipped with thermocouples that were inserted through the bud

base. Bud samples were then heat exposed in the preheated test cham-

ber, and their internal temperature was logged at 1-s intervals until

reaching a critical threshold of 60�C. The temperature in the heating

chamber was kept constant at 80�C during the measurement.

TABLE 1 Study species, height of sampled trees, and sampling
location coordinates

Species

Tree

height (m)

Coordinates of sampling

locations

Abies alba Mill. 15–20 47�17040.800N, 11�24037.900E

Larix decidua Mill. 15–20 47�16052.600N, 11�23006.500E

Picea abies (L.) Karst. 10–25 47�16014.000N, 11�22017.900E
47�13037.500N, 11�25005.100E

Pinus cembra L. 10–15 47�09020.700N, 11�08004.300E

Pinus sylvestris L. 10–15 47�16018.200N, 11�22026.900E

Acer pseudoplatanus L. 5–15 47�16016.500N, 11�22025.100E

Betula pendula Roth 8–15 47�16016.200N, 11�22033.200E

Fagus sylvatica L. 10–20 47�16014.600N, 11�22024.600E

Fraxinus excelsior L. 8–20 47�16017.700N, 11�22032.300E

Quercus robur L. 10–15 47�17029.600N, 11�25036.100E
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Temperature recordings were used to determine the time

required to reach a lethal bud-internal temperature of 60�C (t60; s),

which allowed us to assess and compare the heat insulation capability

of bud samples. Further, the thermal conductivity of each bud sample

was calculated based on logged temperature profiles (see ‘Bud ther-

mal conductivity’).

2.4 | Bud traits

To assess the influence of bud traits on the insulation capability, the

following five traits were measured on each bud used in the heat insu-

lation experiment.

2.4.1 | Moisture content

Before heat exposure, the fresh weight (FW; g) of each bud was col-

lected. After heat experiments were finished, bud samples were oven-

dried at 70�C for 48 hr, and the dry weight (DW; g) was determined.

The moisture content (MC; %) was then calculated on DW basis.

2.4.2 | Bud diameter (D)

The diameter of each bud (D; mm) was measured at its widest point,

which corresponded to the depth of inserted thermocouples.

2.4.3 | Bud volume (V) and density (ρ)

Prior to heat experiments, photographs of buds were taken in plan

view (Nikon, Coolpix AW130, Nikon Corporation, Tokyo, JP) and

processed in ImageJ (ImageJ, 1.52; public domain, National Institutes

of Health, Bethesda). Corresponding to the bud contour, black-white

negative pictures were created and fed to the software YABBA (Yet

Another Bacterial Biovolume Algorithm; Zeder, Kohler, Zeder, &

Pernthaler, 2011), which returns accurate biovolume estimations

based on the two-dimensional projections irrespective of their shape.

From the obtained bud volume (V; m3) and DW, the bud density (ρ; kg

m�3) was then determined:

ρ¼ DW
V �1000 ð3Þ

2.4.4 | Bud thermal conductivity (k)

Temperature recordings from insulation capability experiments were

used to calculate the bud thermal conductivity (k; W m�1�C�1).

According to Dickinson and Johnson (2001), the thermal diffusivity (α;

m2 s�1) was first calculated using a simplified one-dimensional heat

transfer model:

T�Te

T0�Te
¼ erf

r
2

ffiffiffiffiffi
ατ

p
� �

ð4Þ

The excess temperature ratio (left side of Equation (4)) was calcu-

lated from the exposure temperature (Te; �C), the ambient tempera-

ture (T0; approx. range: 22–25�C), and the bud-internal temperature

(T; �C) at depth r (which corresponds to the bud radius) after the dura-

tion of heating (τ; s). The right side of the Equation describes the error

function (erf) associated with the excess temperature ratio, whose

argument can be found in mathematical tables (e.g., Gautschi, 1965).

After rearranging Equation (4) to derive α, k could be determined:

k¼ α�c�ρ ð5Þ

where c is the bud's specific heat capacity (J kg�1�C�1), which was

calculated as follows to account for differences in bud relative MC

(Michaletz & Johnson, 2006a):

c¼DW�cdbþMw �Cw

DWþMw
ð6Þ

where cdb is the heat capacity of dry buds (1902.6 J kg�1�C�1; Phil-

lips, Sastry, & T. M.C., 1983), Mw reflects the bud's water mass, and cw

is the heat capacity of water (4,180 J kg�1�C�1).

2.5 | Statistical analyses

All data analyses were conducted in R version 3.6.1 (R Development

Core Team, 2017). Heat tolerance curves were generated using the

Weibull function provided by the ‘fitplc’ package (Duursma &

Choat, 2017). To assess differences between species and between

phenological stages, the temperature at 50% PCD (TPCD50;
�C), and

the associated 95% bootstrapped (n = 999) confidence interval were

derived from each curve. TPCD50 values with nonoverlapping confi-

dence intervals were considered as statistically different.

Differences in heat insulation between phenological stages were

tested with the Student's t test after testing data for Gaussian distri-

bution (Shapiro–Wilk-Test) and variance homogeneity (Levene test).

Non-Gaussian distributed data were compared using the Welch test.

All tests were performed at a probability level of 5% (R package ‘jmv’,
Selker, Love, & Dropmann, 2019).

Relationships between insulation capability (i.e., t60), bud trait

data, phenological stages, and individual bud samples of different spe-

cies were explored by performing a principal component analysis

(PCA). PCA analysis (data scaled to unit variance) and visualization

were performed using R packages ‘FactoMineR’ (Le, Josse, &

Husson, 2008) and ‘factoextra’ (Kassambara & Mundt, 2017). Addi-

tionally, a redundancy analysis (RDA; R Package ‘vegan’, Oksanen

et al., 2019) was conducted to estimate the influence of single bud

traits on the insulation capability. Linear correlation tests were per-

formed among explanatory variables (bud traits) beforehand, and a

strong correlation (R = 0.87) was found between V and D. However,
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neither V nor D was omitted from the RDA as the combination of

both variables provides additional explanatory value. As only one

response variable (t60) was used (this corresponds to a multiple regres-

sion analysis), the explained variation is summarized by only one RDA

axis. The statistical significance of this axis was tested with an

ANOVA-like permutation test (999 permutations of raw data). RDA

scores of bud traits were then extracted, and their absolute values

were plotted to demonstrate their influence on t60.

To obtain a better estimation of the overall heat susceptibility of

each species, data on cellular heat tolerance and insulation capability

were combined. Therefore, species-specific TPCD50 temperature

values extracted from heat tolerance curves (Figure 1, Table S1) were

defined as critical thresholds. Then, the average time until reaching

these species-related critical temperatures (tcrit) was calculated.

3 | RESULTS

3.1 | Cellular heat tolerance

Heat tolerance curves obtained from electrolyte leakage experiments

(Figure 1) revealed clear differences in heat susceptibility among spe-

cies as well as between phenological stages. In general, mean TPCD50

values (see also Table S1) ranged from 50.0 to 66.4�C. Within studied

(a) (b)

F IGURE 1 Heat tolerance curves for (a) coniferous and (b) angiosperm species in study. The percentage of cellular damage (PCD; mean
values SE) is plotted against exposure temperature for closed and swollen buds. Points represent means ± SE. Dashed lines indicate a cellular
damage of 50%
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coniferous species, closed buds of P. cembra (TPCD50: 66.4�C) and

P. sylvestris (TPCD50: 62.4�C) showed the highest heat tolerance, while

closed buds of Q .robur (TPCD50: 57.5�C) and F. excelsior (TPCD50:

57.9�C) were found to provide the best cellular thermal stability

among angiosperm species in the study. In contrast, a TPCD50 at

around 50�C was observed in swollen buds of A. alba and Q. robur,

exhibiting the highest cellular heat susceptibility within this study.

Obtained results showed an overall trend towards a reduced heat tol-

erance with progressing phenology, as mean TPCD50 values of swollen

buds were generally lower (except for P. abies) than those of closed

buds (Figure 1, Table S1). Please note that pre-exposure heating times

(until reaching the required bud-internal target temperatures) varied

to a certain extent. Pre-exposure heating of buds was generally com-

pleted within 1 min, with most buds reaching their target tempera-

tures after approx. 20–30 s. Variations in pre-exposure heating times

may potentially influence the level of cellular injuries. However, as the

exposure time was 15 min, the effects of variation in heating time can

be expected to be minor.

3.2 | Heat insulation capability and its relation to
bud traits

Differences in the heat insulation capability assessed via t60 are illus-

trated in Figure 2. Compared to the closed bud stage, swollen buds of

all species showed a significant increase in the heat protection

of internal tissues. Consistent with findings obtained from heat toler-

ance experiments, buds of P. cembra and P. sylvestris also provided the

best insulation capability within the coniferous subset (Figure 2a).

Within angiosperms, especially swollen buds of A. pseudoplatanus and

F. excelsior, showed an enhanced insulation in comparison to the other

species, being able to protect internal tissues from reaching a critical

temperature of 60�C for a duration of 61.5 ± 15.3 s and 111.3

± 25.1 s, respectively (Figure 2b).

The relationships among t60 and bud traits (species-specific values

of measured bud traits can be found in Table S2) were assessed by

performing a PCA. The first two constructed axes (principal compo-

nents) explained 74.5% of the variance (Figure 3). The PCA showed

positive relations among t60, MC, V, and D, while the opposite vector

directions of ρ and t60 indicated that high ρ-values negatively affected

t60. PCA results further demonstrated the connection between the

phenological bud stage and the insulation capability. Swollen buds,

which are highlighted by the light red convex hull in Figure 3, were

predominantly associated with higher t60 values, as well as with

increases in size (V, D) and MC, and a decrease in ρ. To clearly identify

the traits that mainly influence t60, an RDA analysis was performed

(Figure 4). RDA scores revealed t60 to be mainly determined by V and

D, while ρ and MC proved to be traits with lower predictive power. As

also indicated by the PCA analysis, the effect of k on t60 was

negligible.

3.3 | Integrating cellular heat tolerance into
insulation capability

As illustrated in Figure 5, incorporating the cellular heat tolerance

widely mitigated the positive effect of bud swelling as the cellular

thermal stability declined with progressing phenology in most species.

(a)

(b)

F IGURE 2 Boxplots of average times to reach a bud-internal temperature of 60�C (t60) at an exposure temperature of 80�C for (a) coniferous
and (b) angiosperm species in study. Boxplots indicate the median (thick central line), interquartile range (box), minimum and maximum (whiskers),
and outliers (circles). Different letters indicate significant intraspecific differences between closed and swollen buds [Colour figure can be viewed
at wileyonlinelibrary.com]
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The recalculation of tcrit values further highlights the beneficial heat

resistance of P. cembra and P. sylvestris buds. While tcrit generally

decreased in comparison to t60 in all other species, high TPCD50 values

above 60�C (see also Table S1) of P. cembra (closed and swollen stage)

and P. sylvestris (closed stage) led to an especially high heat protection

of bud tissues.

4 | DISCUSSION

This study demonstrated (a) species-specific temperature thresholds

at which critical cell damages in buds occur. Results highlighted the

differences in cellular heat tolerance among the studied species, with

closed buds of P. cembra and P. sylvestris being able to withstand the

highest exposure temperatures. (b) Also, interspecific variations con-

cerning the insulation capabilities of buds were observed. Here,

swollen buds of F. excelsior and A. pseudoplatanus as well as buds of

P. cembra and P. sylvestris provided the highest protection for internal

tissues. (c) The heat transfer towards the bud centre was mainly

influenced by size-related bud traits such as V and D but also ρ and

MC were found to have an impact on the heat insulation of buds.

(d) Further, the phenological stage of buds affected their heat resis-

tance. While the heat insulation capability of buds increased with pro-

gressing phenology, bud tissues became more susceptible to heat in

the swollen stage.

Cellular heat damages are initiated by gross structural changes of

cell membranes. Heat-induced protein denaturation and phase

changes in membrane lipids lead to permeability alterations or lesions,

and, consequently, to a release of cellular contents (Quinn, 1988;

Wahid, Gelani, Ashraf, & Foolad, 2007). It has been demonstrated that

heat-induced cell injuries start to occur when tissue temperatures rise

above approximately 45–50�C (e.g., Colombo & Timmer, 1992;

Daniell, Chappell, & Couch, 1969; Yeh & Lin, 2003). This corresponds

well with our findings, as onsets of cellular damages were evident in

most species when this temperature threshold was exceeded

(Figure 1). However, as heat injuries emerge as a function of tempera-

ture and time (Dickinson & Johnson, 2004; Hare, 1961; Peter, Agee, &

Sprugel, 2009), cell damages may potentially occur at lower tempera-

tures if exposed for longer time periods. While the direct relationship

between cellular injuries and bud break failure was not explored in

this study, Wisniewski et al. (1997) demonstrated a 50% electrolyte

leakage increase caused by heat damages to result in bud mortality

and inhibition of bud break. Therefore, the temperature at which 50%

of cellular damages occurred (TPCD50) seems to be an adequate physi-

ological parameter to assess the cellular heat tolerance among species

and bud stages. TPCD50 values of closed buds ranged from 52.9�C

(L. decidua) to 66.4�C (P. cembra) within the coniferous subset, while

the variation within angiosperms was considerably lower (minimum:

55.5�C, F. sylvatica; maximum: 57.9�C, F. excelsior). It is considered

that the thermal tolerances of plant cell membranes are governed by

their protein and lipid structures (Wahid et al., 2007), and it has been

demonstrated that the total lipid content, as well as composition and

saturation degree of fatty acids in membrane lipids, can vary in bud

meristems between species (Alaudinova & Mironov, 2009, 2010).
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Additionally, the presence of resin may be accountable for the high

variation within coniferous buds, as, during sampling preparation, resin

depositions were found to be very prominent in P. cembra and

P. sylvestris. It is conceivable that the presence of resin might have a

certain stabilizing effect on bud cell physics, as P. cembra and

P. sylvestris showed a remarkably high heat tolerance with closed buds

resisting temperatures of above 60�C before a 50% PCD occurred

(Figure 1a). Generally, the cellular heat tolerance decreased with bud

swelling, and TPCD50 values were found to be lower in the swollen

bud stage (except for P. abies; Figure 1). These reductions of the cellu-

lar thermal stability may be explained by membrane lipid dynamics

with progressing phenology. Various studies (e.g., Alaudinova &

Mironov, 2010; Chu & Tso, 1968; Hall, Chastain, Horn, Chapman, &

Choinski, 2014) demonstrated that during bud/leaf development,

desaturation processes take place, increasing the amount of unsatu-

rated fatty acids. While this indicates that a comparatively high degree

of lipid saturation is potentially beneficial for cellular thermal stability

(Wahid et al., 2007), empirical links between cell membrane lipid char-

acteristics and heat tolerance of bud tissues are currently missing.

Analyses of heat insulation capability and associated bud traits

revealed that during heat exposure, the size of buds strongly influ-

ences the time until critical internal temperatures are reached, while

other bud traits had only medium (ρ and MC) or minor effects (k) on

heat transfer. Accordingly, size-related traits such as V and

D (Figures 3 and 4) were found to be the most useful parameters for

predicting bud thermal protection. These findings agree with previous

studies, which also highlighted the importance of the size of buds for

their survival during fires (Byram, 1948; Michaletz & Johnson, 2006a;

Peterson & Ryan, 1986). The influence of bud size also becomes

clearly visible when comparing the insulation capability between

closed and swollen buds (Figure 2): Swollen buds of all species were

able to withstand longer time periods of heat exposure, mainly due to

volume increases. Additionally, the swelling process was accompanied

by ρ losses and MC gains (Figure 3), which both affected the heat pro-

tection of internal tissues. It is known from bark heating experiments

that tissues of low density are advantageous for heat insulation as air-

filled spaces in the bark reduce the heat transfer to underlying tissues

(Bär & Mayr, 2020; Bauer et al., 2010; Dickinson & Johnson, 2001). In

buds, the movement of bud scales with bud expansion may create

such spaces where air can accumulate. At the same time, the amount

of water in parenchymal and primordial tissues increases with bud

swelling, which consequently influences the bud's thermophysical

properties. Due to the high heat capacity of water, also the bud's spe-

cific heat capacity increases with MC (see Equation 6), and, subse-

quently, heat transfer rates are slowed down as more energy is

required to raise the bud temperature. During longer heat exposure

times, buds with higher MC may also benefit from prolonged evapora-

tive cooling until the water is fully vaporized.

Additionally, other factors not addressed in this study may con-

tribute to the variation of t60 among species and between phenologi-

cal stages. Besides the presence/absence of resin or concentration

differences of secondary metabolites in bud tissues, interspecific vari-

ations in bud-internal structures might also affect the heat transfer.

Pine species, for instance, develop compound buds where each fasci-

cle primordium within the bud is covered by its own set of bud scales

(Doak, 1935). Such an internal morphology may create additional heat

(a)

(b)

F IGURE 5 Boxplots of average times to reach species-specific critical bud-internal temperatures (tcrit) for (a) coniferous and (b) angiosperm
species in study. tcrit values were extracted from temperature profiles according to species-specific TPCD50-treshholds (interpolated temperatures
at 50% cellular damage; see Table S1). Boxplots indicate the median (thick central line), interquartile range (box), minimum and maximum
(whiskers) and outliers (circles). Different letters indicate significant intraspecific differences between closed and swollen buds [Colour figure can
be viewed at wileyonlinelibrary.com]
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barriers enhancing the protection of sensitive tissues. Further, it has

to be noted that the presented results may not fully cover intraspe-

cific t60 variation as measured buds were sampled from only one or

two sampling sites per species (Table 1). Genotypic variability

between separated populations as well as varying environmental

growing conditions can affect bud development (Alla, Camarero,

Rivera, & Montserrat-Martí, 2011; Kukk et al., 2015). For example,

disturbances such as drought events or biotic attacks may limit shoot

and bud growth or make it necessary to set new buds after a second

flushing, which both can result in lower bud sizes, and consequently,

in reduced insulation capability.

Information on how the timing of fire affects tree responses is nec-

essary to establish appropriate post-fire management of forest stands

affected by wildland fires and to determine the best possible burn dates

for areas managed with prescribed fires. While it is largely known that

post-fire mortality is mainly driven by seasonal differences in fire inten-

sity (Schwilk, Knapp, Ferrenberg, Keeley, & Caprio, 2006; Swezy &

Agee, 1991; Thies, Westlind, & Loewen, 2005; Weise et al., 2016), it

was also shown by Harrington (1987, 1993) that mortality rates are sen-

sitive to the trees' phenological state at similar fire intensity levels, with

a higher probability for trees to survive fires during the dormant season.

According to our results, this suggests that once buds are fully opened,

the expanded foliage loses the protective function of the bud stage and

becomes more vulnerable to heat (see also Wade & Johansen, 1986). In

the case of evergreen conifers, the presence of foliage during the dor-

mant season may further improve the heat protection of buds. Foliage

alters the heat transfer in the crown and increases the convective resis-

tance of crown components by influencing the boundary layer develop-

ment (Michaletz & Johnson, 2006b). This also suggests that, due to the

lack of foliage, buds of deciduous angiosperm species are confronted

with higher amounts of heat in the crown. Please note that, although

the cellular heat tolerance was tested on branch segments with attached

needles, our study did not assess the protective effects of foliage as

boundary layers were broken down intentionally to exclude any insulat-

ing effects when analyzing the thermal stability of cells. While the use of

experimental heating chambers offers the possibility to study heat

effects under controlled and reproducible conditions, mimicking accurate

thermal conditions trees experience during an actual wildfire is hardly

possible. Therefore, further research is needed, combining experimental

findings and field observations and relating organ level processes to

whole-plant and ecosystem functioning.

5 | CONCLUSION

The heat resistance of buds depends on their insulation capability, mainly

driven by their volume, as well as on the species-specific heat tolerance

of bud tissues. Our results outline differences in bud heat susceptibility

among species and highlight the importance of the bud's phenological

stage as it influences its ability to protect the apical meristem from criti-

cal temperatures. With respect to forest fires, the timing of a fire can

therefore be crucial for bud survival. This becomes especially important

as spring is one of the main fire seasons in the European Alpine region

(Conedera et al., 2018; Müller et al., 2020). Bud-related data further

complements our knowledge on the heat resistance of European tree

species and provides useful information for managing areas of high fire

risk and for modelling post-fire tree mortality.
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