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Comparison of genomic predictions for carcass and reproduction 
traits in Berkshire, Duroc and Yorkshire populations in Korea
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Objective: A genome-based best linear unbiased prediction (GBLUP) method was applied 
to evaluate accuracies of genomic estimated breeding value (GEBV) of carcass and reproduc-
tive traits in Berkshire, Duroc and Yorkshire populations in Korean swine breeding farms.
Methods: The data comprised a total of 1,870, 696, and 1,723 genotyped pigs belonging to 
Berkshire, Duroc and Yorkshire breeds, respectively. Reference populations for carcass traits 
consisted of 888 Berkshire, 466 Duroc, and 1,208 Yorkshire pigs, and those for reproductive 
traits comprised 210, 154, and 890 dams for the respective breeds. The carcass traits analyzed 
were backfat thickness (BFT) and carcass weight (CWT), and the reproductive traits were 
total number born (TNB) and number born alive (NBA). For each trait, GEBV accuracies 
were evaluated with a GEBV BLUP model and realized GEBVs. 
Results: The accuracies under the GBLUP model for BFT and CWT ranged from 0.33-0.72 
and 0.33-0.63, respectively. For NBA and TNB, the model accuracies ranged 0.32 to 0.54 and 
0.39 to 0.56, respectively. The realized accuracy estimates for BFT and CWT ranged 0.30 to 
0.46 and 0.09 to 0.27, respectively, and 0.50 to 0.70 and 0.70 to 0.87 for NBA and TNB, respec-
tively. For the carcass traits, the GEBV accuracies under the GBLUP model were higher than 
the realized GEBV accuracies across the breed populations, while for reproductive traits the 
realized accuracies were higher than the model based GEBV accuracies. 
Conclusion: The genomic prediction accuracy increased with reference population size and 
heritability of the trait. The GEBV accuracies were also influenced by GEBV estimation 
method, such that careful selection of animals based on the estimated GEBVs is needed. 
GEBV accuracy will increase with a larger sized reference population, which would be more 
beneficial for traits with low heritability such as reproductive traits. 
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INTRODUCTION 

The application of molecular genetics to livestock breeding began in the early 1970’s, fol-
lowed by the introduction of microsatellite markers in early 1990’s, which allowed the use 
of DNA marker information to identify quantitative trait loci (QTL) associated with pro-
duction traits, as well as to make selection decisions at an early age through marker-assisted 
selection (MAS) [1]. So far, substantial numbers of QTLs and candidate genes have been 
reported from many QTL mapping studies (www.animalgenome.org) [2]. Nevertheless, the 
implementation of MAS in livestock has been limited, because most of the economically 
important traits are polygenic in nature, where many loci with small effects contribute to 
the phenotype. Thus, the use of few markers throughout the genome could explain only 
small proportion of the total genetic variance, leaving much of the genetic variance of the 
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trait unexplained [3].
 Recently, rapid development of DNA genotyping tech-
nology has enabled genotyping of animals with high-density 
markers. With new sophisticated statistical models, genomic 
regions or QTL have been more efficiently identified that could 
be incorporated into MAS in livestock breeding, in order to 
enhance selection response per generation [4]. This suggests 
for the application of genome-wide high-density markers to 
capture most of the genetic variance of the traits of interest. 
 Meanwhile, high-throughput single nucleotide polymor-
phism (SNP) genotyping technologies with genome-wide 
high-density SNP arrays are available, such that at least one 
SNP marker could be in linkage disequilibrium with QTL 
underlying a trait of interest, enabling predicting of genomic 
estimated breeding values (GEBVs). GEBV prediction involves 
estimation and summation of the effects of all markers through-
out the genome [5]. Genomic selection (GS) that is based on 
GEBVs allows selecting animals at an early age, which reduces 
generation interval and increase rate of gain over traditional 
approaches [6]. The GS is very promising for genetic improve-
ment of the traits that are sex-limited, difficult or expensive 
to measure, or lowly heritable [3].
 There are several approaches to GEBV prediction, such as 
genome-based best linear unbiased prediction (GBLUP) or 
Bayesian methods. The proposed statistical models have dif-
ferent assumptions about distribution of QTL effects, number 
of QTL fitted in the model, etc. In GBLUP, the statistical model 
assumes that a very large number of QTLs affect a trait, where 
each of the QTL has a small effect with equal variances under 
a normal distribution. On the contrary, the Bayesian statistical 
model assumes that QTLs effects are distributed with unequal 
variances which follow t distributions [5]. However, violation 
of the assumptions under the given models would cause bi-
ased prediction of GEBVs.
 In GS, evaluation of animals is based on their GEBVs. Un-
like cattle, the benefit of GS in pigs would not be substantially 
improved by shortening the generation interval. Instead, accu-
rate prediction of GEBVs would play pivotal roles in enhancing 
selection response in pigs [7]. The accuracy of GEBVs is af-
fected by several factors such as methods of GEBV prediction, 
size of the training population, effective population size (Ne), 
effective number of chromosome segments which is a func-
tion of Ne, heritability, the proportion of genetic variance at 
causal variants captured by observed SNPs, genetic correla-
tion between reference and target samples and marker density 
[8,9]. Although, there are several reports of successful imple-
mentation of GS for genetic improvement of traits in dairy 
cows [10,11], there are few reports of GS studies in pigs [5,9]. 
Herein, we report the evaluations of GEBV accuracy for car-
cass and reproductive traits in Berkshire, Duroc, and Yorkshire 
populations, compare accuracies between traits or breed pop-
ulations, and to compare GEBV accuracies between a BLUP 

model and realized GEBVs.

MATERIALS AND METHODS 

Animal management and phenotypes 
For carcass traits, we collected a total of 1,870, 696, and 1,723 
pigs belonging to Berkshire, Duroc, and Yorkshire, respec-
tively, with the pigs being born between the year 2007 and 
2015. Similarly, data on 1,487, 643, and 914 pigs born be-
tween 2011 and 2015 were recorded for the two reproductive 
traits (number born alive [NBA] and total number born [TNB] 
for first three parities), pertaining to the respective pig breeds. 
The averages of the three parities were used for GEBV pre-
diction. All Berkshire pigs were collected from Dasan breeding 
farm, in Namwon, Jeonnam, whereas the Duroc and York-
shire samples were collected from Nong-Hyup breeding farms 
in Youngwang, Jeonnam, Korea. 
 The pigs were born from 52 sires and 570 dams for Berk-
shire, from 141 sires and 319 dams for Duroc, and from 87 
sires and 643 dams for Yorkshire, respectively. The piglets were 
weaned at three to four weeks of age and moved into piglet 
pens, in each of which about 100 piglets were raised for 60 
days. The pigs were then placed in growth/fattening pens with 
the size of 20 pigs for 90 to 120 days. The pigs were fed with 
commercial feeds according to the regimen of Purina Ltd in 
Nonghyup commercial farms, Youngsam, Chounbuk, Korea. 
The individuals were then transported to nearby abattoirs and 
slaughtered. All records of the pedigrees, genotypes and phe-
notypes were provided by the Nonghyup breeding company 
not explicitly for the purpose of this study.
 The average slaughter ages were 208±18, 131±32, and 155± 
10 days for Berkshire, Duroc and Yorkshire breeds, respec-
tively. Hot carcass weight was measured immediately after 
slaughter on the floor of the abattoir. The carcasses were then 
cooled in a chilling room maintained at 0°C for 24 hours. The 
average of backfat at the first rib, last rib, and lumber vertebra 
was calculated with help of slide calipers [12].
 For the reproductive traits, the numbers of piglets that are 
born alive (NBA) and total number of piglets born (TNB) 
were recorded for the first three parities, and the average of 
the three parities was calculated for the two traits. 

Genotyping and quality control 
The pigs were genotyped with Illumina Porcine SNP60K 
BeadChip (Illumina Inc, San Diego, CA, USA), on which 
62,163 SNPs were embedded. All autosomal SNPs were used 
for quality control (QC) procedures. The SNPs were removed 
with call rates <90%, minor allele frequency <1%, and sig-
nificant deviation from Hardy-Weinberg equilibrium at p< 
0.000001. The individuals with genotyping call rate <90% 
were also deleted. PLINK software (v1.07) was used for the 
QC procedures [13]. After the QC tests, the genome-wide 
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missing SNPs were imputed with the use of Beagle vs 3.3.2 
[14]. Identity-by-state test was also carried out to check whe-
ther there are similar individuals or genotyping error in the 
datasets. The pairs of individuals with high similarity rate 
(>95%) were removed for GEBV evaluation. 

Statistical analysis
The statistical significance of the fixed factors or covariates 
was tested using SAS general linear model procedure (SAS, 
version 9.2, SAS Institute, Cary, NC, USA) for fitting the fac-
tors into Animal model. For carcass traits, gender and slaughter 
age were fitted as a fixed effect and a covariate, respectively. 
For the reproduction traits, only birth year-season was fitted 
as a fixed effect in the animal model for ASREML analysis 
[15]. The linear mixed model for each trait is:

 y = Xb+Zg+e 

 Where y represents vector of the phenotypic records for n 
number of animals, X denotes the design matrix of the fixed 
effects and/or covariates, b is the vector of the corresponding 
effects including overall mean, Z is the design matrix assigned 
to genomic breeding values, g is the vector of the breeding 
values, and e is the vector of residual error, which is assumed 
to be normally distributed with N (0, 
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were fitted as a fixed effect and a covariate, respectively. For the reproduction traits, only birth year-145 
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breeding values, and e is the vector of residual error, which is assumed to be normally distributed with 154 

N(0, 𝜎𝜎𝑒𝑒
2).   155 

In matrix notation, the mixed model equation is written as: 156 
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 [𝐗𝐗′𝐗𝐗 𝐗𝐗′𝐙𝐙
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�̂�𝐠] =  [𝐗𝐗′𝐘𝐘
𝐙𝐙′𝐘𝐘]  158 
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Where α =  𝜎𝜎𝑒𝑒2

𝜎𝜎𝑎𝑎2
 , 𝜎𝜎𝑎𝑎

2 is the genetic variance, and 𝜎𝜎𝑒𝑒
2 is the error variance.  160 

By solving the MME, the 𝑔𝑔, breeding values could be obtained as: 161 

 162 

[�̂�𝐠] =  [𝐙𝐙′𝐙𝐙 + 𝐆𝐆−𝟏𝟏𝛂𝛂]−𝟏𝟏[𝐙𝐙′𝐘𝐘] 163 

 164 

The genomic relationship matrix (G) matrix was built using the genome-wide complex trait analysis 165 

(GCTA) tools [16]. The following equation was used to generate G matrix based on marker allele 166 

frequencies: 167 

 168 

 The genomic relationship matrix (G) matrix was built us-
ing the genome-wide complex trait analysis (GCTA) tools 
[16]. The following equation was used to generate G matrix 
based on marker allele frequencies:
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Where, M has dimensions of n×m, n is the number of individuals and m is the number of markers 171 

used. The genotypes of each marker are coded as AA = -1, AB =0, BB= 1 for alternate alleles, A and B. 172 
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where 𝜎𝜎𝑎𝑎
2 represents the genetic variance of the trait. Realized accuracies were also obtained with a 189 

replicated training-testing method via a 10-fold cross-validations method according to Badke et al [17]. 190 

The entire dataset was divided into 10 groups, in which one of the groups (10% animals) was treated as 191 

testing, i.e. the samples were assumed to have only genotype information and their phenotypes masked, 192 

while the remaining samples (90% of animals) was used as training or reference group with both 193 

genotype and phenotype known, to predict GEBVs in the test group. This cycle was repeated 10 times 194 

 Where, M has dimensions of n×m, n is the number of indi-
viduals and m is the number of markers used. The genotypes 
of each marker are coded as AA = –1, AB = 0, BB = 1 for 
alternate alleles, A and B. In the P matrix, an element, Pj = 
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j. (M–P) represents incidence matrix (Z) for the markers. 
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 represents the genetic variance of the trait. 
Realized accuracies were also obtained with a replicated train-
ing-testing method via a 10-fold cross-validations method 
according to Badke et al [17]. The entire dataset was divided 
into 10 groups, in which one of the groups (10% animals) 
was treated as testing, i.e. the samples were assumed to have 
only genotype information and their phenotypes masked, 
while the remaining samples (90% of animals) was used as 
training or reference group with both genotype and pheno-
type known, to predict GEBVs in the test group. This cycle 
was repeated 10 times such that each of the animals in the 
dataset could get the chance to be treated once as a testing 
group. GEBV accuracies of the testing samples were mea-
sured by the correlations between the GEBV estimates and 
real phenotype values as follows:

 Realized accuracy = r (GEBVs, y) 

 Where, r is Pearson’s correlation coefficient, and y is indi-
vidual phenotype. 
 Genetic and residual variances were also estimated with 
the use of ASREML 3.0 program [17]. The heritability values 
for BFT, CWT, NBA, and TNB were calculated for each breed 
using the following formula: 
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 200 

where r is Pearson’s correlation coefficient, and y is individual phenotype.  201 

Genetic and residual variances were also estimated with the use of ASREML 3.0 program [17]. The 202 

heritability values for BFT, CWT, NBA, and TNB were calculated for each breed using the following 203 

formula:   204 
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Phenotypes and genotypes 210 

The pigs were slaughtered at 131~209 days with the highest slaughter age for Berkshire pigs, which 211 

might be due to its slow rate of growth (Table 1) [18]. The mean carcass weight ranged 84~103kg with 212 

the lowest weight for Berkshire. Also, the Berkshire pigs yielded the greatest (23.8 mm) BFT, while the 213 

Duroc pigs had the lowest BFT (13.6 mm), which was in accordance with the previous reports [19]. For 214 

carcass weight, there was the greatest variation between individuals in the Duroc samples, while the 215 

Berkshire samples had the most various BFT measurements among the three breeds (Table 1).  216 

After QC tests, the numbers of available SNPs for the carcass traits were 30,769, 26,374, and 217 

30,071in Berkshire, Duroc, and Yorkshire samples, respectively. Also, 39,095, 47,251, and 52,258 SNPs 218 

were available for the reproductive traits in the respective breeds. Among the SNPs, the 25,880 common 219 

SNPs were finally chosen for prediction of GEBVs, for which the average distance between adjacent 220 

SNPs across the autosomal chromosomes was 94.3± 143.4 kb, covering 2,437.9 Mb of the porcine 221 

RESULTS AND DISCUSSION 

Phenotypes and genotypes
The pigs were slaughtered at 131 to 209 days with the highest 
slaughter age for Berkshire pigs, which might be due to its 
slow rate of growth (Table 1) [18]. The mean carcass weight 
ranged 84 to 103 kg with the lowest weight for Berkshire. Also, 
the Berkshire pigs yielded the greatest (23.8 mm) BFT, while 
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the Duroc pigs had the lowest BFT (13.6 mm), which was in 
accordance with the previous reports [19]. For carcass weight, 
there was the greatest variation between individuals in the 
Duroc samples, while the Berkshire samples had the most 
various BFT measurements among the three breeds (Table 1). 
 After QC tests, the numbers of available SNPs for the car-
cass traits were 30,769, 26,374, and 30,071 in Berkshire, Duroc, 
and Yorkshire samples, respectively. Also, 39,095, 47,251, and 
52,258 SNPs were available for the reproductive traits in the 
respective breeds. Among the SNPs, the 25,880 common 
SNPs were finally chosen for prediction of GEBVs, for which 
the average distance between adjacent SNPs across the auto-
somal chromosomes was 94.3±143.4 kb, covering 2,437.9 Mb 
of the porcine genome (results not shown).

Estimation of genetic parameters
Additive genetic and residual variances, and heritabilities were 
estimated under the GBLUP model for the carcass (Table 2) 
and the reproductive traits (Table 3), respectively. The heri-
tabilities for BFT and CWT ranged 0.24 to 0.50 and 0.25 to 
0.43, respectively, for the three pig breeds. In the Berkshire 
and Duroc populations, the BFT heritability estimates were 
0.50 and 0.41, respectively. This result agreed with the previ-

ous reports [20,21], in which the estimated heritabilities of 
the trait ranged from 0.34 to 0.56 for the same breeds. For 
CWT, the estimated heritabilities of 0.25 to 0.43 for the three 
breeds fell within the range (0.13 to 0.43) of heritability esti-
mates in previous reports [7,20]. These results show that the 
use of genome relationship matrices in heritability estimation 
of carcass traits in pigs were, in general, in good agreement 
with the use of pedigree-based relationship matrices.
 The heritability estimates for NBA and TNB in the three 
breed populations ranged 0.03 to 0.32 and 0.15 to 0.46, respec-
tively (Table 3). The lowest heritability values were observed 
in the Berkshire population (0.15 and 0.03 for TNB and NBA), 
while the greatest in the Duroc population (0.46 and 0.32 for 
TNB and NBA). In general, NBA has been reported to have 
very low heritability, i.e. <0.10 [22], which was in good agree-
ment with the estimate in Berkshire in this study (Table 3). 
However, in Duroc, the heritability estimates for the repro-
ductive traits were high, which may be partly due to a small 
sample size (Table 1). The TNB heritability was estimated 
as 0.15 in Berkshire, which was in good agreement with the 
heritability value in commercial pig populations reported 
by Cleveland et al [23] and Cleveland and Hickey [24]. In 
the three breed populations, heritability values for TNB were 

Table 1. Summary statistics of two carcass trait measurements in Berkshire, Duroc and Yorkshire populations

Items
Carcass weight (kg) Backfat thickness (mm) Slaughter age (d)

Berkshire Duroc Yorkshire Berkshire Duroc Yorkshire Berkshire Duroc Yorkshire

Number of records 920 494 1,228 920 494 1,228 920 494 1,228
Mean ( ± SD) 83.9 ± 5.9 102 ± 10.8 103 ± 8.6 23.8 ± 5.0 13.6 ± 2.4 14.8 ± 0.25 209 ± 17.3 131 ± 32.7 155 ± 10.6
Minimum 65 78 74 13.0 7.94 9.1 155 57 123
Maximum 104 149 136 43.0 24.9 23.1 286 186 206
CV (%) 7.0 10.6 8.4 21.0 17.3 16.9 8.3 24.9 6.8

SD, standard deviation; CV, coefficient of variation.

Table 2. Estimation of variance components and heritabilities for two carcass traits in Berkshire, Duroc, and Yorkshire populations

Items
Backfat thickness Carcass weight 

Berkshire Duroc Yorkshire Berkshire Duroc Yorkshire

16 
 

16 
 

Table 2. Estimation of variance components and heritabilities for two carcass traits in Berkshire, Duroc, and 417 
Yorkshire populations 418 

Items 
Backfat thickness   Carcass weight  

Berkshire Duroc Yorkshire  Berkshire Duroc Yorkshire 

𝜎𝜎𝑎𝑎
2 ±SE 12.3±2.0 1.49±0.39 0.013±0.0  8.06±1.9 31.1±8.6 10.5±2.1 

𝜎𝜎𝑒𝑒
2 ±SE 12.5±1.0 2.18±0.30 0.04±0.0  21.4±1.4 42.0±5.9 31.0±1.8 

h2 0.50 0.41 0.24  0.27 0.43 0.25 
SE, standard error. 419 
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± SE 12.5 ± 1.0 2.18 ± 0.30 0.04 ± 0.0 21.4 ± 1.4 42.0 ± 5.9 31.0 ± 1.8
h2 0.50 0.41 0.24 0.27 0.43 0.25

SE, standard error.

Table 3. Estimation of variance components and heritabilities for two reproductive traits in Berkshire, Duroc, and Yorkshire populations

Items
Total number of born Number born alive

Berkshire Duroc Yorkshire Berkshire Duroc Yorkshire
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Table 2. Estimation of variance components and heritabilities for two carcass traits in Berkshire, Duroc, and 417 
Yorkshire populations 418 

Items 
Backfat thickness   Carcass weight  

Berkshire Duroc Yorkshire  Berkshire Duroc Yorkshire 

𝜎𝜎𝑎𝑎
2 ±SE 12.3±2.0 1.49±0.39 0.013±0.0  8.06±1.9 31.1±8.6 10.5±2.1 

𝜎𝜎𝑒𝑒
2 ±SE 12.5±1.0 2.18±0.30 0.04±0.0  21.4±1.4 42.0±5.9 31.0±1.8 

h2 0.50 0.41 0.24  0.27 0.43 0.25 
SE, standard error. 419 
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± SE 0.78 ± 0.6 1.76 ± 1.0 0.89 ± 0.2 0.014 ± 0.4 1.48 ± 1.3 0.71 ± 0.2

16 
 

16 
 

Table 2. Estimation of variance components and heritabilities for two carcass traits in Berkshire, Duroc, and 417 
Yorkshire populations 418 

Items 
Backfat thickness   Carcass weight  

Berkshire Duroc Yorkshire  Berkshire Duroc Yorkshire 

𝜎𝜎𝑎𝑎
2 ±SE 12.3±2.0 1.49±0.39 0.013±0.0  8.06±1.9 31.1±8.6 10.5±2.1 

𝜎𝜎𝑒𝑒
2 ±SE 12.5±1.0 2.18±0.30 0.04±0.0  21.4±1.4 42.0±5.9 31.0±1.8 

h2 0.50 0.41 0.24  0.27 0.43 0.25 
SE, standard error. 419 
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 421 

 422 

 423 
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 428 

 429 

 430 

 431 
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 435 

  436 

± SE 4.36 ± 0.6 1.96 ± 0.8 2.41 ± 0.18 4.75 ± 0.6 3.11 ± 1.1 2.3 ± 0.2
h2 0.15 0.46 0.27 0.03 0.32 0.24

SE, standard error.
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greater than those for NBA, which was also agreed with the 
previous reports [22,24]. 

Evaluation of GEBV prediction accuracies for carcass 
traits
The BLUP model accuracies of GEBV estimates of BFT were 
0.59 and 0.72 for Yorkshire and Berkshire, respectively, and 
0.59 and 0.63 for CWT in the respective pig breeds. However, 
in Duroc pigs, the model accuracies of GEBV were 0.33 for 
both BFT and CWT, which was lower than the former two 
breeds (Table 4). This may be partly due to a smaller training 
sample size of Duroc (n = 466), compared to those of Berk-
shire (888) and Yorkshire (1,208).
 The GEBV accuracies for the BFT and CWT in Berkshire 
agreed with Baby et al [20], who reported 0.68 and 0.60 for 
the respective traits under a GBLUP model in Berkshire. Also, 
several studies reported that BFT GEBV accuracies in the three 
pig breeds ranged 0.58 to 0.86 under various GEBV models 
[17,25,26]. 
 The realized accuracies of GEBV estimates were in general 
lower than the model based accuracies for the carcass traits. 

In the Duroc population the realized accuracy for CWT was 
0.09, while the model accuracy of the trait was 0.33, which 
might be partly due to a sampling effect of the small reference 
size of the breed (Table 4). 

Evaluation of GEBV prediction accuracies for 
reproduction traits
The results of the GEBV prediction accuracies for NBA and 
TNB in Berkshire, Duroc, and Yorkshire pigs are presented 
in Table 5. The accuracies obtained from the BLUP model 
ranged 0.32 to 0.54 and 0.39 to 0.56 for NBA and TNB, respec-
tively. However, the realized accuracy estimates were higher 
than the model based accuracies, ranging 0.50 to 0.70 and 0.70 
to 0.87, for the respective traits, which may be partly due to 
sampling effect, i.e. small sample size of the reference (training) 
population size. 
 The model accuracy estimate of TNB (0.56) in the Yorkshire 
population was in good agreement with Uimari et al [27] in 
Finish Yorkshire. Forni et al [28] applied single-step BLUP 
analyses to predict GEBV accuracies for TNB, resulting in 
the accuracy values of 0.28 to 0.49, overlapping the estimates 

Table 4. Accuracies of GEBV prediction under the GBLUP model for carcass traits in the three pig breed populations

Items
Backfat thickness Carcass weight 

Berkshire Duroc Yorkshire Berkshire Duroc Yorkshire

Model accuracy
Training sample size 888 466 1,208 888 466 1,208
Testing sample size 982 230 515 982 230 515
GEBV accuracy 0.72 0.33 0.59 0.63 0.33 0.59

Realized accuracy 
Training sample size 800 420 1,088 800 420 1,088
Testing sample size 88 46 120 88 46 120
GEBV accuracy 0.46 0.37 0.30 0.27 0.09 0.17

GEBV, genomic estimated breeding value; GBLUP, genome-based best linear unbiased prediction.
Model accuracy was obtained from the GEBV BLUP model, which was functions of prediction error variance and genetic variances, while realized accuracy was calculated 
using correlation between GEBV estimates and phenotypic values.

Table 5. Accuracies of GEBV prediction under the GBLUP model for reproductive traits in the three pig breed populations

Items
Number born alive Total number born 

Berkshire Duroc Yorkshire Berkshire Duroc Yorkshire

Model accuracy
Training sample size 210 154 890 210 154 890
Testing sample size 1,277 489 24 1,277 489 24
GEBV accuracy 0.32 0.35 0.54 0.42 0.39 0.56

Realized accuracy 
Training sample size 212 154 890 212 154 890
Testing sample size 212 154 890 212 154 890
GEBV accuracy 0.50 0.64 0.70 0.70 0.87 0.72

GEBV, genomic estimated breeding value; GBLUP, genome-based best linear unbiased prediction.
Model accuracy was obtained from the GEBV BLUP model, which was functions of prediction error variance and genetic variances, while realized accuracy was calculated 
using correlation between GEBV estimates and phenotypic values.
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of this study (Table 5). In general, the GEBV accuracies for 
TNB were higher than for NBA in the three breeds, which 
may be partly due to greater heritabilities of TNB than of NBA, 
because a high heritability tends to increase accuracy of ge-
nomic prediction [9]. 
 The realized accuracies (0.70 to 0.87) of TNB agreed with 
Cleveland et al [24], in which the GEBV accuracies of the trait 
ranged 0.82 to 0.83 in a Landrace population with the sample 
size of 3,000 pigs. Both the model based accuracy estimates 
and the realized accuracy estimates were the greatest in the 
Duroc population (Table 5). This might be caused by the over-
estimation of the heritabilities, resulting from the very small 
reference population size in Duroc (Table 3). 
 In this study, GEBV accuracies for carcass and reproduc-
tion traits in pigs were evaluated based on two approaches, 
BLUP model-based or realized accuracy, i.e. correlation be-
tween predicted GEBVs and phenotypes. For the carcass traits, 
the model based accuracies were higher than the realized ac-
curacies, while, for the reproductive traits, vice versa, across 
the three pig breed populations (Tables 4, 5). There are several 
factors influencing GEBV accuracies such as reference popu-
lation size, heritability of trait, model assumptions, magnitude 
of genetic relatedness between training set and testing indi-
viduals, phenotype heterogeneity, density (or number) of the 
genome-wide markers [26]. Effective population sizes (Ne) 
were estimated for each breed according to Lee et al [9] that 
was based on effective number of chromosome segments and 
off-diagonal elements in genome relationship matrix, result-
ing in 162, 638, and 200 for Berkshire, Duroc and Yorkshire, 
respectively. Berkshire has a smaller Ne than Yorkshire, which 
may partly cause greater GEBV accuracies in carcass traits of 
the testing samples in Berkshire than in Yorkshire, even if the 
training sample size of Yorkshire was greater than Berkshire 
(Table 4).
 It seems that the GEBV estimates of the carcass traits were 
less biased than those of the reproductive traits, because predic-
tion of the estimates were based on greater reference population 
sizes and higher heritabilities (Tables 4, 5). For the two car-
cass traits (Table 4), the higher GEBV accuracies obtained 
in the model-based methods may be caused by the presence 
of individuals in the training set that are more genetically 
related to the selection candidates [25]. However, this result 
may be unexpected when the reference population size was 
too small, e.g. for the reproductive traits (Table 5), so that a 
small number (one tenth) of testing samples were so close-
ly related to the rest (nine tenth) of the reference (training) 
samples, resulting in much higher realized accuracy. 
 Our results suggest that GEBV estimates for carcass and 
reproductive traits can be obtained with reasonable degree 
of prediction accuracy, even if small or moderate sizes of ref-
erence populations were used in the Korean breeding pig 
farms. However, much careful selection of animals based on 

the estimated GEBVs is needed, because GEBV accuracies 
could depend on alternate prediction methods. Instead, in-
crease of GEBV accuracy can be warranted by incorporating 
large reference population sizes, e.g. several thousands of 
animals with both SNP genotypes and phenotypes, which 
would be more beneficial for low inheritable traits such as 
reproductive traits.
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