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Abstract: This publication revises the deteriorated performance of field calibrated low-cost sensor
systems after spatial and temporal relocation, which is often reported for air quality monitoring devices
that use machine learning models as part of their software to compensate for cross-sensitivities
or interferences with environmental parameters. The cause of this relocation problem and its
relationship to the chosen algorithm is elucidated using published experimental data in combination
with techniques from data science. Thus, the origin is traced back to insufficient sampling of data
that is used for calibration followed by the incorporation of bias into models. Biases often stem from
non-representative data and are a common problem in machine learning, and more generally in
artificial intelligence, and as such a rising concern. Finally, bias is believed to be partly reducible in this
specific application by using balanced data sets generated in well-controlled laboratory experiments,
although not trivial due to the need for infrastructure and professional competence.

Keywords: air quality monitoring; calibration of chemical sensors; low-cost sensors; machine learning
algorithms; sampling bias

1. Introduction

The effects of air pollution are well known and the health impact is massive, and with the increasing
public awareness about the adverse health effects of air pollution, e.g., by fossil-fuel combustion,
the urge to monitor and regulate the amount of hazardous gases or particulate matter (PM) is becoming
even more important [1–4]. Air quality monitoring (AQM) stations are expensive and therefore coarsely
distributed across cities. Increased traffic and unfavorable meteorological conditions can quickly lead
to local exceedance of the exposure that will not be noticed, so higher spatial resolution would be
desirable [5,6].

More and more start-ups are entering the AQM market with novel low-cost sensor systems
connected to the internet; some emerged from know-how in classical analytical chemistry, others from
expertise in the Internet of Things [7,8]. The latter put too much trust in the used hardware, e.g., sensors,
even though these often suffer from low performance due to interferences/cross-sensitivities, drifts,
and large unit-to-unit variability, as a lot of research on low-cost sensors and devices has shown [9–18].

The two sensing principles which low-cost gas sensors are based on are reduction–oxidation
reactions in electrolytic cells and adsorption–desorption reactions on metal oxide surfaces, both with
their own issues [7]. For instance, electrochemical sensors are reported to be faster and less prone to
drift due to aging, but also less sensitive than metal oxide sensors [7]. PM sensors are usually based
on light scattering and the most significant interfering variable relates to water, as they appear to
overestimate PM mass under high relative humidity [7,16].
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Current academic discussion revolves around correcting for interfering variables and improving
sensor performance by using mappings, known as calibration functions, obtained from different
machine learning (ML) algorithms, e.g., neural network (NN), random forest (RF), or (regularized)
linear regression (LR) [8,9,19]. This is a standard regression task and it is still a point of discussion
which of these algorithms are most suitable for that kind of application as some algorithms are better
than others at coping with non-linear systems [8,20,21]. Due to the contributions of preprocessing
procedures such as data normalization and outlier removal, and distinct sensor models originating
from a variety of manufacturers combined with the aforementioned unit-to-unit variability of sensors,
comparison of results across publications becomes tedious [8,15].

Lastly, sampling of data for calibration, e.g., in the field, in the laboratory, or both, is often a
topic of discussion. Field calibration of low-cost sensors, i.e., collocation with reference instruments,
enables more combinations of variables at lower price but often leads to relocation problems, both spatial
and temporal [9,22]. More precisely, the performance of a low-cost sensor system calibrated with
measurements from one location decreases after being moved to another location, in addition to the
decrease of performance over time at the same location.

Since these problems are often reported but not necessarily always understood, it is worth revising
them [22]. By using published data sets, the aim of this work was to identify the origin of relocation
artefacts, investigate their dependence on the different algorithms by inspecting models and joint
probability distributions of input and output variables with methods from data science, and discuss
potential solutions.

2. Methods

In the following, the motivation for alternative data analysis methods (together with the overall
workflow) is illustrated with an emphasis on LR, as it is familiar to most readers. However, the situation
is analogous for other ML algorithms such as NN or RF; the reader is encouraged to consult fundamental
statistics and ML literature for more details and explanations of all methods applied in this analysis [20–23].

2.1. Workflow

Suppose a scientist wants to predict the influence of a set of independent variables (inputs, features),
stored as a matrix X, on a set of continuous dependent variables (outputs), also stored as a vector or
matrix y, with LR. In many cases, the scientist might know already from the literature which variables
to include in the analysis, although not necessarily all of them. Alternatively, it might be desired to
include power/interaction terms to account for non-linearity (an approach called basis expansion) or
new variables in the model, which might increase the number of variables heavily. To study the relative
contributions, it is helpful to scale all variables to a common range, e.g., by subtracting the mean and
dividing by the standard deviation, a procedure termed standardization. (On a side note, this also
facilitates numerical computing.)

In classical statistics, the scientist would fit models and either discard or retain variables depending
on the p-values of their parameters β. The goal is to control model complexity and to obtain a model
that generalizes well. It should be neither too simple (high bias, underfitting) nor too complex (high
variance, overfitting); this is called bias–variance trade-off. Such an approach can be tedious if no prior
knowledge is available, as many potential configurations of variables have to be assessed.

In LR, the optimal parameters are obtained by minimizing some loss function L, e.g., the least
squares error (here written in vector notation):

L(β) = (y − Xβ)T(y − Xβ) (1)
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There is a closed form solution for this optimization problem stated in Equation (1), which can
be obtained by computing the derivative with respect to β and setting it equal to zero, resulting in
Equation (2):

β = (XTX)−1XTy (2)

In the case of a multi-output problem, β is a matrix. If the number of variables becomes very large,
many of them can end up in the model, although the researcher is probably only interested in the most
important contributions. Furthermore, the inversion that is present in the closed form solution does
not exist if the number of variables is larger than the number of samples. In these scenarios, methods
from ML can help.

More precisely, a penalty term for the parameter vector can be introduced in the objective function
in order to control model complexity, for example the squared Euclidean norm:

L(β) = (y − Xβ)T(y − Xβ) + α(βTβ) (3)

This approach is called regularization and the (regularization) parameter α ≥ 0 regulates it. Now,
for α = 0, the loss function reduces again to the least squares error, but for larger values, the algorithm
optimizes the choice of β such that only the most relevant variables are retained. The penalty term
above is essentially the L2-norm of the parameter vector, which is the reason why this method is termed
L2-regularization (but it is also known as Ridge regression). The solution is:

β = (XTX + αI)−1XTy (4)

For every value of the regularization parameter α, another solution for β is obtained, which is
why α is also called hyperparameter (HP). The optimal value for α is not known a priori, though,
and the extent of HP optimization has an influence on the resulting model performance. However,
jointly optimizing for α and β would result in α = 0 and the least squares solution, so this is not a
viable approach.

Instead, a discrete set of values (a grid) for α is constructed; usually, the spacing between the
individual values is chosen to be evenly on a logarithmic scale to obtain higher resolution for small
values of α. Next, for each value of α, the training data set is sliced into k folds, whereas k − 1 folds are
used for training, i.e., computing β, and the last fold is used for validation (the literature proposes
values in the range of three to ten for k). The average error from all validation folds is computed
for every value of α, and the α corresponding to the lowest average error is considered optimal.
These techniques are called grid search (GS) and cross-validation.

As a result, a model with several coefficients much smaller than others (i.e., irrelevant variables)
is obtained; and while not necessary, removing these variables makes it more compact and can speed
up predictions in some situations (model pruning). It is reasonable to start with a large number of
model parameters and proceed to prune models once a good benchmark performance has been found.

Usually, the data set is shuffled and split into training and test set in the beginning of the analysis.
The training set is used for training and validation, whereas the test set is only used for the evaluation
of the final model. Since some methods (such as shuffling) are based on random number generators,
it is also important to fix them. Otherwise, the composition of training and test set changes with every
run, and comparison of results becomes impossible. This is particularly true in the presence of outliers,
which should be removed in advance.

Occasionally, it might be useful to study the global structure of a data set in order to detect outliers
or other patterns, which can be achieved with dimensionality reduction methods such as principal
component (PC) analysis. Such an analysis reduces the number of variables that are correlated to each
other into fewer independent variables, enabling visualization of data in two or three dimensions.

Once a good model has been obtained, it is recommended to analyze and interpret it with
additional model inspection techniques. The model performance as a function of number of samples
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(learning curve) can reveal if enough data has been collected. Additionally, the model performance
as a function of regularization parameter (validation curve) helps to assess whether the chosen grid
interval is large enough.

Even though the importance of variables is easily interpreted in LR, there are other ML algorithms in
which this is not achieved so easily, and hence alternatives have been developed for doing so. One such
method computes the distortion of the model (i.e., average decrease in performance) upon permutation
of values (permutation feature importance). A relevant feature will lead to worse predictions if its
values are permuted. Additionally, a partial dependence plot visualizes the average effect a feature has
on an output variable.

It should be apparent by now that the workflow, described here in a linear fashion, is actually
iterative in nature. As a final remark is worth mentioning that, although only closed form solutions have
been presented above, gradient-based iterative numerical methods for minimizing the least squares
loss function exist as well; they are particularly suited for larger data sets because computations can be
performed in less time, but an extensive explanation thereof goes beyond the scope of this introduction.

2.2. Procedures

The air quality data set from De Vito et al., collected on a main street in the center of an Italian city
characterized by heavy car traffic, is used to examine the influence of field calibration and different
algorithms [24]. Moreover, the aim is to measure gas compounds in air using low-cost sensors and to
correct potential but unknown cross-sensitivities as well as environmental interferences.

The data set consists of hourly sensor signals (inputs) of CO, NOx, NO2, O3, temperature (T),
and absolute humidity (AH), and reference signals (outputs) of CO, NOx, NO2, and C6H6 as time
series over the course of one year. Note that there is neither a sensor for C6H6 or pressure (P), nor a
reference for O3. De Vito et al. advocate for a half-yearly recalibration interval [24], so only the data
collected during the first half year are used (N = 4400).

Analysis and modeling is performed in Python using the open-source libraries Pandas and
Scikit-Learn [25,26]; the former is a library for data manipulation, whereas the latter offers a variety
of ML algorithm implementations and techniques for preprocessing as well as model interpretation.
The regression algorithms evaluated in this work are NN, RF, and LR, each as one single model with
all four outputs combined for the sake of simplicity [20,21].

Raw data are preprocessed before analysis, i.e., standard scaling to zero mean and unit variance,
removing instances with missing values (∆N = 1300; mainly time points with missing reference
values for CO, NOx, and NO2), removing outliers with isolation forest (∆N = 400) [27], and shuffling
(N = 2700).

The data set is partitioned into training set (70%) and test set (30%). Due to bias–variance
trade-off, algorithm HPs such as regularization parameter α or maximum depth of trees are optimized
via cross-validation using 5-fold GS with negative mean squared error (MSE) loss to control model
complexity. To guarantee reproducibility and repeatability, random number generators have been
fixed for every single method.

Lastly, the models are evaluated and their behavior is inspected by computing learning and
validation curves, permutation feature importance, and partial dependence [21]. The relevant evaluation
metrics are MSE, coefficient of determination (R2 score), and the agreement/slope (ρ) between ground
truth and predictions, all computed from test set data and averaged over all output variables.

2.3. Algorithms

2.3.1. Neural Network

An NN is a model archetype whose working principle is conceptually derived from biological
neurons. It consists of nodes (“neurons”, hidden units, latent variables) and the arrangement of connections
between nodes is called topology. Usually, nodes are arranged in layers, receiving information only from
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previous layers and transmitting information to consecutive layers (feed-forward). In mathematical terms,
the formulation is given in:

Zt+1 = h(WtZt + bt) (5)

In Equation (5), Zt is the vector with values (“information”) from the current layer t, Wt is a
matrix with the weights connecting the two neighboring layers, bt is a vector with constants, h is
termed activation function, and Zt+1 is the vector with values of the next layer t + 1. The algorithm to
“train” NNs is called backpropagation [20,21]. NNs can model arbitrarily complex functions. However,
they are often referred to as “black-boxes”, because their internals are opaque and it is not clear which
inputs affect which outputs in which direction [28]. This is the reason why they benefit the most from
additional model inspection techniques.

In this work, the initial NN consists of three hidden layers with fifteen latent variables (nodes)
each and rectifier activation function. Via GS, L2-regularization parameter α is optimized within
the discrete set of 51 logarithmically spaced values between 10−2 and 102. Pruning is performed
to obtain a compact topology by sequentially removing hidden layers and latent variables unless
performance decreases.

2.3.2. Random Forest

An RF is a collection of decision trees (hence a forest) that performs binary splits on data points,
i.e., answers with yes or no on each split. A decision tree is characterized by its depth (the number of
decisions it is allowed to perform), whereas each tree in the RF can have a different depth. Every tree is
trained with a random subset of data by resampling training data with replacement. In the computation
of a split, only a random subset of variables is considered, and the variable (and its value) are selected
according to some optimality criterion, e.g., sum of squares. As a consequence, every tree will be
composed of slightly different decisions and provide a different prediction value; the effective prediction
is an average across all output values from all trees [21].

Here, the RF consists of 1000 trees. As HP, the maximum depth of a tree is restricted to all integer
values between 4 and 12 and optimized via GS.

2.3.3. Linear Regression

Much has been written about LR in the previous section already. One important remark is
that, besides L2-regularization, there are two other important regularization alternatives, namely
L1-regularization (least absolute shrinkage and selection operator, or simply Lasso) and a combination
of both L1-/L2-regularization (Elastic Net). The difference lies in the handling of correlated features, i.e.,
variables that contain the same information. Whereas the L1-norm retains only one variable in subsets
of correlated variables in a random fashion (and leads to so-called sparse solutions), the L2-version
retains all variables in a set of correlated variables [20,21].

Thus, it should be stated that the L2-regularized version of LR is used here. In addition, basis
expansion up to a power of two is introduced for all input variables before model building to account
for potential non-linearity. Via GS, regularization parameter α is optimized within the discrete set of 51
logarithmically spaced values between 10−2 and 102.

3. Results and Discussion

In the following, only detailed results for the NN model development are presented to demonstrate
the added value of model inspection, and the RF and LR results are provided as supplementary
material. Figure 1 shows the learning and the validation curves of the NN model with respect to
the R2 score after pruning (final topology consists of one hidden layer with ten latent variables).
The blue line is the expectation in training set performance of the five folds, whereas the blue area is
an approximation to the variability, i.e., standard deviation, within all folds; the same information
is visualized in green for the validation set. A higher amount of training data increases the R2 score
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for the validation data set, but this performance increase flattens above 1600 instances (about two
months of hourly measurements), indicating that this a sufficient quantity of training data (Figure 1a).
Surprisingly, there is a systematic bias between the training and validation set performances despite
shuffling, which might be caused by the inherent noise in the measurements; an equivalent pattern is
observed in the validation curve, in which R2 decreases with increasing α, i.e., a too simplified model
(Figure 1b). The same behavior is observed independent of the algorithm (Figures S1 and S2).
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Figure 1. (a) Learning curve for training (blue) and validation (green) data sets for the final neural
network (NN) model (with mean and standard deviation); validation set performance increases with
increasing sample size N and flattens above 1600 instances; (b) validation curve for training (blue) and
validation (green) data sets for the final NN model (with mean and standard deviation); validation set
performance decreases with increasing α, i.e., a too simplified model, but is fairly stable below values
of α = 1.

Table 1 summarizes the performance of all ML models. For the same data set, insignificant
differences in algorithm performance are obtained, which is backed up by the academic ML literature
as the influence of algorithms on predictions has been reported to be marginal for a high amount of
data [29]. The meaning of “high” is surely context dependent, but since it is known that sensor-reference
relationships are mostly linear, it is reasonable to not find any major performance differences between
algorithms. The result should still not be interpreted as an equivalence of ML algorithms [20,21].
For example, non-parametric algorithms like RF cope better with non-normally distributed data but
fail to extrapolate. An advantage of NNs and RFs over LR is the possibility to construct non-linear
functions without explicit basis expansion. Furthermore, LR and RF models can be interpreted without
additional methods, which is not true for NNs. Lastly, there are also differences in computational
complexity, i.e., the time needed to find a solution, although irrelevant with this small amount of data.

Table 1. Optimal hyperparameters (HPopt) and model performance on test set data. The differences in
performance can be considered negligible.

NN RF LR

HPopt 1.60 12 0.03
MSE 0.10 0.09 0.10
R2 0.83 0.86 0.85
ρ 0.81 0.83 0.84
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By inspecting the different models, the spatial relocation problem becomes evident. In Figure 2a
(also Figures S3a and S4a), R2 for the individual outputs is plotted. Surprisingly, C6H6 has the best
prediction performance although without corresponding sensor. According to permutation feature
importance, only a few sensors appear to be relevant for the NN model, but knowledge of the CO
sensor signal is seemingly redundant even though there is an output, i.e., reference values, for CO
(Figure 2b). However, every input paired with an output should be considered important, unless a
sensor is not working properly. Relying only on small subsets of sensors is a property that the three
models have in common (Figures S3b and S4b).
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Figure 2. (a) Model performance of the NN with respect to individual references; (b) permutation
feature importance of all features in the NN model.

When examining partial dependence plots, many of them being linear, it can be noticed that one
single gas sensor could technically “measure” all outputs (Figures S5–S7). (Note that permutation
importance values and slopes of partial dependences are interrelated, i.e., the magnitude of the
slope is proportional to the importance value.) This is only possible because outputs are correlated,
which becomes evident when analyzing the Spearman rank correlation matrix (Figure 3), as all input
and output variables are indeed heavily coupled. Note that absolute correlation values between sensors
and their corresponding references are above 0.6, but so are correlations with all other references.

From a chemical point of view, the strong relationship between pollutants is not surprising at all;
it is as if there was one single machine burning fuel or coal with a constant reaction mechanism (fixed
stoichiometry) placed next to the AQM system. Although this is likely an extreme case, it shows that the
origin of the relocation problem of field calibrated sensor systems is independent of the used algorithm.
Still, one could argue that an RF should distribute importance evenly on all variables since only a
randomly sampled subset is considered for the computation of a split in a tree. However, L2-regularized
solutions are known to not deliver sparse solutions either (as opposed to L1-regularization); and in
fact, partial dependences are correlated and mostly non-zero, so the problem really lies in the data.
A sensor subset that minimizes the MSE the most without needing too many overall weights (due to
L2-regularization in the case of NN) is chosen to predict all other references as well, in this instance
apparently NO2 and AH. Since sensors can act as substitutes for each other due to correlations in
reference data, assessing their functionality solely by feature importance is challenging.

If sensors are calibrated in such environments, mappings with this nature will be generated,
a consequence that was already hypothesized by De Vito et al. [24]. Figure 4a reveals how overlapping
the standardized time traces of the reference signals can be, which appears not to be the case for sensor
signals (Figure 4b). Models learn to describe and reproduce a process which is local, but other processes
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with different stoichiometry exist as well. Since the aim is not to model the environment but to calibrate
sensors, this is a sampling bias and as such related to data representativeness. In statistics, this is a
bias in which instances are collected so that some members of the natural population have a lower
or higher sampling probability than others—mostly known from social sciences. ML is the toolbox
to compress the content of data to rules such as decision boundaries or regression lines, and with
this in mind, it is only reasonable that field calibrated models summarize meteorological conditions
and their relationship with each other. Ideally, there should be no intrinsic pattern in the data, i.e.,
the sampling space should be unbiased. In this manner, an algorithm can learn properly which sensors
are influenced by which outputs or environmental factors.Sensors 2020, 20, x 8 of 14 
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To provide a concrete example, suppose a low-cost sensor is affected by its target gas species, but
also by T and AH. However, in the hypothetical data for calibration, the gas species, T, and AH increase
and decrease jointly; hence, the variables are correlated. Consequently, it is not possible to learn the
individual contributions of the three variables to the sensor signal, since they are always superimposed.
(Moreover, it might be even possible to “measure” the target gas compound with a sensor for T or AH.)
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In statistics, the theory of experimental design has been developed specifically for this purpose, i.e.,
to avoid such confounding while minimizing the number of performed experiments [23].

Another issue with field calibration is temporal variation of the atmospheric state, i.e., non-stationary
joint probability distribution of output variables and environmental conditions. More precisely, a sensor
calibrated with a time series of a few days (training phase) might not be able to capture ground level
concentrations in the following weeks or months if said distribution, i.e., the combinations of observable
output variables and environmental conditions and their relationships, changes significantly during
test phase. In the original publication, De Vito et al. claimed that two weeks of training data would
be sufficient (far less than the two months computed by the learning curve), which seems feasible as
relationships between references appear to be stable over time in this particular case [24]. More precisely,
Figure 4a shows how several time intervals contain slightly less variation than others, but the correlations
between references are persistent.

In Figure S8a, a PC analysis of the standardized reference data, combined with the sensor signal of
T and AH, with 200 days of hourly measurements colored in slices of ten days is visualized, revealing
that some parts of the data are dissimilar to others. Furthermore, the collection of points is neither
completely overlapping nor symmetric, which would be better suited for calibration (Figure S8b). PC 1
is mainly composed of the reference data and explains a variance ratio of 0.60 (Figure S9a), whereas
PC 2 is composed of T and AH sensor information and explains a variance ratio of 0.25 (Figure S9a).
For calibration, every PC should be composed of only one variable and all PCs should explain an
equal ratio of variance (uncorrelated and standardized reference data). Since variation occurs along
PC 2, it can be concluded that T and AH conditions are indeed evolving with time, a detail that is also
supported by Figure 4b, leading to conditions at which sensors have not been calibrated or tested,
which could potentially cause problems over the course of a test phase. Moreover, it might be hard to
estimate the contribution of drift due to aging in a changing environment under the assumption of
interferences with T and/or AH.

Using a short time interval for calibration in a case where relationships are evolving over time
would render the model useless within weeks, since it is of high importance that training and test
data sets are comparable, a fact that is also recognized by De Vito et al. [24]. In those scenarios,
a longer time series might be desirable to capture the complete joint probability distribution of sensor
signals, reference values, and environmental conditions but drift due to sensor aging, i.e., the need
for recalibration, makes this approach unappealing so far. Ideally, the whole feature space should be
sampled in a more systematic manner to make the calibration robust, which is usually only possible in
laboratory environments including some design of experiments. Alternatively, such data could be
used complementary to compensate for unobserved combinations between input/output variables.
However, this approach can be more expensive because many data points might be necessary to apply
ML methods; Bigi et al. have presented non-linear and non-monotonic partial dependences between
input and output variables, which are only discovered with many different combinations of pollutants
and environmental conditions, if assumed to be true [9]. Due to sensor aging, regular calibration
intervals would be needed, and together with the aforementioned aspects, an automated, large-scale
calibration approach would be desired to make this all affordable.

It could be of interest to inspect other data sets that have been used in similar studies; instead
of repeating the analysis several times, it is sufficient to examine the global structure of the collected
reference data. For instance, Zimmermann et al. measured several gas compounds with low-cost
sensors and reference instruments in the proximity of a small-sized parking lot; the reference data
are mostly complete from the third month on, whereas 90 days of quarter-hourly measurements
are analyzed starting from this month [30]. In Figure S10a, the Spearman rank correlation matrix is
depicted, and it shows moderate correlations between the reference gases. Furthermore, there is some
drift of the distribution over time, as seen in Figure S10b. The first two PCs explain a variance ratio
of about 0.70 (Figure S10c,d); hence, there is a pronounced interdependence of the references and
environmental conditions.
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In a similar field study performed by Spinelle et al., data from a semi-rural site was acquired over
a period of three months using low-cost sensors and gas analyzers [31]. In Figure S11a–d, the same
plots are drawn as above, and the overall situation appears just slightly less problematic with respect
to correlations on first sight, but the first two PCs again explain about a fraction of 0.62 in variance.
Spinelle et al. recognized that this was a problem, and they write about (Pearson) correlations, too:
“This [ . . . ] shows that the dataset suffers from an important lack of independence between parameters.
As example, CO2 show a high negative correlation with temperature . . . and a high positive correlation
with relative humidity . . . Although, it is well known that temperature and humidity are important
factors that may affect sensors responses. Using only field tests with uncontrolled temperature and
humidity conditions makes impossible the distinction between the temperature and humidity effects on
the sensor response”. They acknowledged correctly that the decomposition of the individual interfering
effects is not possible. (Moreover, the fact that correlations, i.e., relationships, between molecules are
different in the three locations indicates that generalization of calibrations models developed from
field data is limited).

To make the bridge between metrology and social sciences, it is worth mentioning briefly that
the relocation problems are, in fact, not self-contained but related to the discussion of fairness and
representativeness of data in artificial intelligence (AI). The discussion around bias in AI, in which ML
is part of, is an old one and it has rightly made its way into metrology [32,33]. Additionally known
under the name “algorithmic bias”, it revolves around human bias (which is often present in data)
that propagates into AI-based systems. One fictitious example from human resources would affect the
hiring process; since more executives are male, more of them might be labelled as “qualified” (in a
corporate data set) for a management role in comparison to their female colleagues [34]. A female
applicant might find herself discriminated by an AI-system that automatically pools candidates for
open leadership positions just because skewed or biased data are used during model development.

In data science scenarios, in which a lot of data are put into one pot to be distilled, tracking these
cases becomes incredibly difficult. In the presented study, the demonstrated sampling bias was only
uncovered by exploring the models and data with model inspection techniques, correlation matrices,
histograms, and so on. This is one of the reasons why explainable AI is highly anticipated, e.g., models
explaining their predictions and making clear how specific decisions have been made [35,36]. However,
many top-performing speech and image recognition models are black-boxes based on NNs [37].

Researchers and institutions developing products embedded with AI, e.g., automated decision-making,
should be made responsible for guaranteeing that nobody is discriminated (or life put at risk due to low
air quality) but currently there is no regulation at all. Ideally, there will be an independent and credible
organization that certifies and assesses uncertainty of such products in the future. In AQM using
low-cost devices with built-in gas and/or PM sensors, there is the possibility of an undetected health
risk for people, which is why improper calibration has to be avoided. For those applications, metrology
institutes can fulfill this role by offering standardized data generation procedures for calibration
to reduce bias as much as possible. Moreover, to assess air quality, monitoring devices have to be
accurate in the sense that uncertainty of their measurement results has to be determined according
to internationally agreed methods [38]. Only with dedicated characterization procedures can it be
guaranteed that this uncertainty lies below the data quality objective as defined in the EU air quality
directive, e.g., 25% uncertainty on the measurement (95% confidence interval) for NO2 [39].

Generating representative data and with as little bias as possible for ML models is not trivial
due to the need for infrastructure and professional competence to synthesize reference gas mixtures
and/or aerosols with different compositions and under varying environmental conditions (i.e., T, P,
and AH) inside climate chambers. Nevertheless, metrology institutes have the capabilities to generate
references that are traceable to the international system of unit and internationally recognized [40,41].

More precisely, gas mixtures with varying amounts of substance fraction, i.e., in nmol/mol (ppb)
or µmol/mol (ppm), in the range of atmospheric concentrations can be synthesized using different
chemical principles according to the compound(s) of interest [42]. For instance, O3 is generated with a
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reference standard photometer at the ppb level [43]. NO and CO are produced with gravimetric gas
standards and dynamic dilution at the ppb and ppm level, respectively [44]. Lastly, NO2 is generated
with a dynamic permeation process at the ppb level [45–47]. Additionally, flows are calibrated with
a primary volumeter, which allows a well-defined multi-component mixture associated with its
uncertainty [48,49].

In comparison to field calibration, the described laboratory techniques are capable of generating
representative data, but they are also more time-consuming and infrastructure-demanding. It is evident
that all this comes at a higher price, but the advantage of metrology institutes is to have such an
infrastructure almost fit-for-purpose, which could be upgraded and optimized in the future to lower
cost of data generation, e.g., via automatization. In addition, investing in the improvement of test
chambers/benches to enable parallel calibration of multiple low-cost devices could decrease the cost of
laboratory calibration even further.

4. Conclusions and Outlook

Low-cost AQM systems seem appealing but the need for thorough engineering and frequent
(re)calibration pose a serious problem. Collocation to reference stations, i.e., field calibration, is believed
to partially overcome some of these flaws. Despite some studies in which field calibration has apparently
been applied successfully, this approach should only be followed with caution since correlations
between pollutants and non-uniform sampling can lead to calibration functions susceptible to spatial
or temporal relocation independent of the applied algorithm, as undesired relationships between
measured variables might be integrated into models. Every model is only as good as the data it has
been trained with. Generating this data in laboratory environments would be desirable, but this
approach has to be scalable and become automated in order to be affordable. Only in this manner
relationships between ground level concentrations, environmental conditions, and sensors could be
learned reliably with as little bias as possible, which is left to prove for future research.

Supplementary Materials: Supplementary figures including the results for RF and LR algorithms are available in
a separate document at http://www.mdpi.com/1424-8220/20/21/6198/s1, Figure S1: (a) Learning curve for training
(blue) and validation (green) data sets for final RF model (with mean and standard deviation); validation set
performance increases with increasing sample size N; (b) Validation curve for training (blue) and validation
(green) data sets for final RF model (with mean and standard deviation); validation set performance increases
with deeper trees and flattens above a maximum depth of 9; Figure S2: (a) Learning curve for training (blue) and
validation (green) data sets for final LR model (with mean and standard deviation); validation set performance
increases with increasing sample size N and flattens after 1800 instances; (b) Validation curve for training (blue)
and validation (green) data sets for final LR model (with mean and standard deviation); validation set performance
increases with decreasing α but is mostly flat below α = 100; Figure S3: (a) Model performance of RF with respect
to individual references; (b) Permutation importance of all features in RF model; Figure S4: (a) Model performance
of LR with respect to individual references; (b) Permutation importance of ten most important features in LR
model; Figure S5: Partial dependence of references on sensors in the NN model; Figure S6: Partial dependence of
references on sensors in the RF model; Figure S7: Partial dependence of references on sensors in the LR model
(six most important features); Figure S8: (a) PC analysis of standardized reference signals combined with T and
AH sensor signals. Each color represents a slice of ten days with 20 plotted slices in total, and it can be seen
that some parts of the data are different from others as the collection of points is not circular and not completely
overlapping; (b) PC analysis of synthetic data under the hypothesis of independence and normal distribution;
Figure S9: (a) Loadings of PC 1 (explained variance ratio of 0.60), which is mainly composed of the reference
data; (b) Loadings of PC 2 (explained variance ratio of 0.25), which is mainly composed of T and AH sensor
signals; Figure S10: (a) Spearman rank correlation matrix of sensor (s) and reference (r) signals; (b) PC analysis of
standardized reference signals combined with T and AH sensor signals; (c) Loadings of PC 1 (explained variance
ratio of 0.49); (d) Loadings of PC 2 (explained variance ratio of 0.22); Figure S11: (a) Spearman rank correlation
matrix of reference (r) signals; (b) PC analysis of standardized reference signals; (c) Loadings of PC 1 (explained
variance ratio of 0.44); (d) Loadings of PC 2 (explained variance ratio of 0.18). The code developed in the analysis
can be found on GitHub at https://github.com/gtancev/Chemical-Sensor-Data.
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