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Globally, an estimated 107 million people have an alcohol use disorder (AUD) leading to
2.8 million premature deaths each year. Tuberculosis (TB) is one of the leading causes of
death globally and over 8% of global TB cases are estimated to be attributable to AUD.
Social determinants of health such as poverty and undernutrition are often shared among
those with AUD and TB and could explain the epidemiologic association between them.
However, recent studies suggest that these shared risk factors do not fully account for the
increased risk of TB in people with AUD. In fact, AUD has been shown to be an
independent risk factor for TB, with a linear increase in the risk for TB with increasing
alcohol consumption. While few studies have focused on potential biological mechanisms
underlying the link between AUD and TB, substantial overlap exists between the effects of
alcohol on lung immunity and the mechanisms exploited by Mycobacterium tuberculosis
(Mtb) to establish infection. Alcohol misuse impairs the immune functions of the alveolar
macrophage, the resident innate immune effector in the lung and the first line of defense
against Mtb in the lower respiratory tract. Chronic alcohol ingestion also increases
oxidative stress in the alveolar space, which could in turn facilitate Mtb growth. In this
manuscript, we review the epidemiologic data that links AUD to TB. We discuss the
existing literature on the potential mechanisms by which alcohol increases the risk of TB
and review the known effects of alcohol ingestion on lung immunity to elucidate other
mechanisms that Mtb may exploit. A more in-depth understanding of the link between
AUD and TB will facilitate the development of dual-disease interventions and host-directed
therapies to improve lung health and long-term outcomes of TB.
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1 INTRODUCTION

Alcohol misuse is a significant global health issue with wide-
ranging and pervasive consequences. In 2016, 5.3% of all global
deaths were attributable to alcohol consumption, and alcohol
misuse was the 7th leading risk factor for premature death and
disability (1, 2). Alcohol use disorder (AUD) has been linked to
an increased susceptibility to pulmonary infections and their
associated complications for over 200 years (3). More recently,
AUD has been found to be an independent risk factor for acute
respiratory distress syndrome (ARDS) with a two to four-fold
increased risk compared to individuals without AUD (4, 5).
Similarly, persons with AUD have an increased risk for bacterial
pneumonia and its associated morbidity and mortality (6–11).
They also suffer from a higher incidence of serious complications
from pneumonia, including bacteremia, parapneumonic
effusion, and empyema (9, 12–14). AUD causes a variety of
detrimental effects on the lungs including increased alveolar
oxidative stress, immune impairments, and alterations in the
metabolism of pulmonary cells.

Despite advances in diagnosis and treatment, tuberculosis
(TB) is the second leading infectious killer worldwide, only
recently surpassed by COVID-19 (15). While the global TB
incidence rate has been decreasing annually since 2000, the
most recent World Health Organization (WHO) global TB
data reported an increase in TB mortality for the first time in
20 years, driven in large part by disruption of TB control
programs from the COVID-19 pandemic (15).

The recognition of the association between alcohol and TB
occurred even before the causative agent of TB was known. As
early as the 19th century, physicians noted the increased incidence
of infections, like TB and other causes of pneumonia, among
patients that consumed alcohol (3, 16). The co-occurrence of
excessive alcohol intake and TB has been continually noted since
that time. AUD is one of the most common global risk factors for
TB, second only to undernutrition and, notably, ahead of HIV and
smoking (15). In this critical review, we will parse the complex
relationship between alcohol and TB. We highlight recent
epidemiologic work demonstrating a direct relationship between
alcohol misuse and TB. We discuss mechanisms by which alcohol
causes lung injury and suppresses lung immunity via increases in
oxidative stress and impairments to the pulmonary innate
immune system. For each of these biological pathways impacted
by alcohol, we will highlight the potential mechanisms that might
favor Mtb infection and dissemination.
2 ALCOHOL AND TB EPIDEMIOLOGY

Epidemiologic data support a clear relationship between alcohol
and TB and reveal the various biologic, immunologic, and clinical
impacts that alcohol may have on patients with TB (Figure 1).
2.1 Risk of Infection
The risk of both latent TB infection (LTBI) and active TB disease is
higher among persons with alcohol use disorders (AUD) than
Frontiers in Immunology | www.frontiersin.org 2
those without AUD (17). For example, one study in New York
City found a 28-fold higher rate of active TB disease among those
with AUD as compared to age-matched individuals without AUD
(18). Other studies have documented a dose-response relationship
between active TB and alcohol consumption, with the risk of TB
rising as a person’s daily alcohol consumption increases (19, 20).

While improvements in diagnostics and broader access to
treatment have led to global declines in TB incidence since 2000
(21), cases of TB associated with AUD are on the rise,
particularly among men (22, 23). It is estimated that 8-15% of
global TB deaths are attributable to alcohol misuse and AUD (15,
20, 24). In high-income countries where non-communicable
diseases, including diabetes and AUD, have a greater
prevalence, over 35% of TB deaths among those under the age
of 65 are linked to alcohol misuse (25).

Although the interactions between poverty, social
marginalization, alcohol misuse, and TB remain complicated
and difficult to disentangle, their overlap does not fully explain
the increased risk of TB with AUD. Studies examining the
relationship between AUD and TB have shown that AUD
remains a significant independent risk factor for TB, with a
relative risk of 2.9, even after controlling for confounders such as
comorbidities, lifestyle, or social determinants of health (20, 24,
26–28).
2.2 Risk of Transmission and Severity
Individuals with TB and AUD are more infectious and have
more clinically severe TB. Analyses of TB outbreaks have shown
clustered TB spread and transmission among persons with AUD,
and drinking venues and bars have been identified as sites of TB
transmission (29–31). Further, molecular epidemiology studies
have shown individuals with AUD are more likely to reflect
recent TB transmission and to be part of a transmission cluster
(32, 33). While this increased transmission may be due to the
social marginalization often seen with AUD, it could also be due
to an increased mycobacterial burden in persons with AUD.
Cases of TB associated with AUD have higher rates of acid-fast
bacilli (AFB) detected in sputum samples and increased Mtb
bacterial load compared to TB without an AUD association (25,
26). Both of these characteristics have previously been associated
with more severe TB features, including cavitation, as well as
increased Mtb transmission and thus may explain some of the
increased transmissibility of TB in AUD (25, 26, 34–36). Those
with AUD and TB are more likely to present with pulmonary
rather than extrapulmonary TB (25, 26). More of their lungs are
affected by TB and they are predisposed to advanced, cavitary
disease at the time of presentation (25, 26, 35, 37).
2.3 Treatment Outcomes
For those who initiate treatment, patients with TB and AUD
have worse clinical outcomes, including increased time to culture
conversion, incidence of TB treatment failure, rate of disease
relapse, and risk of death (25, 28, 38–43). Again, the intersection
of alcohol and certain social determinants complicates the
interpretation of these data. For example, it is known that
March 2022 | Volume 13 | Article 864817
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AUD has been associated with delays in accessing TB care and
poor adherence to TB treatment, both of which may contribute
to the more advanced, severe disease at the time of diagnosis and
inadequate therapy (44, 45). More recent data indicate an
increased incidence of multi-drug resistant TB in people with
AUD, possibly due to poor treatment adherence as well as
comorbidities associated with AUD that impact immune
function and metabolism (43, 46, 47). However, as described
above, poor TB outcomes persist among individuals with AUD
even when controlling for behaviors that impact access to and
retention in treatment (e.g., individuals with AUD lost to
treatment follow-up) (28). A two- to four-fold increased risk of
death remains for those with TB associated with AUD compared
to those without AUD even when only considering patients
being actively treated for TB (25, 48, 49).

2.4 Efficacy of Treatment
Alcohol-associated metabolic dysfunction and adverse drug
effects have been a concern regarding individuals with AUD
and TB. Studies have shown alcohol’s potential impact on the
metabolism, absorption, and resultant concentrations of several
TB drugs including isoniazid, rifampicin, and fluoroquinolones
(50–58). Proper drug concentrations are essential for successful
TB treatment. Sub-therapeutic concentrations are predictive of
poor outcomes in TB, including death or disease relapse, while
Frontiers in Immunology | www.frontiersin.org 3
supra-therapeutic concentrations can lead to adverse events and
treatment interruptions (59). Historically, such concerns have
led to the exclusion of individuals with AUD from studies of TB
preventative therapy. However, clinical trials are underway
investigating the true benefit vs. harm of TB preventative
therapy in persons with AUD (60). Alcohol intervention
programs may also play an important role in the future of
treatment for TB associated with AUD. Previous studies have
shown a desire for such programs among TB patients, and the
initiation of intervention programs led to favorable outcomes
with improved treatment adherence in individuals with AUD
and TB (61, 62).
3 MECHANISMS OF TB IN AUD

3.1 Oxidative Stress
The lung’s constant exposure to the external environment and
resultant processing of inhaled smoke, dust particles, microbes,
toxins, etc. generates free radicals, including reactive oxygen
species (ROS) and reactive nitrogen species (RNS), that are
released into the alveolar environment. In the lungs, there are
efficient antioxidant defense systems, including antioxidant
enzymes and antioxidant stores, that defend against oxidants
and other reactive species (63, 64). Maintaining a balanced
FIGURE 1 | Summary schema of the epidemiologic data of alcohol use disorder (AUD) and tuberculosis (TB). Individuals with AUD are at a higher risk for TB, more
infectious, have more severe disease, and are more likely to experience poor outcomes. See main text for further details.
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oxidation-reduction (redox) state is essential for key cellular
functions, such as proliferation, differentiation, and apoptosis
(63). Redox balance can alter protein structure and reactivity as
well as cell signaling pathways (65). These alterations can result
in a release of inflammatory mediators and cytokines with
subsequent macrophage activation, polymorphonuclear (PMN)
cell recruitment, inflammation, and tissue damage (64). The
redox state can be assessed by measuring thiol/disulfide couples
including glutathione (GSH) and glutathione disulfide (GSSG),
the primary thiol redox system within the alveoli (63). Epithelial
lining fluid of a healthy lung has abundant extracellular GSH in
order to detoxify oxidants and free radicals (63–65). Oxidative
stress in the lung results when its antioxidant capacity is
depleted. Both chronic alcohol ingestion as well as Mtb
infection increase oxidative stress.

3.1.1 Alcohol Increases Pulmonary Oxidative Stress
AUD increases pulmonary oxidative stress and induces an
oxidized microenvironment within the lung through a variety
of mechanisms. AUD depletes antioxidant stores, including
GSH, within the pulmonary environment (66). GSH serves as
the primary reducing agent in the alveolar space, acting as a
substrate in a reaction with glutathione peroxidase that detoxifies
peroxides in the lung including hydrogen peroxide and lipid
peroxides (67). AUD alters pulmonary GSH homeostasis,
resulting in an oxidation of GSH stores to form GSSG and
oxidation of the GSH/GSSG redox potential (66, 68–70).
Alcohol-induced depletion of GSH impairs an essential defense
mechanism against oxidative stress in the lung.

There are a number of mechanisms through which alcohol
depletes pulmonary GSH stores. First, alcohol induces
mitochondrial dysfunction which decreases ATP generation
and, in turn, may decrease GSH synthesis (68, 71). GSH can
also be synthesized by reduction of GSSG, which utilizes
NADPH as the electron donor. However, alcohol may reduce
NADPH availability, resulting in decreased capacity for
reduction and less GSH (71). Alcohol also increases ROS
generation which then oxidizes GSH, further depleting GSH
stores (71–73). A primary mechanism by which alcohol impairs
GSH is its effects on the protein nuclear factor (erythroid-derived
2)-like 2 (Nrf2). Since Nrf2 is a transcription factor that activates
hundreds of antioxidant genes and innate immune effectors (74),
alcohol-mediated decreases in Nrf2 activation critically impairs
the lung redox balance of those with AUD. Downstream effects
from Nrf2 impairment include a diminished antioxidant
response to oxidative stress and drained GSH stores (74).

AUD further increases alveolar oxidative stress by enhancing
the expression and activity of NADPH oxidases (Nox). Nox
proteins are membrane-associated enzymes that catalyze the
reduction of molecular oxygen to superoxide and hydrogen
peroxide, thus serving as major sources of ROS in the lungs. In
alcohol-fed mice and rats, increased Nox expression increases
alveolar oxidative stress (72, 73, 75). AUD depletes alveolar
macrophage levels of peroxisome proliferator-activated
receptor gamma (PPARg) which, in turn, upregulates Nox
proteins (76). Nox activity is likely further enhanced by the
Frontiers in Immunology | www.frontiersin.org 4
increase in TGFb expression seen with AUD, which also
upregulates particular Nox proteins (77, 78).

The increased oxidative stress within the alveolar
microenvironment of individuals with AUD has important
implications for pulmonary innate immunity. GSH deficiency
increases alveolar epithelial intercellular permeability and
diminishes surfactant synthesis (69, 79, 80). The oxidative
stress associated with upregulated Nox protein expression
impairs alveolar macrophage phagocytosis in alcohol-fed mice
(72, 76). In environments of limited GSH, alveolar macrophage
phagocytosis and microbe clearance are also compromised (68,
71). Supplementation of GSH has been demonstrated to restore
alveolar macrophage function (71, 81, 82).

3.1.2 Mtb Increases Pulmonary Oxidative Stress
Infection with Mtb has also been shown to increase oxidative
stress and deplete antioxidant levels in the lungs. People with
active TB disease had lower circulating levels of serum thiol and
increased levels of its oxidized product serum disulfide (83).
More broadly, mycobacterial infections, including Mtb and
Mycobacterium abscessus (a rapid growing mycobacterium),
have been associated with increased oxidative stress, as shown
by decreases in total serum antioxidant capacity, total GSH, and
increased lipid peroxidation (84–86). Treatment with
antioxidants, including N-acetylcysteine (a precursor to GSH),
have been shown to reduce oxidative stress as well as intracellular
and pulmonary Mtb burden, while improving cell viability
(84, 85).

Nrf2 is also an important aspect of the response to Mtb. Its
expression is upregulated in Mtb infection due to the associated
increase in ROS and oxidative stress (87, 88). Studies done in
vitro with human macrophages have demonstrated benefit with
pharmacologic Nrf2. Specifically, Nrf2 activation decreased
oxidative injury, mitochondrial depolarization, and Mtb-
induced ROS production in addition to inhibiting programmed
necrosis of the macrophage (89).

An increase in oxidative stress, in the context of Mtb
infection, allows for enhanced mycobacterial growth and
survival. Mtb grows in vitro at a faster rate in more oxidized
environments, as in the lung apices where clinical TB disease is
most common (90). These observations are supported by a series
of experiments with M. abscessus where increased intracellular
growth was seen in more oxidized environments (86).

3.1.3 Pulmonary Oxidative Stress: AUD
and Mtb Overlap
Taken together, the co-occurrence of AUD and Mtb infection
likely results in a significant increase in pulmonary oxidative
stress state which benefits Mtb. First, the combination of
oxidative stress and impairments in antioxidant defenses,
particularly the depletion of GSH stores and Nrf2 inhibition by
alcohol, may sufficiently derange immune function and facilitate
Mtb infection and growth. Second, Mtb’s growth and survival
improves in oxidative environments, making the oxidized alveoli
in those with AUD a more ideal environment for Mtb.
Collectively, alcohol-induced oxidative stress may generate the
March 2022 | Volume 13 | Article 864817
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ideal combination forMtb infection: an oxidized alveolus and an
impaired host response.
3.2 Pulmonary Innate Immunity
The pulmonary innate immune system is a multilayered system
for defense against pathogens, detection of tissue damage, and
maintaining pulmonary tissue integrity and homeostasis (91).
Chronic alcohol misuse exerts a wide range of effects on this
system resulting in impairments of several vital functions of
innate immunity (92, 93). Its adverse effects impact the basic
defense and barrier functions of the cilia and alveolar epithelium
as well as the functions of specialized cells including alveolar
macrophages and PMNs. For example, AUD inhibits neutrophil
margination, influx from the peripheral circulation into the
alveolar space, and subsequent pathogen clearance and killing
during infection (92, 94–96). Antigen-presenting cells (APCs) of
the innate immune system, necessary for adaptive immune
activation, have a decreased peripheral presence and impaired
activity due to alcohol (97, 98).

Alongside the growing understanding of the negative impacts
of alcohol, the understanding of Mtb infection and host-
pathogen interactions is also evolving. With the increased
occurrence and severity of TB with AUD, it is likely that Mtb
exploits alcohol-mediated impairments in pulmonary innate
immunity to establish infection and disseminate. Previous
research has elucidated alcohol’s deleterious effects on
pulmonary mucociliary function, alveolar epithelium, and the
alveolar macrophage. Given this breadth of information, in
addition to the alveolar macrophage being first line of defense
in the alveolar space and the dominant cell type thatMtb infects,
we will spend the remaining portion of this section reviewing the
specific effects of chronic alcohol misuse on the pulmonary
innate immunity and how these alcohol-mediated alterations
may intersect with Mtb pathogenicity.

3.2.1 Pulmonary Mucociliary Function
Ciliated airway cells are the first line of defense against inhaled
pathogens and clear foreign particles from the lung. Chronic
alcohol use repetitively exposes airways to ethanol eliminated
from the bronchial circulation in exhaled breath. This repetitive
injury impairs the integrity and function of airway cell cilia,
ultimately leading to desensitization and resistance to motility, a
phenomenon referred to as alcohol-induced ciliary dysfunction
(99–101).

In the context of Mtb, this ciliary dysfunction facilitates
transmission of airborne pathogens like Mtb into the lower
airways, making it more likely that inhaled microbes will
establish infection (102). Given that ciliary dysfunction has
been associated with mycobacterial pulmonary infections,
alcohol-induced ciliary dysfunction represents a likely
mechanism by which AUD could predispose the host to Mtb
infection (103).

3.2.2 Alveolar Epithelium
Chronic alcohol use is also known to disrupt the pulmonary
epithelial structure and function. AUD prevents the formation of
Frontiers in Immunology | www.frontiersin.org 5
a reliable, physical barrier of the alveolar epithelium by impairing
tight junctions within its monolayer. Tight junctions are an
important aspect of the epithelium as they closely associate
cells and limit the passage of water, proteins, and other solutes
across cell layers (104). Chronic alcohol ingestion alters the
expression and interaction of essential components of the tight
junctions, including claudin-1, claudin-5, claudin-7, occludin,
and zonula occludens-1, resulting in a five-fold increase in
pulmonary epithelial permeability (79, 105–107). People with
AUD have increased alveolar-capillary permeability which
predisposes them to the development of non-cardiogenic
pulmonary edema compared to individuals without AUD (108,
109). Experiments in animal models support this mechanism of
injury, with chronic alcohol consumption in rats increasing
susceptibility to edematous lung injury (69). Alcohol also
increases TGF-b1 expression while inhibiting granulocyte/
macrophage colony-stimulating factor (GM-CSF) in the
alveolar space, both of which have been implicated in
disrupting and increasing the permeability of the alveolar
epithelium (77, 110, 111). Lastly, AUD reduces the alveolar
epithelial cell synthesis of surfactant, an important pattern
recognition molecule that binds to various microbes and
targets them for immune clearance (112, 113). Surfactant
proteins have been shown to function as an opsonin that
increases the Mtb-macrophage interaction and upregulates
phagocytosis (114). Although the mechanism by which Mtb
gains access to the lung interstitium from the alveolus is not
fully understood, the putative mechanisms proposed in the
literature include direct infection of alveolar epithelial cells and
migration of Mtb-infected macrophages across the alveolar
epithelium (115, 116). Both scenarios would be significantly
more likely in the setting of alcohol-induced tight junction
impairments and the more permeable alveolar epithelium of
the alcohol-affected lung.
3.2.3 Alveolar Macrophage
3.2.3.1 Key Functions
The alveolar macrophage is essential for maintaining
homeostasis of the lower airways through phagocytosis,
removal of debris, and efferocytosis. It is also the first line of
pulmonary immune defense in the alveolar space, responsible for
recognizing, ingesting, and clearing pathogens, as well as release
of cytokines and chemokines to recruit PMNs and monocytes to
the site of invasion. Through a multitude of pathways and effects,
AUD causes significant alveolar macrophage dysfunction,
impairing phagocytosis, pathogen clearance, and cytokine
release (71, 72, 76, 81, 82, 117–120).

AUD interferes with the maturation and terminal
differentiation of the alveolar macrophage through inhibition
of multiple signaling pathways. Alcohol interferes with GM-
CSF signaling by downregulating GMCSF-Rb expression on
the alveolar macrophage surface resulting in impaired
phagocytic function (117). Impairing GM-CSF signaling
results in diminished expression of PU.1, a GM-CSF-
dependent regulatory transcription factor required for
normal alveolar macrophage cel l development and
March 2022 | Volume 13 | Article 864817
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differentiation as well as alveolar macrophage phagocytosis,
pathogen killing, and cytokine production (118, 119, 121, 122).
In addition to its previously mentioned role in oxidative
defensive, Nrf2 additionally participates in alveolar
macrophage maturation by increasing PU.1 expression by
binding to its promoter region. Alcohol’s inhibition of Nrf2
has been shown to also be responsible for the decreased PU.1
expression of AUD (123).

Mtb’s interaction with the innate immune system is an
ongoing area of interest and research. The alveolar
macrophage is the primary cell that Mtb infects once it enters
the lower respiratory tract (115, 116). Once phagocytosed by the
alveolar macrophage,Mtb actively blocks phagosome maturation
and fusion with the lysosome to ensure its survival and establish
its intracellular niche (115, 124). In some cases, the alveolar
macrophage is able to achieve successful intracellular killing of
Mtb, likely through IFNg and nitric oxide synthase signaling
pathways (124). However, when Mtb evades killing, it replicates
and eventually disrupts the phagosome membrane allowing Mtb
into the alveolar macrophage cytosol for further replication.
After infecting the alveolar macrophage, Mtb then gains access
to the lung interstitium, where granuloma formation occurs
(115). Subsequent host-pathogen interactions determine
whether infection is cleared or if there is progression to latent
TB infection or active TB disease, however a discussion of these
later events is beyond the scope of this review (115).

GM-CSF is known to be an important for the innate immune
response to mycobacterial infections, particularly with its role in
restricting bacillary growth and promoting mycobacterial
clearance (125–127). Patients with mycobacterial pulmonary
infections have higher rates of GM-CSF signaling dysfunction
compared to healthy controls (128). Further, treatment with
recombinant GM-CSF (rGM-CSF) prior to mycobacterial
infection enhanced intracellular killing and phagolysosomal
fusion after Mtb infection as well as intracellular mycobacterial
killing and superoxide anion release after Mycobacterium avium
complex (MAC) infection (125, 129). Inhibiting GM-CSF by
neutralizing GM-CSF antibodies prior toMtb exposure dampens
the proinflammatory cytokine release and neutrophil
recruitment and increases Mtb burden in mouse macrophages
(127). Thus, alcohol’s downregulation of GMCSF-Rb on AMs
and subsequent decreased GM-CSF expression likely contribute
to an impaired response to Mtb infection.

Alcohol-induced impairments in innate immunity provide
multiple avenues for facilitatingMtb infection. Data is limited on
alcohol’s specific effects on the alveolar macrophage in the case of
Mtb infection, however multiple studies have investigated other
mycobacterial infections including MAC. Several studies done in
vitro using human macrophages demonstrated that exposure to
alcohol enhanced the intracellular growth of MAC and
diminished the macrophage response to inflammatory
cytokines (130, 131). Chronic exposure to alcohol also
diminished macrophage production of bactericidal, innate
immune effectors in response to MAC infection in a mouse
model (132). Additional experiments showed increased
dissemination, impaired pulmonary granuloma formation, and
Frontiers in Immunology | www.frontiersin.org 6
increased mycobacterial burden in alcohol-fed mice following
mycobacterial infection (130, 133).

3.2.3.2 Alveolar Macrophage Phenotype
Macrophages act as surveillance for the innate immune system,
recognizing pathogens and tissue damage via pathogen-
associated molecular patterns (PAMPs), damage-associated
molecular patterns (DAMPs), and pattern recognition
receptors. They have robust phagocytic and killing abilities and
act as initiators of the inflammatory response. They function as
antigen presenting cells that assist in the activation of the
adaptive immune system. Further, macrophages participate in
tissue repair, tissue remodeling, and maintain homeostasis (91).
This plasticity in macrophage function occurs in response to
surrounding physiologic state and cellular signaling and is
referred to as macrophage phenotype (134).

Two paradigmatic states of the macrophage were initially
described. The first being the “pro-inflammatory” or “classically
activated” macrophage that responds to bacteria, viruses,
lipopolysaccharide (LPS), and interferon gamma (IFNg). It
produces proinflammatory cytokines and chemokines like
interleukin (IL)-12 and tumor necrosis factor alpha (TNFa),
induces further inflammation and IFNg release, and attracts
neutrophils, natural killer (NK) cells, and lymphocytes to the
site of infection (135). It relies heavily on glycolysis and fatty acid
synthesis and a decrease in mitochondrial respiration (136). The
second paradigmatic activation state is the “anti-inflammatory”
or “alternatively activated”macrophage that is stimulated by IL-4
and participates in wound healing and tissue repair. It produces
anti-inflammatory cytokines including IL-10 and IL-13 to reduce
inflammation and promote tissue growth (135). Its metabolism is
dependent on the tricarboxylic acid cycle (TCA) cycle and
enhanced fatty acid oxidation (136). While macrophage
differentiation was previously considered to be dichotomous
and terminal, recent research suggests a more dynamic
spectrum of activation and function. Depending on various
extracellular signals, what were previously defined as all “anti-
inflammatory” macrophages can exhibit dramatic differences in
physiology, including overlap in function with some “pro-
inflammatory” macrophages (137). Studies looking at gene
expression of macrophages in pathologic conditions have
demonstrated heterogenous activation and functionality as well
as significant overlap in gene expression whether stimulated with
LPS or IL-10 (138–140). Further data showed macrophage
functional pattern changes with duration of stimuli and that
they are capable of completely changing their phenotype based
on the surrounding microenvironment (135, 141, 142). Overall,
data collectively support the idea that macrophages are dynamic,
plastic, and capable of displaying multiple, distinct,
functional patterns.

Chronic alcohol exposure impacts alveolar macrophage
functionality and makes phenotyping the alveolar macrophage
in the context of alcohol misuse a complex issue (134). At baseline,
alveolar macrophages isolated from animal models of chronic
alcohol ingestion have increased IL-13 and TGF-b1 production,
both associated with suppression of inflammation, as well as
March 2022 | Volume 13 | Article 864817
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decreased phagocytic ability (77, 78, 143). These findings are likely
due, at least in part, to alcohol-induced oxidative stress in the
alveolar environment (as discussed previously). However, when
exposed to alcohol and PAMPs, such as LPS, alveolar
macrophages exhibit an exaggerated inflammatory response. In
studies utilizing AMs from subjects with AUD, alveolar
macrophages produce increased proinflammatory cytokines,
including TNFa, IFNg, IL-1b, and IL-6, in response to LPS
stimulation compared to persons without AUD (144–146).
Despite this elevation in inflammatory signals, multiple studies
note a persistent decrease in alveolar macrophage phagocytosis
when exposed to bacterial pathogens or PAMPs (72, 76, 117). This
overexuberant response to pathogen stimulation has been
postulated to be a contributing factor in the elevated risk for
disproportionate inflammatory states, like ARDS, in people with
AUD (147). While some of these phenotypic changes are related to
the alcohol-induced oxidative stress in the lung, chronic alcohol
exposure also alters alveolar macrophage metabolism (76, 82).
AUD been shown to impair LPS-induced glycolytic response and
induce mitochondrial derangements in the alveolar macrophage
which can alter its cytokine response and contribute to
phagocytosis impairments (148–150).

Mtb has also been noted to induce phenotypic changes in the
alveolar macrophage after infection. In the early stages of
infection, Mtb induces a robust production of inflammatory
cytokines, increased phagocytosis, and upregulation of
glycolysis from the alveolar macrophage (151–155). Glycolysis
is important to the immune response because glycolytic
inhibition results in an increased mycobacterial burden (156).
Once intracellular,Mtb itself attempts to evade the macrophage’s
killing processes by secreting virulence factors that inhibit the
Frontiers in Immunology | www.frontiersin.org 7
alveolar macrophage’s expression of the nuclear factor-kB (NF-
kB) and IFNg, ultimately promoting Mtb’s intracellular survival
(151, 157). Following the initial response to Mtb, alveolar
macrophages increase production of anti-inflammatory
cytokines, including IL-10 and TGF-b, with decreased
glycolysis and increased oxidative phosphorylation and free
fatty acid metabolism (151, 158–162). Successful treatment of
TB leads to resolution of these phenotypic changes to the
macrophage (163).

Further work is clearly necessary to fully understand the
relationship between AUD, Mtb, and alveolar macrophage
function. The quiescent, baseline state of alveolar macrophages
in subjects with AUD with increased expression of TGF-b1 may
provide more favorable conditions for Mtb infection and
facilitate intracellular proliferation. Further, glycolysis is
integral to the macrophage’s response to Mtb: a decreased
glycolytic reserve has been associated with Mtb infection and
risk factors for TB (156, 164). Alcohol’s impairments of LPS-
induced glycolysis may contribute to alveolar macrophage
dysfunction and increase the risk of Mtb infection in those
with AUD.
4 CONCLUSION AND FUTURE
DIRECTIONS

Increasing rates of AUD pose a significant barrier to reaching the
global goal of TB elimination. AUD is a risk factor for TB
infection, severe disease, transmission, and associated death.
FIGURE 2 | Alcohol use disorder (AUD) influences tuberculosis (TB) care and outcomes through both behavioral and biologic mechanisms.
March 2022 | Volume 13 | Article 864817
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Despite behavioral determinants of health linking AUD and TB
disease, compelling evidence supports a biological impact of
alcohol on TB risk and disease (Figure 2). The impact of
alcohol on oxidative stress in the alveolar environment as well
as impairments to the alveolar epithelium, alveolar macrophage,
and remainder of the pulmonary innate immune system may
facilitate Mtb infection and evasion of host defenses (Figure 3).
To date, research directly investigating the mechanistic causes of
TB in persons with AUD has been limited. Future investigations
into the roles of innate immunity and oxidative stress specifically
in alcohol and TB are needed. A better understanding of these
causal pathways will lead to the development of host-directed
therapies and better treatment outcomes in individuals with
AUD and TB.
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