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As the complexity and heterogeneity of a system
grows, the challenge of specifying, documenting
and synthesizing correct, machine-readable designs
increases dramatically. Separation of the system into
manageable parts is needed to support analysis at
various levels of granularity so that the system is
maintainable and adaptable over its life cycle. In this
paper, we argue that operads provide an effective
knowledge representation to address these challenges.
Formal documentation of a syntactically correct
design is built up during design synthesis, guided
by semantic reasoning about design effectiveness.
Throughout, the ability to decompose the system
into parts and reconstitute the whole is maintained.
We describe recent progress in effective modelling
under this paradigm and directions for future work
to systematically address scalability challenges for
complex system design.

1. Introduction
We solve complex problems by separating them into
manageable parts [1,2]. Human designers do this
intuitively, but details can quickly overwhelm intuitive
insights. Multiple aspects of a problem may lead to
distinct intuitive decompositions and complementary
models of a single system—e.g. competing considerations
for cyberphysical systems [3,4]—or simulation of beha-
viour may require many levels of fidelity—e.g. in
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Figure 1. Separating concerns with operads: (1) Composition separates subsystem designs (boundaries on left); (2) functorial
semantics separate abstract systems from computational model instances (single arrows); (3) natural transformations separate
and align (double arrow) complementary models (square, diamond).

modelling and simulation [5]–leading to a spectrum of models which are challenging to align.
We argue that operads, formal tools developed to compose geometric and algebraic objects, are
uniquely suited to separate complex systems into manageable parts and maintain alignment
across complementary models.

Operads provide three ways to separate concerns for complex systems: (1) designs for
subsystems are separated into composable modules; (2) syntactic designs to compose systems
are separated from the semantic data that model them; and (3) separate semantic models can be
aligned to evaluate systems in different ways. The three relationships are illustrated in figure 1.

Hierarchical decomposition (figure 1, (1)) is nothing new. Both products and processes are
broken down to solve problems from design to daily maintenance. Operads provide a precise
language to manage complex modelling details that the intuitive—and highly beneficial—
practice of decomposition uncovers, e.g. managing multiple, complementary decompositions and
models.

Operads separate the syntax to compose subsystems from the semantic data modelling them
(figure 1, (2)). Syntax consists of abstract ‘operations’ to design the parts and architecture of a
system. Semantics define how to interpret and evaluate these abstract blueprints. Operad syntax
is typically lightweight and declarative. Operations can often be represented both graphically and
algebraically (figure 4), formalizing intuitive design diagrams. Operad semantics model specific
aspects of a system and can range from fast to computationally expensive.

The most powerful way operads separate is by aligning complementary models
while maintaining compatibility with system decompositions (figure 1, (3)). Reconciling
complementary models is a persistent and pervasive issue across domains [3,6–12]. Historically,
Eilenberg & Mac Lane [13] invented natural transformations to align computational models of
topological spaces. Operads use natural transformations to align hierarchical decompositions,
which are particularly well suited to system design.

This paper articulates a uniform and systematic foundation for system design and analysis.
In essence, the syntax of an operad defines what can be put together, which is a prerequisite to
decide what should be put together. Interfaces define which designs are syntactically feasible, but
key semantic information must be expressed to evaluate candidate designs. Formulating system
models within operad theory enforces the intellectual hygiene required to make sure that different
concerns stay separated while working together to solve complex design problems.

We note five strengths of this foundation that result from the three ways operads separate a
complex problem and key sections of the paper that provide illustrations.

Expressive, unifying meta-language. A meta- or multi-modelling [14] language is needed to
express and relate multiple representations. The key feature of operad-based meta-modelling is
its focus on coherent mappings between models (figure 1, (2), (3)), as opposed to a universal
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modelling context, like UML, OWL, etc., which is inevitably under or over expressive for
particular use cases. Unification allows complementary models to work in concert, as we see
in §5 for function and control. Network operads—originally developed to design systems—were
applied to task behaviour. This power to unify and express becomes especially important when
reasoning across domains with largely independent modelling histories; compare, e.g. [4] (§2b, d,
3, 4a, 5).

Minimal data needed for specification. Data needed to set up each representation of a problem
are minimal in two ways: (i) any framework must provide similar, generative data; and (ii) each
level only needs to specify data relevant to that level. Each representation is self-sufficient and
can be crafted to efficiently address a limited portion of the full problem. The modeller can pick
and choose relevant representations and extend the meta-model as needed (§4, 6b).

Efficient exploration of formally correct designs. An operad precisely defines how to iteratively
construct designs or adapt designs by substituting different subsystems. Constructing
syntactically invalid designs is not possible, restricting the relevant design space, and correctness
is preserved when moving across models. Semantic reasoning guides synthesis, potentially at
several levels of detail. This facilitates lazy evaluation: first syntactic correctness is guaranteed,
then multitudes of coarse models are explored before committing to later, more expensive
evaluations. The basic moves of iteration, substitution and moving across levels constitute a rich
framework for exploration. We obtain not only an effective design but also formal documentation
of the models that justify this choice (§2b,c, 6, 7e).

Separates representation from exploitation. Operads and algebras provide structure and
representation for a problem. Exploitation of this structure and representation is a separate
concern. As Herbert Simon noted during his Nobel Prize speech [15]: ‘. . . decision makers can
satisfice either by finding optimum solutions for a simplified world, or by finding satisfactory
solutions for a more realistic world’. This is an either-or proposition for a simple representation.
By laying the problem across multiple semantic models, useful data structures for each model—
e.g. logical, evolutionary or planning frameworks—can be exploited by algorithms that draw on
operad-based iteration and substitution (§6, 7e).

Hierarchical analysis and synthesis. Operads naturally capture options for the hierarchical
decomposition of a system, either within a semantic model to break up large-scale problems or
across models to gradually increase modelling fidelity (§2a, 5, 6c, 7a).

(a) Contribution to design literature
There are well-known examples of the successful exploitation of separation. For instance,
electronic design automation has had decades of success leveraging hierarchical separation of
systems and components to achieve very large-scale integration of complex electronic systems
[16–18]. We do not argue that operads are needed for extremely modular domains. Instead,
operads may help broaden the base of domains that benefit from separation and provide a means
to integrate and unify treatment across domains. On the other hand, for highly integral domains
the ability to separate in practically useful ways may be limited [19,20]. The recent applications
we present help illustrate where operads may prove useful in the near and longer term; see §7c
for further discussion.

Compared to related literature, this article is application-driven and outward focused. Interest
in applying operads and category theory to systems engineering has surged [21–26] as part of a
broader wave applying category theory to design databases, software, proteins, etc. [27–33]. While
much of loc. cit. matches applications to existing theoretical tools, the present article describes
recent application-driven advancements and overviews specific methods developed to address
challenges presented by domain problems. We introduce operads for design to a general scientific
audience by explaining what the operads do relative to broadly applied techniques and how
specific domain problems are modelled. Research directions are presented with an eye towards
opening up interdisciplinary partnerships and continuing application-driven investigations to
build on recent insights.
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Table 1. The theory of operads draws on many familiar ideas, establishing a dictionary between contexts.

operads tree API equational systems

types edges data types variables boundaries
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

operations nodes methods operators architectures
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

composites trees scripts evaluation nesting
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

algebras labels implementations values models
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Organization of the paper
The present article captures an intermediate stage of technical maturity: operad-based design has
shown its practicality by lowering barriers of entry for applied practitioners and demonstrating
applied examples across many domains. However, it has not realized its full potential as an
applied meta-language. Much of this recent progress is not focused solely on the analytic power
of operads to separate concerns. Significant progress on explicit specification of domain models
and techniques to automatically synthesize designs from basic building blocks has been made.
Illustrative use cases and successful applications for design specification, analysis and synthesis
organize the exposition; see figure 2.

Section 2 introduces operads for design by analogy to other modelling approaches. Our main
examples are introduced in §3. Section 4 describes how concrete domains can be specified with
minimal combinatorial data, lowering barriers to apply operads. Section 5 concerns analysis of
a system with operads. Automated synthesis is discussed in §6. Future research directions are
outlined in §7, which includes a list of open problems.

Notations. Throughout, we maintain the following notional conventions for:

— syntax operads (figure 1, left), capitalized calligraphy: O
— types (figure 1, edges on left), capitalized teletype: X, Y, Z, . . .
— operations (figure 1, nodes on left), uncapitalized teletype: f, g, h, . . .
— semantic contexts (figure 1, right), capitalized bold: Sem, Set, Rel, . . .
— functors from syntax to semantics (figure 1, single arrows), capitalized sans serif:

Model : O → Sem;
— alignment of semantic models via natural transformations (figure 1, double arrow),

uncapitalized sans serif: align : Model1 ⇒ Model2;

2. Applying operads to design
We introduce operads by an analogy, explaining what an operad is and motivating its usefulness
for systems modelling and analysis. The theory [34–36] pulls together many different intuitions.
Here, we highlight four analogies or ‘views’ of an operad: hierarchical representations (tree view),
strongly typed programming languages (API1 view), algebraic equations (equational view) and
system cartography (systems view). Each view motivates operad concepts; see table 1.

The paradigm of this paper is based on a typed operad, also known as a ‘coloured operad’ [36]
or ‘symmetric multicategory’ ([34], 2.2.21). A typed operad O has

— A set T of types.
— Sets of operations O(X1, . . . , Xn; Y) where Xi, Y ∈ T and we write f : 〈Xi〉 → Y to indicate

that f ∈O(X1, . . . , Xn; Y).
— A specific way to compose any operation f : 〈Yi〉 → Z with gi : 〈Xij〉 → Yi whose output

types match the inputs of f to obtain a composite f ◦ (g1, . . . , gn) = h : 〈Xij〉 → Z.

1Application programming interface.
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These data are subject to rules ([36], 11.2) governing permutation of arguments and assuring that
iterative composition is coherent, analogous to associativity for ordinary categories ([37], I).

(a) The tree view
Hierarchies are everywhere, from scientific and engineered systems to government, business
and everyday life; they help to decompose complex problems into more manageable pieces. The
fundamental constituent of an operad, called an operation, represents a single step in a hierarchical
decomposition. We can think of this as a single branching in a labelled tree, e.g.

op

system

Sub1 Sub2

Formally, this represents an element op ∈O(Sub1, Sub2; System). More generally, we can form
new operations—trees—by composition. Given further refinements for the two subsystems Sub1

and Sub2, by op1 and op2, respectively, we have three composites

op

op1

system

Sub11 Sub12 Sub2

op

op2

system

Sub21 Sub22 Sub23Sub1

op

op1

system

Sub11 Sub12

op2

Sub21 Sub22 Sub23

(2.1)

Together with the original operation, these represent four views of the same system at different
levels of granularity; compare, e.g. ([38], fig. 2). This reveals an important point: an operad
provides a collection of interrelated models that fit together to represent a complex system.

The relationship between models is constrained by the principle of compositionality: the whole is
determined by its parts and their organization. Here, the whole is the root, the parts are the leaves,
and each tree is an organizational structure. Formally, associativity axioms, which generalize those
of ordinary categories, enforce compositionality. For example, composing the left-hand tree above
with op2 must give the same result as composing the centre tree with op1. Both give the tree on
the right, since they are built up from the same operations. In day-to-day modelling, these axioms
are mostly invisible, ensuring that everything ‘just works’, but the formal definitions ([36], 11.2)
provide explicit requirements and desiderata for modelling languages ‘under the hood’.

Operads encourage principled approaches to emergence by emphasizing the organization of a
system. Colloquially speaking, an emergent system is ‘more than the sum of its parts’; operations
provide a means to describe these nonlinearities. This does not explain emergent phenomena,
which requires detailed semantic modelling, but begins to break up the problem with separate
(but related) representation of components and their interactions. The interplay between these
elements can be complex and unexpected, even when the individual elements are quite simple.2

Compositional models may develop and exhibit emergence as interactions between components
are organized, in much the same way as the systems they represent.

(b) The API view
For most applications, trees bear labels: fault trees, decision trees, syntax trees, dependency trees
and file directories, to name a few. A tree’s labels indicate its semantics either explicitly with
numbers and symbols or implicitly through naming and intention.

2For example, diffusion rates (components) and activation/inhibition (interactions) generate zebra’s stripes in Turing’s model
of morphogenesis [39].



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210099

...........................................................

In an operad, nodes identify operations while edges—called types—restrict the space of valid
compositions. This is in analogy to type checking in strongly typed programming languages,
where we can only compose operations when types match. In the API view, the operations are
abstract method declarations

def op(x1 : Sub1, x2 : Sub2) : System,
def op1(y1 : Sub11, y2 : Sub12) : Sub1,
def op2(z1 : Sub21, z2 : Sub22, z3 : Sub23) : Sub2.

Composites are essentially scripted methods defined in the API. For example,

def treeLeft(y1 : Sub11, y2 : Sub12, x2 : Sub2) : System
= op(op1(y1, y2), x2),

is a script for the left-most tree above. However, the compiler will complain with an invalid syntax
error for any script where the types do not match, say

def badTree(y1 : Sub11, y2 : Sub12, x2 : Sub2) : System
= op(x2 ,op1(y1, y2)).

If an operad is an API—a collection of abstract types and methods—then an operad algebra A
is a concrete implementation. An algebra declares: (1) a set of instances for each type; and (2) a
function for each operation, taking instances as arguments and returning a single instance for the
composite system. That is, A : O → Set has

— for each type X ∈ T, a set A(X) of instances of type X, and
— for each operation f : 〈Xi〉 → Y, the function A(f) acts on input elements ai ∈ A(Xi) to

obtain a single output element A(f)(a1, . . . , an) ∈ A(Y).

Required coherence rules ([36], 13.2) are analogous to the definition of a functor into Set ([37],
I.3). For example, we might declare a state space for each subsystem, and a function to calculate
the overall system state given subsystem states. Alternatively, we might assign key performance
indicators (KPIs) for each level in a system and explicit formulae to aggregate them. The main
thing to remember is: just as an abstract method has many implementations, an operad has many
algebras. Just like an API, the operad provides a common syntax for a range of specific models,
suited for specific purposes.

Unlike a traditional API, an operad provides an explicit framework to express and reason
about semantic relationships between different implementations. These different implementations
are linked by type-indexed mappings between instances called algebra homomorphisms. For
example, we might like to extract KPIs from the system state. The principle of compositionality
places strong conditions on this extraction: the KPIs extracted from the overall system state must
agree with the KPIs obtained by aggregating subsystem KPIs. That is, in terms of trees and in
pseudocode
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For any state instances for Sub1 and Sub2 at the base of the tree, the two computations must
produce the same KPIs for the overall system at the top of the tree. Here, KPI(op) and State(op)
implement op in the two algebras, while extr(−) are components of the algebra homomorphism to
extract KPIs. Similar to associativity, these compositionality conditions guarantee that extracting
KPIs ‘just works’ when decomposing a system hierarchically.

(c) The equational view
We have just seen an equation between trees that represent implementations. Because an
operad can be studied without reference to an implementation, we can also define equations
between abstract trees. This observation leads to another view of an operad: as a system of
equations.

The first thing to note is that equations occur within the sets of operations O(X1, . . . , Xn; Y); an
equation between two operations only makes sense if the input and output types match. Second,
if one side of an equation f = f′ occurs as a subtree in a larger operation g, substitution generates
a new equation g = g′. Two trees are equal if and only if they are connected by a chain of such
substitutions (and associativity equations). In general, deciding whether two trees are equal (the
word problem) may be intractable. Third, we can often interpret composition of operations as a
normal-form computation

op

op1

system

Sub11 Sub12

op2

Sub21 Sub22 Sub23

→−� op(op1, op2)

system

Sub11 Sub12 Sub21 Sub22 Sub23

We then compare composed operations directly to decide equality. For example, there is an operad
whose operations are matrices. Composition computes a normal form for a composite operation
by block diagonals and matrix multiplication,

op : n × (m1 + m2)
op1 : m1 × (k11 + k12)
op2 : m2 × (k21 + k22 + k23)

	−→
(

op
)

·
(

op1 0
0 op2

)
.

Operad axioms constrain composition. For example, the axiom mentioned in §2a corresponds to

(
op
)

·
(

op1 0
0 Im2

)
·

⎛
⎜⎝Ik11 0 0

0 Ik12 0
0 0 op2

⎞
⎟⎠

=
(

op
)

·
(

Im1 0
0 op2

)
·

⎛
⎜⎜⎜⎝

op1 0 0 0
0 Ik21 0 0
0 0 Ik22 0
0 0 0 Ik23

⎞
⎟⎟⎟⎠ .

The key point is that any algebra that implements the operad must satisfy all of the
equations that it specifies. Type discipline controls which operations can compose; equations
between operations control the resulting composites. Declaring equations between operations
provides additional contracts for the API. For instance, any unary operation f : X → X (a loop)
generates an infinite sequence of composites idX, f, f2, f3, . . .. Sometimes this is a feature of the
problem at hand, but in other cases, we can short-circuit the infinite regress with assumptions
like idempotence (f2 = f) or cyclicity (fn = idX) and ensure that algebras contain no infinite
loops.
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(d) The systems view
When we apply operads to study systems, we often think of an operation f : 〈Xi〉 → Y as a
system architecture. Intuitively, Y is the system and the X1, . . . , Xn are the components, but this
is a bit misleading. It is better to think of types as boundaries or interfaces, rather than systems.
Instead, f is the system architecture, with component interfaces Xi and environmental interface
Y. Composition formalizes the familiar idea ([38], fig. 2) that one engineer’s system is the next’s
component; it acts by nesting subsystem architectures within higher-level architectures.

Once we establish a system architecture, we would like to use this structure to organize
our data and analyses of the system. Moreover, according to the principle of compositionality,
we should be able to construct a system-level analysis from an operation by analysing the
component-level inputs and synthesizing these descriptions according to the given operations.

The process of extracting computations from operations is called functorial semantics, in which a
model is represented as a mapping M : Syntax −→ Semantics. The syntax defines a system-specific
architectural design. Semantics are universal and provide a computational context to interpret
specific models. Matrices, probabilities, proofs and dynamical equations all have their own rules
for composition, corresponding to different semantic operads.

The mapping M encodes, for each operation, the data, assumptions and design artefacts
(e.g. geometric models) needed to construct the relevant computational representations for the
architecture, its components and the environment. From this, the system model as a whole is
determined by composition in the semantic context. The algebras (State, KPI) described in §2b are
typical examples, with syntax O and taking semantic values in sets and functions. The mappings
themselves, called functors, map types and operations (System, op) to their semantic values,
while preserving how composition builds up complex operations.

The functorial perspective allows complementary models—e.g. system state versus KPIs—to
be attached to the same design. This includes varying the semantic context as well as modelling
details; see §5 for examples of non-deterministic semantics. Though functorial models may be
radically different, they describe the same system, as reflected by the overlapping syntax.

In many cases, relevant models are not independent, like system state and KPIs. Natural
transformations, like the extraction homomorphism in §2b, provide a means to align
ostensibly independent representations. Since models are mappings, we often visualize natural
transformations as two-dimensional cells

(2.2)

Formal conditions guarantee that when moving from syntax to semantics ([36], 13.2) or between
representations ([34], 2.3.5), reasoning about how systems decompose hierarchically ‘just works.’

Since functors and higher cells assure coherence with hierarchical decomposition, we can use
them to build up a desired model in stages, working backwards from simpler models

This is a powerful technique for at least two reasons. First, complexity can be built up in stages by
layering on details. Second, complex models built at later stages are partially validated through
their coherence with simpler ones. The latter point is the foundation for lazy evaluation: many
coarse models can be explored before ever constructing expensive models.

Separating out the different roles within a model encourages efficiency and reuse. An
architecture (operation) developed for one analysis can be repurposed with strong coherence
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ex. 3(a)
specification

section 4

ex. 3(b)
analysis
section 5

ex. 3(c)
synthesis
section 6

generators
compositio

nality

scalability

Figure 2. Organization of the paper around applied examples introduced in §3. (Online version in colour.)

between models (algebra instances) indexed by the same conceptual types. The syntax/semantics
distinction also helps address some thornier meta-modelling issues. For example, syntactic types
can distinguish conceptually distinct entities while still mapping to the same semantic entities.
We obtain the flexibility of structural or duck typing in the semantics without sacrificing the type
safety provided by the syntax.

3. Main examples
Though operads are general tools [34–36], we focus on two classes of operads applied to
system design: wiring diagram operads and network operads. These are complementary. Wiring
diagrams provide a top-down view of the system, whereas network operads are bottom-up. This
section introduces three examples that help ground the exposition as in figure 2.

(a) Specification
Network operads describe atomic types of systems and ways to link them together with
operations. These features enable: (1) specification of atomic building blocks for a domain
problem; and (2) bottom-up synthesis of designs from atomic systems and links. A general
theory of network operads [40–43] was recently developed under the Defense Advanced Research
Projects Agency (DARPA) Complex Adaptive System Composition and Design Environment
(CASCADE) program. Minimal data can be used to specify a functor—called a network model
([40], 4.2)—which constructs a network operad ([40], 7.2) customized to a domain problem.

The first example illustrates designs of search and rescue (SAR) architectures. The domain
problem was inspired by the 1979 Fastnet Race and the 1998 Sydney to Hobart Yacht Race and we
refer to it as the sailboat problem. It illustrates how network operads facilitate the specification of
a model with combinatorial data called a network template. For example, figure 3 shows the
carrying relationships between different system types to model (e.g. a Boat can carry a UAV

(unmanned aerial vehicle) but a Helo cannot). These data specify a network operad OSail whose:
(1) objects are lists of atomic system types; (2) operations describe systems carrying other systems;
and (3) composition combines carrying instructions. We discuss this example in greater detail
in §4.

(b) Analysis
A wiring diagram operad describes the interface each system exposes, making it clear what can
be put together [26,44,45]. The designer has to specify precisely how information and physical
quantities are shared among components, while respecting their interfaces. The operad facilitates
top-down analysis of a design by capturing different ways to decompose a composite system.
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(a) (b)

Figure 3. Which types are allowed to carry other types—indicated with 1—specify an operadOSail;f specifies that aHelo
(red circle) and a QD (blue circle) are carried by a Cut (green circle) and another QD (blue circle) is carried on the Helo (red
circle). (a) Examples of carrying relationships inOSail. (b) Operationf ∈OSail to specify carrying.

functional decomposition control decomposition

operad equation:

Figure 4. An equation in a wiring diagram operad expresses a common refinement of hierarchies. (Online version in colour.)

The second example analyses a precision-measurement system called the length scale
interferometer (LSI) with wiring diagrams. It helps illustrate the qualitative features of operads
over and above other modelling approaches and the potential to exploit their analytic power to
separate concerns. Figure 4 illustrates joint analysis of the LSI to address different aspects of the
design problem: functional roles of subsystems and control of the composite system. This analysis
example supports these illustrations in §5.

(c) Synthesis
The third example describes the automated design of mission task plans for SAR using network
operads. The SAR-tasking example illustrates the expressive power of applying existing operads
and their potential to streamline and automate design synthesis. Figure 5a is analogous to figure 3,
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(a) (b)

Figure 5. Primitive operations are composed for two UH60s to rendezvous at c and manoeuvre together to d. Each primitive
operation is indexed by a transition; types and space–time points must match to compose. (a) Specification of primitive
tasks := transitions. (b) Coordinate tasks to compose.

but whereas a sparse matrix specifies an architecture problem, here a Petri net is used to model
coordinated groups of agents.

For the SAR-tasking problem, much of the complexity results from agents’ need to coordinate
in space and time, e.g. when a helicopter is refuelled in the air, as in τ3 of figure 5a. To facilitate
coordination, the types of the network operad are systematically extended via a network model
whose target categories add space and time dimensions; compare, e.g. [41]. In this way, task
plans are constrained at the level of syntax to enforce these key coordination constraints; e.g.
figure 5b where two UH60s at the same space-time point (c, 2) manoeuvre together to d. We
describe automated synthesis for this example in §6.

4. Cookbook modelling of domain problems
In this section, we describe some techniques for constructing operads and their algebras, using
an example-driven, cookbook-style approach. We emphasize recent developments for network
operads and dive deeper into the SAR architecture problem.

(a) Network models
The theory of network models provides a general method to construct an operad O by mixing
combinatorial and compositional structures. Note that this lives one level of abstraction above
operads; we are interested in constructing a language to model systems, e.g. for a specific
domain. This provides a powerful alternative to coming up with operads one-by-one. A general
construction allows the applied practitioner to cook-up a domain-specific syntax to compose
systems by specifying some combinatorial ingredients.

The first step is to specify what the networks to be composed by O look like. Often this is
some sort of graph, but what kind? Are nodes typed (e.g. coloured)? Are edges symmetric or
directed? Are loops or parallel edges allowed? What about n-way relationships for n > 2 (hyper-
edges)? We can mix, match and combine such combinatorial data to define different network
models, which specify the system types and kinds of relationships between them relevant to some
domain problem. The network model describes the operations we need to compose the networks
specific to the problem at hand.

Three compositional structures describe the algebra of operations. The disjoint or parallel
structure combines two operations for networks with m and n nodes, respectively, into a
single operation for networks with m + n nodes. More restrictively, the overlay or in series
structure superimposes two operations to design networks on n nodes. The former structure
combines separate operations to support modular development of designs; the latter supports an
incremental design process, either on top of existing designs or from scratch. The last ingredient
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Figure 6. Parallel (
) and in series (+) compositional structures define how to combine operations.

permutes nodes in a network, which assures coherence between different ordering of the nodes.
This last structure is often straightforward to specify. If it is not, one should consider if symmetry
is being respected in a natural way.

We can distill the main idea behind overlay by asking, what happens when we add an edge to
a network? It depends on the kind of network being composed by O:

In a simple graph but in a labeled graph and in a multigraph

x y x y x y

+ x y + x y + x y

x
2

y, x y, x y.

These differences are controlled by a monoid,3 which provides each + shown. Above, the monoids
are bitwise OR, addition, and maximum, respectively. As a further example, if edge addition is
controlled by Z/2Z then + will have a toggling effect.

Consider simple graphs. Given a set of nodes n, write Un for the set of all undirected pairs
i �= j (a.k.a. simple edges i–j), so that |Un| = (|n|

2
)
. Then we can represent a simple graph over n

as a Un-indexed vector of bits 〈bi–j〉 describing which edges to ‘turn on’ for a design. Each bit
defines whether or not to add an i–j edge to the network and the overlay compositional structure
is given by the monoid SG(n) := BitUn , whose + is bitwise OR for the product over simple edges,
i.e. adding i–j then adding i–j is the same as adding i–j a single time. The disjoint structure 
 :
SG(m) × SG(n) −→ SG(m + n) forms the disjoint sum of the graphs g and h. Finally, permutations
act by permuting the nodes of a simple graph. Together, these compositional structures define a
network model SG : S → Mon, which determines how operations are composed in the constructed
network operad; see figure 6 (or [40], 3.2, 7.2) for complete technical details.

This definition has an analogue for N-weighted graphs, LG(n) := (N, +)Un , with overlay
given by sum of edge weights and another for multi-graphs, MG(n) := (N, max)Un , with overlay
equivalent to union of multisets; see ([40], 3.3, 3.4) for details. More generally, we can label
edges with the elements of any monoid. Many of these examples are strange—binary addition
makes edges cancel when they add—but their formal construction is straightforward; see
([40], Thm. 3.1).

Equivalently, we can view the undirected edges in Un as generators, subject to
certain idempotence and commutativity relations: SG(n) := 〈e ∈ Un|e · e = e, e · e′ = e′ · e〉. Here, the
idempotence relations come from Bit while the commutativity relations promote the single copies

3A set with a binary operation, usually written · unless the operation is commutative (m + n = n + m). A monoid is always
associative, � · (m · n) = (� · m) · n and has a unit e satisfying e · m = m = m · e, e.g. multiplication of n × n matrices.
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of Bit for each i–j to a well-defined network model. Similar tricks work for lots of other network
templates; we just change the set of generators to allow for new relationships. For example, to
allow self-loops, we add loop edge generators Ln = n + Un to express relationships from a node
i to itself. Likewise, network operads for directed graphs can be constructed by using generators
Dn = n × n, and one can also introduce higher-arity relationships.

In all cases, the formal definition of a network model assures that all the combinatorial and
compositional ingredients work well together; one precise statement of ‘working well together’
is given in ([40], 2.3). Once a network template—which expresses minimal data to declare the
ingredients for a network model—is codified in a theorem (as in [40], 3.1), it can be reused in
a wide variety of domains to set up the specifics of composition.

(b) Cooking with operads
The prototype for network operads is a simple network operad, which models only one kind of
thing, such as aircraft. The types of a simple network operad are natural numbers, which serve to
indicate how many aircraft are in a design. Operations of the simple network operad are simple
graphs on some number of vertices. For example, figure 6 above shows a simple network operad
to describe a design for point-to-point communication between aircraft.

Structural network operads extend this prototype in two directions: (1) a greater diversity of
things-to-be-modelled is supported by an expanded collection of types; and (2) more sorts of
links or relationships between things are expressed via operations. To illustrate the impact
of network templates, suppose we are modelling heterogeneous system types with multiple
kinds of interactions. For simplicity, we consider simple interactions, which can be undirected
or directed.

A network template need only declare the primitive ways system types can interact to define a
network model, e.g. a list of tuples (directed : carrying, Helo, Cut). These data are minimal in
two ways: (1) any framework must provide data to specify potentially valid interactions; and
(2) this approach allows only those interactions that make sense upon looking at the types of
the systems involved. Thus, interactions must be syntactically correct when constructing system
designs.

Presently, we will consider an example from the DARPA CASCADE program: the sailboat
problem introduced in §3a. This SAR application problem was inspired by the 1979 Fastnet
Race and the 1998 Sydney to Hobart Yacht Race, in which severe weather conditions resulted
in many damaged vessels distributed over a large area. Both events were tragic, with 19 and
six deaths, respectively, and remain beyond the scale of current SAR planning. Various larger
assets—e.g. ships, aeroplanes, helicopters—could be based at ports and ferry smaller SAR
units—e.g. small boats, quadcopters—to the search area.

Specifically, there were eight atomic types to model: P = {Port, Cut, Boat, FW, FSAR, Helo,
UAV, QD}. The primary relationship to specify a structural design is various assets carrying another
types, so only one kind of interaction is needed: carrying. This relationship is directed; e.g. a cutter
(Cut) can carry a helicopter (Helo) but not the other way around.

Specifying allowed relationships amounts to specifying pairs of type (p, p′) ∈ P × P such that
type p′ can carry type p; see figure 3 for examples. Figure 3 data are extended to: (1) specify that
Port can carry all types other than Port, UAV and QD; and (2) conform to an input file format to
declare simple directed or undirected interactions, e.g. the JSON format in figure 7.

If another type of system or kind of interaction is needed, then the file is appropriately
extended. For example, we can include buoys by appending Buoy to the array of
colours and augmenting the relationships in the carrying node. Or, we can model
the undirected (symmetric) relationship of communication by including an entry such as
‘undirected’: {‘communication’: {‘port’ : [‘cut’ : . . .], . . .}}. Moreover, modifications
to network templates—such as ignoring (undirected : communication) or combining QD and UAV

into a single type—naturally induce mappings between the associated operads ([40], 5.8).
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(a) (b)

Figure 7. After specifyingOSail, f places a QD (blue circle) on a Cut (green circle) and another QD (blue circle) on a Helo
(red circle). (a) Network template data to specify the operadOSail, (b) Example operationf ∈OSail.

Table 2. Example properties captured in algebra for sailboat problem including time on station (ToS), speed for search (S) and
max speed (R) and sweep widths measuring search efficiency for target types person in water (PIW), crew in raft (CIR) and
demasted sailboats (DS) adrift.

speed (kn) sweep width (nmi)

type cost ($) ToS (hr) S R PIW CIR DS

Cut 200 M ∞ 11 28 0.5 4.7 8.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Boat 500 K 6 22 35 0.4 4.2 7.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FW 60 M 9 180 220 0.1 2.2 7.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FSAR 72 M 10 180 235 0.5 12.1 16.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Helo 9 M 4 90 180 0.5 1.5 4.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UAV 250 K 3 30 45 0.5 1.8 4.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

QD 15 K 4 35 52 0.5 1.5 4.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Cooking with algebras
Because all designs are generated from primitive operations to add edges, it is sufficient to
define how primitive operations act in order to define an algebra. For the sailboat problem,
semantics are oriented to enable the delivery of a high capacity for search—known in the
literature as search effort ([46], 3.1)—in a timely manner. Given key parameters for each asset—
e.g. speed, endurance, search efficiency across kinds of target and conditions, parent platform,
initial locations—and descriptions of the search environment—e.g. expected search distribution,
its approximate evolution over time—the expected number of surviving crew members found by
the system can be estimated ([46], ch. 3).

Among these data, the parent platform and initial locations vary within a scenario and the
rest describe the semantics of a given scenario. In fact, we assume all platforms must trace their
geographical location to one of a small number of base locations, so that the system responds from
bases, but is organized to support rapid search. Once bases are selected, the decision problem
is a choice of operation: what to bring (type of the composite system) and how to organize it
(operation to carry atomic systems). Data for the operational context specify a particular algebra;
e.g. table 2. Just as for the operad, these data are lightweight and configurable.

(d) Related cookbook approaches
Though we emphasized network operads, the generators approach is often studied and lends
itself to encoding such combinatorially data with a ‘template’, in a cookbook fashion. The



15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210099

...........................................................

generators approach to ‘wiring’ has been developed into a theory of hypergraph categories
[22,47], which induce wiring diagram operads. Explicit presentations for various wiring diagram
operads are given in [45]. Augmenting monoidal categories with combinatorially specified data
has also been investigated, e.g. in [48].

5. Functorial systems analysis
In this section, we demonstrate the use of functorial semantics in systems analysis. As in §2d,
a functor establishes a relationship between a syntactic or combinatorial model of a system
(components, architecture) and some computational refinement of that description. This provides
a means to consider a given system from different perspectives, and also to relate those
viewpoints to one another. To drive the discussion, we will focus on the LSI and its wiring
diagram model introduced in §3b.

(a) Wiring diagrams
Operads can be applied to organize both qualitative and quantitative descriptions of hierarchical
systems. Because operations can be built up iteratively from simpler ones to specify a complete
design, different ways to build up a given design provide distinct avenues for analysis.

Figure 4 shows a wiring diagram representation of a precision measurement instrument called
the LSI designed and operated by the US National Institute of Standards and Technology (NIST).
Object types are system or component boundaries; figure 4 has: six components, the exterior,
and four interior boundaries. Each boundary has an interface specifying its possible interactions,
which are implicit in figure 4, but define explicit types in the operad.

An operation in this context represents one step in a hierarchical decomposition, as in §2a. For
example, the blue boxes in figure 4 represent a functional decomposition of the LSI into length-
measurement and temperature-regulation subsystems: f : LengthSys, TempSys → LSI. These
are coupled via (the index of refraction of) a laser interaction and linked to interactions at the
system boundary. The operation f specifies the connections between blue and black boundaries.

Composition in a wiring diagram operad is defined by nesting. For this functional
decomposition, two further decompositions l and t describe the components and interactions
within LengthSys and TempSys, respectively. The wiring diagram in figure 4 is the composite
f(l, t).

This approach cleanly handles multiple decompositions. Here, the red boxes define a second,
control-theoretic decomposition g : Sensors, Actuators → LSI. Unsurprisingly, the system
is tightly coupled from this viewpoint, with heat flow to maintain the desired temperature,
mechanical action to modify the path of the laser and a feedback loop to maintain the position of
the optical focus based on measured intensity. The fact that these two viewpoints specify the same
system design is expressed by the equation: f(l, t) = g(s, a); see §2c for related discussion.

(b) A probabilistic functor
Wiring diagrams can be applied to document, organize and validate a wide variety of system-
specific analytic models. Each model is codified as an algebra, a functor from syntax to semantics
(§2d). For the example of this section, all models have the same source (syntax), indicating that we
are considering the same system, but the target semantics vary by application. We have already
seen some functorial models: the algebras in §4c. These can be interpreted as functors from
the carrying operad OSail to the operad of sets and functions Set. Though Set is the ‘default’
target for operad algebras, there are many alternative semantic contexts tailored to different
types of analysis. Here, we target an operad of probabilities Prob, providing a simple model of
non-deterministic component failure.
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Table 3. Failure probabilities form an operad algebra for LSI component failure.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pf LengthSys 	→ 40% Pg Sensors 	→ 28%

TempSys 	→ 60% Actuators 	→ 72%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pl Interfer 	→ 10% Ps Lab 	→ 21.4%

Optics 	→ 30% Box 	→ 21.4%

Chassis 	→ 60% Optics 	→ 42.9%

Interfer 	→ 14.3%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pt Bath 	→ 80% Pa
Box 	→ 10% Chassis 	→ 33.3%

Lab 	→ 10% Bath 	→ 66.7%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The data for the functor are shown in table 3. Model data are indexed by operations4

in the domain, an operad W extracted from the wiring diagram in figure 4. The functor
assigns each operation to a probability distribution that specifies the chance of a failure in each
subsystem, assuming some error within the super-system. For example, the length measurement
and temperature regulation subsystems are responsible for 40% and 60% of errors in the LSI,
respectively. This defines a Bernoulli distribution Pf. Similarly, the decomposition t of the
temperature system defines a categorical distribution with three outcomes: Box, Bath and Lab.

Relative probabilities compose by multiplication. This allows us to compute more complex
distributions for nested diagrams. For the operation shown in figure 4, this indicates that the bath
leads to nearly half of all errors (60% × 80% = 48%) in the system.

Operad equations must be preserved in the semantics. Since f(l, t) = g(s, a), failure
probabilities of source components do not depend on whether we think of them in terms of
functionality or control. For the bath, this relative failure probability is

Pf︷︸︸︷
60% ×

Pt︷︸︸︷
80% = 48% =

Pg︷︸︸︷
72% ×

Pa︷ ︸︸ ︷
66.7%,

and five analogous equations hold for the other source components.
Functorial semantics separates concerns: different operad algebras answer different questions.

Here, we considered if a component will fail. The LSI example is developed further in ([49], 4) by a
second algebra describing how a component might fail, with Boolean causal models to propagate
failures. The two perspectives are complementary, and loc. cit. explores integrating them with
algebra homomorphisms (§2d).

(c) Interacting semantics
Its toy-example simplicity aside, the formulation of a failure model W → Prob, as in table 3 is
limited in at least two respects. First, it tells us which components fail, but not how or why. Second,
the model is static, but system diagnosis is nearly always a dynamic process. We give a high-level
sketch of an extended analysis to illustrate the integration of overlapping functorial models.

The first step is to characterize some additional information about the types in W (i.e. system
boundaries). We start with the dual notions of requirements and failure modes. For example, in the
temperature regulation subsystem of the LSI, we have

Tlaser ≤ 20.02◦C ↔ Tlasertoo high
19.98◦C ≤ Tlaser ↔ Tlasertoo low

...
...

4Types and operations, more generally, but the types carry no data in this simple example.
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Requirements at different levels of decomposition are linked by traceability relations. These
subsystem requirements trace up to the measurement uncertainty for the LSI as a whole. Dually,
an out-of-band temperature at the subsystem level can be traced back to a bad measurement in
the Box enclosure, a short in the Bath heater or fluctuations in the Lab environment.

Traceability is compositional: requirements decompose and failures bubble up. This defines
an operad algebra5 Req : W → Rel+. Functoriality expresses the composition of traceability
requirement across levels. See ([49], 5) for discussion of how to link these relations with table 3
data.

For dynamics, we need state. We start with a state space for each interaction among
components. For example, consider the laser interaction coupling Chassis, Intfr and
Box. The most relevant features of the laser are its vacuum wavelength λ0 and the ambient
temperature, pressure and humidity (needed to correct for refraction). This corresponds to a
four-dimensional state-space (or a subset thereof)

State(laser) ∼=
Tlaser︷ ︸︸ ︷

[−273.15, ∞)] ×
Plaser︷ ︸︸ ︷

[0, ∞)] ×
RHlaser︷ ︸︸ ︷
[0, 1] ×

λ0︷ ︸︸ ︷
[0, ∞) ⊆ R4.

A larger product defines an external state space at each system boundary

State(TempSys) = State(laser) × State(temp)2 × State(setPt) × State(H2O)
State(Box) = State(laser) × State(temp) × State(heat)2

...

Similarly, we can define an internal state space for each operation by taking the product over all
the interactions that appear in that diagram. We can decompose the internal state space in terms
of either the system boundary or the components6

State(f) ∼= State(LSI) ×
hidden variable︷ ︸︸ ︷
State(laser)

∼= State(LengthSys) ×
State(laser)︸ ︷︷ ︸

coupled variable

State(TempSys)

The projections from these (partial) products form a relation, and these compose to define a
functor W → Rel×:

5Many operads are defined from ordinary categories using a symmetric monoidal products ([50], 7). If a category carries
more than one product, we use a superscript to indicate which is in use. The disjoint union (+) corresponds to the disjunctive
composition ‘a failure in one component or another; soon we will use the Cartesian product × to consider the conjunctive
relationship between the state of one component and the other’.
6Coupled variables are formalized through a partial product called the pullback, a common generalization of the Cartesian
product, subset intersection and inverse image constructions.
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(b)(a) (c)

Figure 8. Requirement specification expressed as lifting problems. (a) Free specification, (b) top-down requirement and
(c) bottom-up requirement.

Each requirement R ∈ Req(X) defines a subset |R| ⊆ State(X), and a state is valid if it satisfies all the
requirements: Val(X) =⋂

R |R|. Using pullbacks (inverse image) we can translate validity to internal
state spaces in two different ways. External validity (left square) checks that a system satisfies its
contracts; joint validity (right square) couples component requirements to define the allowed joint
states.

A requirement model is sound if joint validity entails external validity, corresponding to the
dashed arrow above. With some work, one can show that these diagrams form the operations
in an operad of entailments Ent; see ([21], 6) for a similar construction. The intuition is quite
clear

component reqs. ⇒ subsystem reqs.
+ subsystem reqs. ⇒ system reqs.

component reqs. ⇒ system reqs.

There is a functor Context : Ent → Rel×, which extracts the relation across the bottom row of each
entailment. Noting that the State relations occur in the validity entailment, we can reformulate
requirement specification as a lifting problem (figure 8a): given functors State and Context, find a
factorization Val making the triangle commute. The second and third diagrams (figure 8b,c) show
how to extend the lifting problem with prior knowledge, in this case a top-level requirement and
a known (e.g. off the shelf) component capability.

Finally, we are ready to admit dynamics, but it turns out that we have already done most of the
work. All that is needed is to modify the spaces attached to our interactions. In particular, we can
distinguish between static and dynamic state variables; for the laser, T, P and RH are dynamic
while λ0 is static. Now we replace the static values T, P, RH ∈ R by functions T(t), P(t), RH(t) ∈ Rτ ,
thought of as trajectories through the state space over a timeline t ∈ τ . For example, we have

Traj(laser) ⊆
T,P,RH︷ ︸︸ ︷
(Rτ )3 ×

λ0︷︸︸︷
R .

From this, we construct Traj : W → Rel× using exactly the same recipe as above. Trajectories
and states are related by a pair of algebra homomorphisms inst and const. The first picks out a
instantaneous state for each point in time, while the second identifies constant functions, which
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describe fixed points of the dynamics:

The problem is that the state space explodes; function spaces are very large. Nonetheless, all
of the system integration logic is identical, and using the entailment operad Ent, we can build
in additional restrictions to limit the search space. In particular, we can restrict attention to the
subset of functions that satisfies a particular differential equation or state-transition relationship.
This drastically limits the set of valid trajectories, though the resulting set may be difficult to
characterize and the methods for exploring it will vary by context.

(i) Related analytic applications

Wiring diagrams have an established applied literature for system design problems, e.g. [26,29,31,
44,51,52]. More broadly, the analytic strength of category theory to express compositionality and
functorial semantics is explored in numerous recent applied works, e.g. engineering diagrams
[29,53–58], Markov processes [59,60], database integration [27,29,31,33,61–63], behavioural logic
[29,64–66], natural language processing [67–69], machine learning [70,71], cybersecurity [51,72–
74], quantum computation [75–77] and open games [78–80].

6. Automated synthesis with network operads
An operad acting on an algebra provides a starting point to automatically generate and evaluate
candidate designs. Formally correct designs (operations in some operad) combine basic systems
(elements of some algebra of that operad) into a composite system.

(a) Sailboat example
Consider the sailboat problem introduced in §3a and revisited in §4b,c. Network operads describe
assets and ports carrying each other while algebra-based semantics guided the search for effective
designs by capturing the impact of available search effort.

To apply this model to automate design synthesis, algorithms explored designs within budget
constraints based on costs in table 2. Exploration iteratively composed up to budget constraints
and operational limits on carrying.7 With these analytic models, greater sophistication was not
needed; other combinatorial search algorithms—e.g. simulated annealing—are readily applied
to large search spaces. The most effective designs could ferry a large number of low-cost SAR
units—e.g. quadcopters (QD)—quickly to the scene, e.g. via helicopters (Helo).

(b) Tasking example
Surprisingly, network operads—originally developed to design systems—can also be applied to
‘task’ them: in other words, declare their behaviour. An elegant example of this approach is given
in [41] where ‘catalyst’ agents enable behavioural options for a system.

7Though not used for this application, it turns out that degree limits—e.g. how many quadcopters a helicopter can carry—can
be encoded directly into operad operations; the relevant mathematics was worked out in [42].
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(i) The SAR-tasking problem

The sailboat problem is limited by search: once sailboat crew members are found, their recovery
is relatively straightforward. In hostile environments, recovery of isolated personnel (IP) can
become very complex. The challenge is balancing the time criticality of recovery with the risk
to the rescuers by judiciously orchestrating recovery teams.8 Consider the potential challenges
of a large-scale earthquake during severe drought conditions that precipitates multiple wildfires
over a large area. The 2020 Creek Fire near Fresno, CA required multiple mass rescue operations
(MROs) to rescue over 100 people in each case by pulling in National Guard, Navy and Marine
assets to serve as search and rescue units (SRUs) [82,83]. Though MRO scenarios are actively
considered by US SAR organizations, the additional challenge of concurrent MROs distributed
over a large area is not typically studied.

In this SAR-tasking example, multiple, geographically distributed IP groups compete for
limited SRUs. The potential of coordinating multiple agent types—e.g. fire-fighting airplanes
together with helicopters—to jointly overcome environment risks is considered as well as aerial
refuelling options for SRUs to extend their range. Depending on available assets, recovery
demands and risks, a mission plan may need to work around some key agent types—
e.g. refuelling assets—and maximize the impact of others, e.g. moving protective assets between
recovery teams.

Under CASCADE, tasking operations were built up from primitive tasks that coordinate
multiple agent types to form a composite task plan. Novel concepts to coordinate teams of SRUs
are readily modelled with full representation of the diversity of potential mission plan solutions.

(ii) Network models for tasking

A network model for tasking defines atomic agent types C and possible task plans for each list
of agent types. Whereas a network model to design structure Γ : S(C) → Mon has values that
are possible graphical designs, a network model to task behaviour Λ : S(C) → Cat has values that
are categories whose morphisms index possible task plans for the assembled types; compare, e.g.
([41], Thm. 9). Each morphism declares a sequence of tasks for each agent, many of which will be
coordinated with other agents.

If the system is comprised of only a single UH-60 helicopter, its possible tasks are captured
in Λ(UH60). In this application, these tasks are paths in a graph describing ‘safe manoeuvres’.
For unsafe manoeuvres, UH-60s travel in pairs, or perhaps with escorts such as a HC-130 or
CH-47 equipped with a Modular Airborne Fire Fighting System (MAFFS). Anything one UH-60
can do, so can two, but not vice versa. Thus there is a proper inclusion Λ(UH60) × Λ(UH60) �

Λ(UH60 ⊗ UH60). Similarly, Λ(UH60) × Λ(HC130) � Λ(UH60 ⊗ HC130) since once both a UH-60
and HC-130 are present, a joint behaviour of midair refuelling of the UH-60 by the HC-130
becomes possible. Formally, these inclusions are lax structure maps, e.g. Φ(UH60,UH60) : Λ(UH60) ×
Λ(UH60) → Λ(UH60 ⊗ UH60), which specifies: given tasks for a single UH-60 (left coordinate)
and tasks for another UH-60 (right coordinate), define the corresponding joint tasking of the
pair. Here, the joint tasking is: each UH-60 operates independently within the safe graph. On
the other hand, tasks in Λ(UH60 ⊗ UH60) to manoeuvre in unsafe regions cannot be constructed
from independent taskings of each UH-60. Such tasks must be set for some pair or other allowed
team, e.g. a CH-47 teamed with an UH-60.

(iii) Applying the cookbook: operads

While the above discussion sketches how to specify a network model for tasking, which constructs
a network operad [40], these precise details [84] need not concern the applied practitioner.9 It

8The recovery of downed airman Gene Hambleton, call sign Bat 21 Bravo, during the Vietnam War is a historical example of
ill-fated SAR risk management. Hambleton’s eventual recovery cost five additional aircraft being shot down and 11 deaths;
for comparison, a total of 71 rescuers and 45 aircraft were lost to save 3883 lives during Vietnam War SAR [81].
9That is, a Petri net specifies the network model Λ : S(C) → Cat to task behaviour. The construction of Λ [84] is similar to the
construction described in ([41], Thm. 9), but adapted to coloured Petri nets whose transitions preserve the number of tokens
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(a)

(b)

Figure9. Specifiedprimitive tasks determineanoperadOSAR anda constraint programtoexplore operations. (a) Four primitive
tasks specified in a Petri net; arcs indicate types involved in each task, (b) more primitive tasks become possible as available
agent types increase. Type update matricesM(−) and target to source constraint matricesMs(−) translate type changing and
matching, resp.

is sufficient to provide a Petri net as a template, from which a network operad is constructed.
Whereas a template to design structures defines the basic ways system types can interact, a
template to task behaviour defines the primitive tasks for agent types C, which are token colours
in the Petri net.

No specification of ‘staying put’ tasks are needed; these are implicit. All other primitive tasks
are (sparsely) declared. For example, each edge of the ‘safe graph’ for a solo UH-60 declares: (1) a
single agent of type UH60 participates in this ‘traverse edge’ task; and (2) participation is possible
if a UH60 is available at the source of the edge. Likewise, each edge of the ‘unsafe graph’ for pairs
of UH-60s should declare similar information for pairs, but what about operations to refuel an
UH-60 with a HC-130? It turns out that transitions in a Petri net carry sufficient data [41,84] and
have a successful history of specifying generators for a monoidal category [55,85,86]. The Petri net
figure 9a shows examples where, for simplicity, tasks to traverse edges are only shown in the left
to right direction. This sparse declaration is readily extended, e.g. to add recovery focused CH-
47s, which tested their operational limits to rescue as many as 46 people during the 2020 Creek
Fire–C and the set of transitions are augmented to encode the new options for primitive tasks.

This specification of syntax is almost sufficient for the SAR-tasking problem and would be
for situations where only the sequence of tasks for each agent needs to be planned. When

of each colour; see, e.g. figure 9a. Compared with ([41], Thm. 9), C corresponds to token colours, rather than catalysts ([41],
Def. 6), and species index discrete coordination locations. Target categories encode allowed paths for each atomic agent type,
e.g. for figure 9a Λ(UH60) is (freely) generated by objects {a, b, c, d} and morphisms τ1 : a → c and τ2 : b → c, whereas Λ(HC130)
is just by generated {a, b, c, d} since no transition involves a single HC130. By describing each target category as an appropriate
subcategory of a product of path categories, the symmetric group action is given permuting coordinates, which allows the
role of each atomic agent in a task to be specified.
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tasking SAR agents, when tasks are performed is semantically important because where and how
long air-based agents ‘stay put’ impacts success: (1) fuel burned varies dramatically for ground
versus air locations; and (2) risk incurred varies dramatically for safe versus unsafe locations. For
comparison, in a ground-based domain without environmental costs, these considerations might
be approximately invariant relative to the time tasks occur, and therefore, can be omitted from
tasking syntax.

Timing information creates little added burden for building a template—transitions declaring
primitive tasks need only be given durations derivable from scenario data—and it is technically
straightforward to add a time dimension to the network model.

(iv) Constraints from syntax

A direct translation of primitive tasks to decision variables for a constraint program is possible.
For syntax, the idea is very simple: enforce type-matching constraints on composing operad
morphisms. Here, we will briefly indicate the original mixed integer linear program developed
for SAR tasking; later this formulation was reworked to leverage the scheduling toolkit of the
CPLEX optimization software package.

To illustrate the concept, let us first consider the constraint program for an operad to plan
tasks without time and then add the time dimension.10 Operad types are translated to Boolean
vectors mj, whose entries capture individual agents at discrete coordination locations. Parallel
composition of primitive operations is expressed with Boolean vectors Σj indexed over primitive
tasks for specific agents. Type vectors mj indicate the coordination location of each agent with
value one; operation vectors Σj indicate which tasks are planned in parallel.

Assuming an operation with task vector Σj and source vector mj, the target is mj+1 = mj + MΣj,
where M describes the relationship between source and target for primitive tasks. Rows of M
correspond to primitive tasks while columns correspond to individual agents. The target to source
constraint for a single step of in-series composition is mj+1 ≥ MsΣj+1 where Ms has rows that give
requirements for each primitive task. Here, the LHS describes the target and the RHS describes
the source. The inequality appears to allow for implicit identities for agents without tasking, e.g.
if Σj is a zero vector, then mj+1 = mj. This constraint prevents an individual agent from being
assigned conflicting tasks or ‘teleporting’ to begin a task.

As seen in figure 9b, additional agents: (1) enable more primitive tasks, indexed by Petri
net transitions (top two rows); and (2) expand the type vector/matrix column dimension to
account for new agent-location pairs and increase the matrix row dimension to account for new
tasks (bottom two rows). For example, the first four rows of M(UH60 ⊗ UH60) correspond to the
image of Λ(UH60) × Λ(UH60) in Λ(UH60 ⊗ UH60). The last row corresponds to a new task, τ4,
for the available pair of UH-60s. During implementation, the constraints can be declared task-by-
task/row-by-row to sparsely couple the involved agents. Once a limit on the number of steps of
in series composition is set—i.e. a bound for the index j is given—a finite constraint program is
determined.

Time is readily modelled discretely with tasks given integer durations. This corresponds to a
more detailed network model, Λt, whose types include a discrete time index; see figure 5b for
example operations. Under these assumptions, one simply replaces the abstract steps of in series
composition with a time index and decomposes M and Σj by the duration d of primitive tasks

mt +
dmax∑
d=1

MdΣt−d,d = mt+1; mt+1 ≥
dmax∑
d=1

Ms
dΣt+1,d

so that Σt,d describes tasks beginning at time t; the inequality allows for ‘waiting’ operations. One
can also model tasks more coarsely—with Λ• : N(C) → Cat–to construct an operad to task counts
of agents without individual identity. Then, the type vectors mj (resp., operation vectors Σj)

10Simply increasingly dimensionality is not computationally wise—which was the point of exploring the CPLEX scheduling
toolkit to address the time dimension—but this model still serves as a conceptual reference point.
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have integer entries to express agent counts (resp., counts of planned tasks) with corresponding
reductions in dimensionality. These three levels of network models

naturally induce morphisms of network operads11 ([40], 6.18) and encode mappings of syntactic
variables that preserve feasibility. In particular, the top two levels describe a precise mapping from
task scheduling (highest) to task planning (middle). The lowest level Λ• forgets the individual
identity of agents, providing a coarser level for planning.

This very simple idea of enforcing type-matching constraints is inherently natural.12 However,
further research is needed to determine if this natural hierarchical structure can be exploited
by algorithms—e.g. by branching over pre-images of solutions to coarser levels—perhaps for
domains where operational constraints coming from algebras are merely a nuisance, as opposed
to being a central challenge for SAR planning. For instance, a precise meta-model for planning and
scheduling provides a common jumping off point to apply algorithms from those two disciplines.

(v) Applying the cookbook: algebras

Because the operad template defines generating operations, specifying algebras involves: (1)
capturing the salient features of each agent type as its internal state; and (2) specifying how
these states update under generating morphisms, including, for operads with time, the implicit
‘waiting’ operations. For the SAR-tasking problem, the salient features are fuel level and
cumulative probability of survival throughout the mission. Typical primitive operations will
not increase these values; fuel is expended or some risk is incurred. The notable exception is
refuelling operations, which return the fuel level of the receiver to maximum. By specifying the
non-increasing rate for each agent–location pair, the action of ‘waiting’ operations are specified.
In practice, these data are derivable from environmental data for a scenario so that end users can
manipulate them indirectly.

(vi) Operational constraints from algebras

Salient features of each agent type are captured as auxiliary variables determined by syntactic
decision variables. The values of algebra variables are constrained by update equations, e.g.
to update fuel levels for agents with max(fj + FΣj, fmax) = fj+1, where fmax specifies max fuel
capacities. Having expressed the semantics for generating operations, one can enforce additional
operational constraints, e.g. safe fuel levels: fj+1 ≥ fmin.

(vii) Extending the domain of application

As noted above, this sparse declaration of a tasking domain is readily extended, e.g. to add a new
atomic type or new ways for agents to coordinate. Syntactically, this amounts to new elements of C
or transitions to define primitive tasks. Semantics must capture the impact of primitive operations
on state, which can be roughly estimated initially and later refined. This flexibility is especially
useful for rapid prototyping of ‘what if’ options for asset types and behaviours, as the wildfire
SAR-tasking problem illustrates.

Suppose, for example, that we wanted to model a joint SAR and fire-fighting problem. Both
domains are naturally expressed with network operads to task behaviour. Even if the specification
formats were independently developed: (1) each format must encode the essential combinatorial

11Strictly speaking, the coarsest (lowest) level is not a network model; its domain is a free commutative monoidal category.
Nevertheless, a completely analogous construction produces a typed operad fitting into this diagram.
12i.e. operad morphisms push forward feasible assignments variables in the domain to feasible assignments in the co-domain.



24

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210099

...........................................................

data for each domain; and (2) category theory provides a method to integrate domain data:
construct a pushout. Analogous to taking the union of two sets along a common intersection,
one identifies the part of the problem common to both domains—e.g. MAFFS-equipped HC-130s
and their associated tasks appearing in both domains—to construct a cross-domain model

The arrows in this diagram account for translating the file format for the overlap into each
domain-specific format and choosing a specific output format for cross-domain data.

On the other hand, suppose that the machine readable representation of each domain
was tightly coupled to algorithms, e.g. mathematical programming for SAR and a planning
framework for fire fighting. There is no artefact suitable for integrating these domains since
expression was prematurely optimized. We describe a general workflow to separate specification
from representation and exploitable data structures and algorithms in §7e.

(c) Other examples of automated synthesis
Though network templates facilitate exploration from atoms, how to explore valid designs is a
largely distinct concern from defining the space of designs, as discussed in §1.

(i) Novel search strategies via substitution

For example, in the DARPA Fundamentals of Design (FUN Design) program, composition of
designs employed a genetic algorithm (GA). FUN Design focused on generating novel conceptual
designs for mechanical systems, e.g. catapults to launch a projectile. Formulating this problem
with network operads followed the cookbook approach: there were atomic types of mechanical
components and basic operations to link them.

The operad-based representation provided guarantees of design feasibility and informed
how to generalize the GA implementation details. Specifically, composition for atomic algebra
elements defined genetic data; crossover produced child data to compose from atoms; and
mutation modified parameters of input algebra elements. Crafting a crossover step is typically
handled case-by-case while this strategy generalizes to other problems that mix combinatorial
and continuously varying data, provided these data are packaged as an operad acting on an
algebra. Guarantees of feasibility dramatically reduced the number unfit offspring evaluated
by simulation against multiple fitness metrics. Moreover, computational gains from feasibility
guarantees increase as the design population becomes more combinatorially complex.

(ii) Integrated structure and behaviour

Large classes of engineering problems compose components to form an ‘optimized’ network,
e.g. in chemical process synthesis, supply chains and water purification networks [87–90]. Given
a set of inputs, outputs and available operations (process equipment with input and output
specification), the goal is to identify the optimal state equipment networks for behavioural
flows of materials and energy. A given production target for outputs is evaluated in terms of
multiple objectives such as environmental impact and cost. For example, the chemical industry
considers the supply chain, production and distribution network problem [90] systematically as
three superstructure optimization problems that can be composed to optimize enterprise level,
multi-subsystem structures. Each sub-network structure is further optimized for low cost and
other metrics including waste, environmental impact and energy costs. The operadic paradigm
would provide a lens to generalize and refine existing techniques to jointly explore structure and
behaviour.



25

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210099

...........................................................

CASCADE prototyped integrated composition of structure and behaviour for distributed
logistics applications. Here, an explicit resupply plan to task agents was desired. Structural
composition was needed to account for the resupply capacity for heterogeneous delivery vehicles
and the positioning of distributed resupply depots. Probabilistic models estimated steady state
resupply capacities of delivery fleet mixes to serve estimates of demand. First, positioning
resupply locations applied hill climbing to minimize the expected disruption of delivery routes
when returning to and departing from resupply locations. Second, this disruption estimate was
used to adjust the resupply capacity estimate of each delivery asset type. Third, promising designs
where evaluated using a heuristic task planning algorithm. At each stage, algorithms focused
on finding satisficing solutions which allowed broad and rapid explorations of the design and
tasking search space.

(iii) Synthesis with applied operads and categories

Research activity to apply operads and monoidal categories to automated design synthesis
is increasing. Wiring diagrams have been applied to automate protein design [30,32] and
collaborative design ([29], ch. 4) of physical systems employing practical semantic models
and algorithms [91–94]. Software tools are increasingly focused on scaling up computation,
e.g. [95–98], as opposed to software to augment human calculation, as in [77,99,100], and
managing complex domains with commercial-grade tools [27,61–63]. Recent work to optimize
quantum circuits [75,76] leverages such developments. The use of wiring diagrams to improve
computational efficiency via normal forms is explored in [101].

In the next section, we discuss research directions to develop the meta-modelling potential of
applied operads to: (1) decompose a problem within a semantic model to divide and conquer; and
(2) move between models to fill in details from coarse descriptions. We also discuss how the flow
of representations used for SAR—network template, operad model of composition, exploitation
data structures and algorithms—could be systematized into a reusable software framework.

7. Towards practical automated analysis and synthesis
In this section, we describe lessons learned from practical experiences with applying operads
to automated synthesis. We frame separation of concerns in the language of operads to describe
strategies to work around issues raised by this experience. This gives not only a clean formulation
of separation but also a principled means to integrate and exploit concerns.

(a) Lessons from automated synthesis
The direct, network template approach facilitates correct and transparent modelling for complex
tasking problems. However, computational tractability is limited to small problems, relative
to the demands of applications. More research is needed to develop efficient algorithms that
break up the search into manageable parts, leveraging the power of operads to separate
concerns.

Under CASCADE, we experimented with the CPLEX scheduling toolkit to informally model
across levels of abstraction and exploit domain-specific information. In particular, generating
options to plan, but not schedule, key manoeuvres with traditional routing algorithms helped
factor the problem effectively. These applied experiments were not systematized into a formal
meta-modelling approach, although our prototype results were promising. Specification of
these levels—as in §4—and controlling the navigation of levels using domain-specifics would
be ideal.

The FUN DESIGN genetic algorithm approach illustrates the potential operads have to: (1)
generalize case-by-case methods13; (2) separate concerns, in this case by leveraging the operad

13In fact, applying genetic algorithms to explore network structures was inspired by the success of NeuroEvolution of
Augmenting Topologies (NEAT) [102] to generate novel neural network architectures.
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syntax for combinatorial crossover and algebra parameters for continuous mutation; and (3)
guarantee correctness as complexity grows. Distributed logistics applications in CASCADE show
the flexibility afforded by multiple stage exploration for more efficient search.

(b) Formal separation of concerns
We begin by distinguishing focus from filter, which are two ways operads separate. Focus selects
what we look at, while filter captures how we look at it. These are questions of syntax and
semantics, respectively. To be useful, the what of our focus must align with the how of the filter.

Separation of focus occurs within the syntax operad of system maps. In §2a, four trees
correspond to different views on the same system. We can zoom into one part of the system
while leaving other portions black-boxed at a high level. Varying the target type of an operation
changes the scope for system composition, such as restricting attention to a subsystem.

Filtering, on the other hand, is semantic; we choose which salient features to model and which
to suppress, controlled by the semantic context used to ‘implement’ the operations. As described
in §5b, the default semantic context is Set where: (1) each type in the operad is mapped to a set
of possible instances for that type; and (2) each operation is mapped to a function to compose
instances. Instances or algebra elements for the sailboat problem (§4) describe the key features
of structural system designs. For SAR tasking (§6), mission plan instances track the key internal
states of agents—notably fuel and risk—throughout its execution. Section 5 illustrates alternative
semantic contexts as such probability Prob or relations between sets Rel.

Focus and filter come together to solve particular problems. The analysis of the LSI system in
§5 tightly focuses the syntax operad W to include only the types and operations from figure 4.
Formally, this is accomplished by considering the image of the generating types and operations
in the operad of port-graphs ([49], 3). This tight focus means semantics need only be defined
for LSI components. In each SAR-tasking problem of §6, an initial, source configuration of agent
types is given, narrowing the focus of each problem. The SAR focus is much broader because an
operation to define the mission plan must be constructed. Even so, semantics filter down to just
the key features of the problem and how to update them when generating operations act.

Functorial semantics, as realized by an operad algebra A : O → Sem, helps factor the overall
problem model to facilitate its construction and exploitation. For example, we can construct the
probabilistic failure model in table 3 by normalizing historical failures. First, we limit focus from
all port-graphs P to W then semantics for counts in N+, an operad of counts and sums, are
normalized to obtain probabilities in Prob:

The power to focus and filter is amplified because we are not limited by a single choice of
how to filter. In addition to limiting focus with the source of an operad algebra, we can simplify
filters. Such natural transformations between functors are ‘filters of filters’ that align different
compositional models precisely, e.g. requirements over state (§5c) or timed scheduling over two
levels of planning (§6b). In this first case, the syntax operad W stays the same and semantics
are linked by an algebra homomorphism (§2d). In the second case, both the operad and algebra
must change to determine simpler semantics, e.g. to neglect the impact of waiting operations,
which bound performance. Such precision supports automation to explore design space across
semantic models and aligns the ability to focus within each model. By working backward relative
to the construction process, we can lift partial solutions to gradually increase model fidelity, e.g.
exploring schedules over effective plans. This gives a foundation for lazy evaluation during deep
exploration of design space, which we revisit in §7e.

For a simple but rich example of these concepts working together, consider the functional
decomposition f(l, t) in figure 4. We could model the length system l using rigid-body
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dynamics, the temperature system t as a lumped-element model and super-system f as a
computation (Edlén equation) that corrects the observed fringe count based on the measured
temperature:

(7.1)

The upper and lower paths construct implementations of dynamical models based on the
aforementioned formalisms. The centre path implements a correction on the data stream coming
from the interferometer, based on a stream of temperature data. The two natural transformations
indicate extraction of one representation, a stream of state values, from the implementation of
the dynamical models. Composition in W then constructs the two data streams and applies the
correction.

A key strength of the operadic paradigm is its genericity: the same principles of model
construction, integration and exploitation developed for measurement and SAR apply to all kinds
of systems. In principle, we could use the same tools and methodology to assemble transistors into
circuits, unit processes into chemical factories and genes into genomes. The syntax and semantics
change with the application, but the functorial perspective remains the same. For the rest of this
section, we describe research directions to realize such a general purpose vision to decompose a
complex design problem into subproblems and support rapid, broad exploration of design space.

(c) Recent advancements, future prospects and limits
Progress driven by applications. Section 4 describes how cookbook-style approaches enable
practitioners to put operads to work. Generative data define a domain and compositionality
combines it into operads and algebras to separate concerns. Network operads [40–42] were
developed in response to the demands of applications to construct operads from generative data.
Section 5 describes rich design analysis by leveraging multiple decompositions of complex
systems and working across levels of abstraction. Focusing on a specific applied problem—the
LSI at NIST—provided further opportunities for analysis since model semantics need only be defined
for the problem at hand; see also equation (7.1). Progress in streamlining automated synthesis from
building blocks is recounted in §6 where the domain drives coordination requirements to task
behaviour.

Prospects. If interactions between systems are well-understood (specification) and can be
usefully modelled by compositional semantics (analysis), then automated design synthesis
leveraging separation for scalability becomes possible. For instance, most references from the end
of §5 correspond to domains that are studied with diagrams that indicate interactions and have
associated compositional models. This allows intricate interactions to be modelled—compare, e.g.
classical [18] versus quantum [75,76,103] computing—while unlocking separation of concerns.
Cookbook and focused approaches guide practitioners to seek out the minimal data needed for
a domain problem—as in the examples presented—but operads for design require compositional
models.

Limitations. We note three issues limiting when operads apply: (1) key interactions among
systems and components are inputs; (2) not all design problems become tractable via
decomposition and hierarchy; and (3) there is no guarantee of compositional semantics to exploit.
For instance, though the interactions for the n-body problem are understood (1), this does not
lend itself to decomposition (2) or exploitable compositional semantics (3).
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Whitney [20] notes that integral mechanical system design must address safety issues at high
power levels due to challenging, long-range interactions. Some aspects of mechanical system
design may yield to operad analysis—e.g. bond graphs [57] or other sufficiently ‘diagrammatic’
models—but others may not.

Both examples illustrate how overnumerous or long-range interaction can lead to (2). Operads
can work at the system rather than component level if system properties can be extracted into
compositional models. However, operads do not provide a means to extract such properties or
understand problems that are truly inseparable theoretically or practically.

(d) Research directions for applied operads
We now briefly overview research directions toward automated analysis and synthesis.

Operad-based decomposition and adaptation. Decomposition, ways a complex operation can be
broken down into simpler operations, is a dual concept to the composition of operations. Any
subsystem designed by a simpler operation can be adapted: precisely which operations can be
substituted is known, providing a general perspective to craft algorithms. To be practical, the
analytic questions of how to decompose and when to adapt subsystems must be answered.

One research direction applies the lens of operad composition to abstract and generalize
existing algorithms that exploit decomposition, e.g. to: (1) generalize superstructure optimization
techniques discussed in §6c; (2) extend the crossover and mutation steps for the FUN DESIGN
work §7a, which are global in the sense that they manipulate full designs, to local steps which
adapt parts of a design, perhaps driven by analysis to re-work specific subsystems; and (3) explore
routing as a proxy for tasking planning, analysing foundational algorithms like Ford & Fulkerson
[104] and decomposition techniques such as contraction hierarchies [105]. An intriguing, but
speculative, avenue is to attempt to learn how to decompose a system or select subsystems to
adapt in a data-driven way, so that the operad syntax constrains otherwise lightly supervised
learning. A theoretical direction is to seriously consider the dual role of decomposition, analogous
to Hopf and Frobenius algebra [106], and attempt to gain deeper understanding of the interplay
of composition and decomposition, eventually distilling any results into algorithms.14

Multiple levels of modelling. The LSI example shows how a system model can be analysed to
address different considerations. This sets the stage to adapt a design—e.g. bolster functional
risk points and improve control in back and forth fashion—until both considerations are
acceptable. Applied demonstrations for SAR tasking suggest a multi-level framework: (1)
encoding operational concepts; (2) planning options for key manoeuvres; and (3) multi-stage
planning and scheduling to support these manoeuvres.

Unifying top-down and bottom-up points of view. We have laid out the analytic—exemplified by
wiring diagrams—and synthetic—exemplified by network operads—points of view for complex
systems. Even if the goal is practical automated synthesis, scalability issues promote analytic
decomposition and abstraction to efficiently reason towards satisficing solutions. Two approaches
to unification include: (1) create a combined syntax for analysis and synthesis, a ‘super operad’
combining both features; and (2) act by an analytic operad on the synthetic syntax, extending
composition of operations. While the former approach is arguably more unified, the latter more
clearly separates analysis and synthesis and may provide a constructive approach to the former.

(e) Functorial programming with operads
At this point, experience implementing operads for design suggests a software framework. While
conceptually simple, this sketch helps clarify the practical role of a precise meta-model.

Rather than working directly with operads to form a core meta-modelling language, cf. [14],
a workflow akin to popular frameworks for JavaScript development would put developers in
the driver’s seat: adopters focus on controlling the flow of data and contribute to an ecosystem

14For example, Bellman’s principle of optimality is decompositional, i.e. parts of an optimal solution are optimal.
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Figure 10. A software framework to leverage a meta-model: templates define each level and how to move between, libraries
exploit each level, and core meta-model facilitates control across levels.

of libraries for lower-level data processing. Achieving this requires work before and after the
meta-model. First, transferable methods get an applied problem into operads (figure 10, left). As
in §4, these data construct operads and algebras to form the core meta-model. Core data feed
explicitly exploitable data structures and algorithms to analyse (§5) and automatically construct
(§6) complex systems (figure 10, right). On the far left, end user tools convert intent to domain
inputs. Rightmost, libraries access exploitation data structures and algorithms, including those
exploiting the syntax and semantics separation or substitution and adaptation. At the centre, the
core meta-model guarantees that the scruffier ends of the framework exposed to end users and
developers are correctly aligned and coherently navigated.

This framework provides significant opportunities to separate concerns compared with other
approaches. Foremost, the core model separates syntax from semantics. As noted in §1, applied
methods tend to conflate syntax and semantics. For instance, aggregate programming [107]
provides: (1) semantics for networked components with spatial and temporal extent; and (2)
interactions are proximity-based. The former feature is powerful but limiting: by choosing a
single kind of semantics, modelling is wedded to the scales it abstracts well. The individual
component scale is not modelled, even syntactically, which would complicate any attempt to align
with other models. The latter precludes syntactic declaration of interactions—e.g. to construct
architectures not purely based on proximity—and the absolute clarity about what can be put
together provided by the operad syntax. Relative to computational efforts to apply operads
or monoidal categories, e.g. [95,96,98], this sketch places greater emphasis on specification and
exploitation: specification of a domain is possible without exposing the meta-model, algorithms
searching within each model are treated as black boxes that produce valid designs. Separate
specification greatly facilitates set up by experts in the domain, but not the meta-model. Separate
exploitation encourages importing existing data structures and algorithms to exploit each model.

(f) Open problems
The software framework just sketched separates out the issues of practical specification, meta-
modelling and fast data structures and algorithms. We organize our discussion of open problems
around concrete steps to advance these issues. In our problem statements, ‘multiple’ means at
least three to assure demonstration of the genericity of the operadic paradigm.

Practical specification. The overarching question is whether the minimal combinatorial data,
which can specify operads, their algebras and algebra homomorphisms in theory, can be
practically implemented in software. We propose the following problems to advance the state-
of-the-art for network template specification of operads described in §4:

(i) Demonstrate a specification software package for operad algebras for multiple domains.
(ii) Develop specification software for algebra homomorphisms to demonstrate correctly

aligned navigation between multiple models for a single domain.
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(iii) Develop and implement composition of specifications to combine multiple parts of a
domain problem or integrate multiple domains.

This last point is in line with the discussion of extending a domain in §6b and motivates a need
to reconcile independently developed specification formats.

(iv) Demonstrate automatic translation across specification formats.

Core meta-model. As a practical matter, state-of-the-art examples exercise general principles of
the paradigm but do not leverage general purpose software to encode the meta-model.

(v) Develop and demonstrate reusable middleware to explicitly encode multiple semantic
models and maps between them which (a) takes inputs from specification packages; and
(b) serves as a platform to navigate models.

We have seen rich examples of focused analysis with wiring diagrams in §5 and automated
composition from building blocks in §6. Theoretically, there is the question of integrating the
top-down and bottom-up perspectives:

(vi) Develop unified foundations to integrate: (a) analytic and synthetic styles of operads; and
(b) composition with decomposition.

Potential starting points for these theoretical advancements are described in §7d. Developing
understanding of limitations overviewed in §7c requires engagement with a range of applications:

(vii) Investigate limits of operads for design to (a) identify domains or specific aspects
of domains lacking minimal data; (b) demonstrate the failure of compositionality for
potentially useful semantics; and (c) characterize complexity barriers due to integrality.

Navigation of effective data structures and algorithms. Lastly, there is the question of whether
coherent navigation of models can be made practical. This requires explicit control of data across
models and fast data structures and algorithms within specific models. The general-purpose
evolutionary algorithms discussed in §7c motivate:

(viii) Develop reusable libraries that exploit (a) substitution of operations and instances to
adapt designs and (b) separation of semantics from syntax.

SAR-tasking experience and prototype explorations for distributed logistics illustrate the need to
exploit moving across models:

(ix) Develop and demonstrate general purpose strategies to exploit separation across models
via hierarchical representation of model fidelity, e.g.: (a) structure over behaviour; and (b)
planning over scheduling.

(x) Quantify the impact of separation of concerns on: (a) computational complexity; and (b)
practical computation time.

For this last point, isolating the impact of each way to separate concerns is of particular interest to
lay groundwork to systematically analyse complex domain problems. Finally, there is the question
of demonstrating an end-to-end system to exploit the operadic, meta-modelling paradigm.

(xi) Demonstrate systematic, high-level control of iteration, substitution and moving across
multiple models to solve a complex domain problem.
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(xii) Develop high-level control framework—similar to JavaScript frameworks for UI—
or programming language—similar to probabilistic programming—to systematically
control iteration, substitution and movement across multiple models.

8. Conclusion
Operads provide a powerful meta-language to unite complementary system models within a
single framework. They express multiple options for decomposition and hierarchy for complex
designs, both within and across models. Diverse concerns needed to solve the full design problem
are coherently separated by functorial semantics, maintaining compositionality of subsystems.
Each semantic model can trade-off precision and accuracy to achieve an elegant abstraction, while
algorithms exploit the specifics of each model to analyse and synthesize designs.

The basic moves of iteration, substitution and moving across multiple models form a rich
framework to explore design space. The trade-off is that the technical infrastructure needed to
fully exploit this paradigm is daunting. Recent progress has lowered barriers to specify domain
models and streamline tool chains to automatically synthesize designs from basic building
blocks. Key parts of relevant theory and its implementation in software have been prototyped
for example applications. Further research is needed to integrate advancements in automatic
specification and synthesis with the analytic power of operads to separate concerns. To help focus
efforts, we described research directions and proposed some concrete open problems.
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