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Abstract: Commonly used rating scales and tests have been found lacking reliability and validity,
for example in neurodegenerative diseases studies, owing to not making recourse to the inherent
ordinality of human responses, nor acknowledging the separability of person ability and item
difficulty parameters according to the well-known Rasch model. Here, we adopt an information
theory approach, particularly extending deployment of the classic Brillouin entropy expression
when explaining the difficulty of recalling non-verbal sequences in memory tests (i.e., Corsi Block
Test and Digit Span Test): a more ordered task, of less entropy, will generally be easier to perform.
Construct specification equations (CSEs) as a part of a methodological development, with entropy-
based variables dominating, are found experimentally to explain (r =

√
R2 = 0.98) and predict the

construct of task difficulty for short-term memory tests using data from the NeuroMET (n = 88)
and Gothenburg MCI (n = 257) studies. We propose entropy-based equivalence criteria, whereby
different tasks (in the form of items) from different tests can be combined, enabling new memory tests
to be formed by choosing a bespoke selection of items, leading to more efficient testing, improved
reliability (reduced uncertainties) and validity. This provides opportunities for more practical and
accurate measurement in clinical practice, research and trials.

Keywords: entropy; information; metrology; measurement system analysis; Rasch; cognition; mem-
ory; task difficulty; person ability; neurodegenerative diseases; cognitive neuroscience

1. Introduction

Worldwide, someone develops dementia every three seconds, making it one of the
most pressing public health issues in modern time [1]. However, patients remain under-
diagnosed or are diagnosed ‘too late’. This may be due, in part at least, to the limitations of
data generated by existing, routinely used neuropsychological cognitive assessments [2–4].
Key drawbacks include the: (i) inherent ordinality of human responses to items assessing
cognitive functioning; and (ii) lack of analytical recourse to separating the independent
parameters of person ability and item difficulty. Ignoring these two main effects leads to
considerable risk of incorrect conclusions based on the cognitive assessment data, impacting
clinical decision-making and the assessment of the significance of correlations between
cognitive functioning and brain structure and biochemistry [5]. In the present paper, we
use a metrological approach to tackle these respective limitations (Figure 1).
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Figure 1. Probabilistic and entropy models of the measurement system and processes (inspired, in part, by the probabilistic
model of Rossi [6] Figure 5.5). Z—measurand; Y—response; R—restitution; P—probability, and H—entropy. The neu-
ropsychological assessment of cognition is made in terms of a metrological measurement system analysis (MSA), where
the cognitive task is the measurement object (entity A), the human responder (patient whose memory is tested) is the
measurement instrument (entity B) and the test is administered by an operator, usually a clinician (entity C) [7]. The concept
of entropy (H) is invoked to aid explanation of how information is lost, distorted or gained throughout the measurement
process from observation of the measurand (Z), via response (Y) to restitution (ZR) [8].

Of note, when analyzing responses (Y, registered by the operator C), we give equal
attention to variations in item (entity, A) values and in person (instrument, B) scores. This
is in contrast to the more common trend in the social sciences dating back to the early
1900s (i.e., including Thurstone [9] and ‘early correlationalists’), where “most approaches to
testing and construct theories focus(ed) on explaining person score variation” ([10] p. 416).
Construct and measurement theories are handled with equal priority, as far as possible. In
doing so, we do not share the view of others, that the instrumental task of quantification,
i.e., construction of measurement devices and instruments, is “secondary” to the scientific
task of discovering quantitative structure ([11] p. 359).

The concept of entropy can provide valuable insight when modeling a measurement
process [12]. An information-theoretical entropy, as a measure of the amount of “useful
information” in a measurement system (such as depicted in Figure 1), is analogous to a
certain extent to the original entropy concept as a measure of “useful energy” in steam
engines [13]. There is an extensive literature in which the validity of analogies between
the entropy concept in information theory and thermodynamics is considered in depth,
see for example [14]. A summary about making these analogies is given in [15], where
statements can be found, such as: “Ultimately, the criticism of the link between thermody-
namic entropy and information entropy is a matter of terminology, rather than substance.
Neither side in the controversy will disagree on the solution to a particular thermodynamic
or information-theoretic problem”. A task (entity, A) will be easier if there is some degree
of order, i.e., less entropy. The greater the degree of order in an instrument (person, B; e.g.,
coherency), the smaller the entropy and the greater the ability to perform tasks. Addition-
ally, both distortion and loss of information in the measurement process—that is, error
and uncertainty, respectively—can be modeled in terms of increases in entropy [16], i.e.,
disorder. Analogies can be drawn with previously reported entropy-based measurement
models, such as the treatment of machine-based signal treatment (e.g., EEG patterns in
time series to detect epilepsy [17]).

Our entropy-based measurement model exploits the properties of the Rasch model [18],
in which the ordinal response of a human (Y) in a memory test is transformed (in the pro-
cess of restitution [6], R in Figure 1) into separate estimates of the ability, θ, of the signal
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analyzer (B) and the level, δ, of difficulty of the task (A) on a conjoint linear scale (Equa-
tion (3), Section 2.3). Entropy, as a concept, is used here not only to handle ordinal signals,
but also explain both person ability and task difficulty, building on the pioneering work of
Brillouin [19].

Following the restitution process, construct specification equations (CSE) can be
formulated for each attribute of the various elements (object, A, instrument, B, etc.) of
the measurement system (Figure 1), including explanation of memory task difficulty
as a function of entropy. CSEs are based on our best understanding of the causality
explaining each construct [20] As will be demonstrated, the concept of entropy plays a
dominant role when formulating CSEs for the non-verbal memory tests examined here.
For instance, one can explain the level of memory difficulty of the task (A), essentially as a
sole function of entropy.

CSEs play an important role in the design and implementation of memory tests, since
they allow: (i) the valid and reliable prediction of the difficulty of new test items (e.g., to fill
measurement gaps); as well as (ii) provide a measure of the degree of equivalence between
items associated with distinct tests (e.g., different cultures and languages) [20,21]. New
memory tests which combine carefully selected items from diverse sources can thus be
formulated. The increased number and comprehensiveness of items can be expected to
lead to a reduction in measurement uncertainties much-wanted in clinical decision-making.

This paper is structured as follows. First, we introduce the memory tests and sample
used in this study (Section 2.1) and the metrological quality assurance of human based
measures (Section 2.2). This is followed by linking entropy to item response models
(Section 2.3) and to CSEs (Section 2.4). Experimental demonstrations of how entropy can be
used to: (i) explain memory task difficulty; and (ii) combine different items from different
tests according to entropy-based criteria follow in Section 3. We conclude with a discussion
in Section 4, explaining how the resultant improved reliability (reduced uncertainties) in
memory test difficulty estimates in turn promises improved estimates of person memory
abilities as key inputs to cognitive neuroscience and health care.

2. Materials and Methods

This section provides a description of the materials for the experimental demonstra-
tions (Section 3) in terms of the memory tests and the samples generated by measurement.
This is followed by a description of the assumptions and processes of the methods.

2.1. Memory Tests and Sample

The Corsi Block Test (CBT) [22] and Digit Span Test (DST) [23] are two tests, largely
free of cultural and language effects, for measuring short-term memory ability. In the CBT,
a person is asked to reproduce the tapping sequences (i.e., an item or a task) provided by
the test-leader for a series of tasks with increasing length and difficulty. The DST similarly
requires recalling tasks, but instead of tapping sequences the participants are asked to
recall digit sequences. For both tests, if a person recalls a sequence correctly the observed
response is scored 1; an incorrect response is scored 0. From these raw response scores the
measurand is then restituted through a logistic regression of the dichotomous Rasch model
(Section 2.3) [18] using the WINSTEPS ® 4.3.1. software application This restitution process
yields separate and linear measures for individual memory task difficulties, δ, and person
memory abilities, θ subject to a good fit of the basic Rasch model [20].

The data for those memory tests stem from subjects in the project NeuroMET [24]
comprising a cohort of 88 subjects with AD (n = 26), mild cognitive impairment (MCI)
(n = 23) and healthy controls (HC) (n = 39). The mean age was 72 years (range 55–84 years)
and 47% were women and 53% men. Data from a second version of the DST test were
additionally retrieved from the GBG MCI study [25] comprising a cohort of 257 subjects
with dementia (n = 18), MCI (n = 142) and HC (n = 52). The mean age was 65 years
(range 40–86 years) and 49% were women and 51% men.
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2.2. Human-Based Measures

Memory tests are a typical case of human-based measures where the observed re-
sponse in a memory test can be, for example, pass or fail. Other common examples of
human-based measures are questionnaires with a set of questions with rating scales such
as strongly disagree to strongly agree on a 5-point Likert scale or 1–10 on numerical ratings
scales (NRS) [26]. In those examples, the human responses do not generate ‘ordinary’
numbers, but instead classification scores by category (i.e., observed responses on an or-
dinal scale). Underlying the use of raw summed scores of such rating scales and tests
are what Tukey termed ‘counted fraction’ data [27,28], where the observed response to
test items [as registered by the measurement system operator (C) in Figure 1] are usu-
ally percentages or equivalent scores (Psuccess in the dichotomous case, the probability of
“correct” classification), bounded between lower and upper limits of 0 and 100%, and
summing to 100%.

As early as 1897, Pearson [29] (p. 490) had warned of the dangers of counting fractions
under such boundary conditions: “Beware of attempts to interpret correlations between
ratios whose numerators and denominators contain common parts” (cited in [28] p. 315).

Mathematically, in the counted fraction expression, Xj% =
Xj

∑i Xi
, the presence of the

amount X of component j (appearing in both the numerator and denominator) means
that any error in Xj will be correlated with the other components (and increasingly so
where Xj is either large or small compared with the other components), since there is the
boundary condition ∑

j
Xj% = 100%. Thus, counted fractions lead to a scale which becomes

increasingly non-linear at either end of the response scale—high scores and low scores. This,
and other potential sources of scale non-linearity (such as responder acquiescence [30]), if
not recognized and compensated for, will lead to (at best) ordinal scales with a monotonic
order. With unknown scale intervals even the most basic tools of statistics cannot be
assumed to work. Despite the long history of counted fractions studies, there remains
to this day a diversity of approaches to handling the observed data from human-based
responses in for instance the medical field, health care and education.

Apart from a few exceptions (particularly the work of Stenner et al. [10,31]), the analy-
sis of memory tests has (to date) unfortunately not accounted properly for counted fraction
ordinality nor applied methods for metrological quality assurance to ensure traceability
and declare measurement uncertainties. The Rasch model, dating from the 1960s, is a
unique kind of item response model to handle these challenges. This is because it not only
compensates for counted fraction ordinality, but also importantly provides separate esti-
mates of each test person’s ability and each test item’s level of difficulty in a way that other
ad hoc transformations traditionally employed cannot achieve. That separation, which
corresponds to the measurand restitution (Figure 1), is essential for establishing metrolog-
ical references for metrological traceability for human-based measures as in traditional
physical metrology [7].

An early form of the Rasch model [18] posits that the odds ratio of successfully
performing a task is equal to the ratio of an ability, h, (Rasch [17] used the person attribute
’inability’ instead, given by h−1) to a difficulty, k:

Psuccess

1− Psuccess
=

h
k

(1)

The original Rasch model of Equation (1) refers to a Poisson distribution p(x) =
e−λ · λx

x! ; x = 0.1, . . ., such as used traditionally in quality control as a model of the number
of defects or nonconformities that occur in a unit of product [32]. The parameter λ is equal
directly both to the mean and variance of the Poisson distribution and in the Rasch model
λ = h−1 · k [18]. As will be discussed in Section 2.3, the Rasch model can in fact be viewed
as an entropy-based measurement model.
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2.3. Entropy and Item Response Models

Step-by-step in the passage of information through our prototype measurement sys-
tem, as illustrated in Figure 1, the terms in the well-known conditional entropy expression
are added together [33]:

H(Y|Z) = H(Z, Y)− H(Z) (2)

expressing the entropy in the response (Y) when observing the quantity (Z) as the joint entropy
reduced by the entropy associated with the measurement object (A) prior to measurement.

The link between a probabilistic description [6] and a corresponding entropy-based
approach, as depicted in Figure 1, is based on the informational ‘Shannon’ entropy, H,
of any ‘message’ of probability P being proportional to log(P) [16]. This formulation
captures the fact that the less expected a message is (i.e., smaller P), the greater the amount
of information conveyed (‘surprisal’). Taking the logarithm also facilitates addition and
subtraction of different amounts of information.

The “Shannon” entropy terms in Equation (2) can thus be expressed in terms of the
probability distributions associated with each variable in the measurement process, where
these probabilities are multiplied in the expression P(z, y, zR) = P(z) · P(y|z) · P(zR|z, y)
using the notation used by Rossi in his probabilistic model of the measurement process [6]);
and R denotes restitution.

Equation (2) states how the amount of information changes during transmission in a
measurement system. At the start of the measurement process, there is an initial ‘deficit’
in entropy (i.e., ‘surplus’ information) coming from prior knowledge, H(Z; A), of the
measurand (attribute, Z, of entity A), again using a notation analogous to that used by Rossi
in a probabilistic model of the measurement process [6]. Losses and distortions H(Y, Z)
from imperfections in the measurement process increase the entropy, leading finally to a
posterior distribution (Q) with entropy H(Y|Z) as the result of the measurement process.

As will be described in detail in Sections 2.4 and 3, entropy can form the basis of
a semantic description of the object (A) construct task difficulty through formulation of
the entity entropy H(Z) in terms of our understanding of what determines task difficulty.
Entropy, H, can also be connected to the Rasch model (Equation (1)) allowing the proba-
bilistic response of the instrument (B) to be related to task difficulty and person ability with
the expression:

log
(

Psuccess

1 − Psuccess

)
= log(λ) = log(k) − log(h) (3)

where there is a dichotomous outcome inherent in a Poisson distribution [34]. Following
Rasch [18], the Poisson distribution factor λ, includes both h and k in Equation (1) as the
probabilistic ability and difficulty factors, respectively. The test person ability, θ = log(h),
and task difficulty, δ = log(k), are essentially “surprisal”, entropy-based terms, and can
be evaluated by logistic regression of Equation (3) to the raw score data (exemplified in
Figure 2) in terms of the probabilities q (Psuccess) of how well a measurement system, with a
person as the measurement instrument, performs [5].

To pick up on the issue of non-linearity and ordinality due to counted fractions
(Section 2.2), typically, an S- or ogive-curve (Figure 2a,b) is expected from Equation (3)
when correlating observed responses Psuccess with test item difficulty and person ability,
respectively, across the combined CBT and DST tests investigated in Section 3.4, for ex-
ample. If one does not (as in CTT) recognize and compensate for this ordinality in the
observed responses, and do not separate item difficulty from person ability, then both item
difficulties and person abilities will be underestimated or overestimated at either scale
extreme (Section 2.2). These effects have to be investigated, however large or small they
might turn out to be. A well-designed test, with good targeting, where the span of person
abilities matches well (both in terms of centering and width) the corresponding range of
task difficulty, will in general have small non-linearities. Note that, in any case, the Rasch
model is essential for metrological quality assurance since it provides, through measurand
restitution, separate values for task difficulty and person ability.
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Figure 2. Observed S- or ogive-curve correlating observed responses with the Rasch-estimated (a)
item difficulty and (b) person ability for the combined test items of the Corsi Block Test (CBT) +
Digital Span Test (DST), described in Section 3.4. Measurement uncertainties quoted with coverage
factor k = 2.

As in any measurement system, the instrument (B in Figure 1) has a certain sensitivity,
K = ∂Psuccess

∂δ , which gives the ratio of the response to a stimulus, in the present case
how much each test person responds to a task of a certain difficulty, δ. While the basic
Rasch model (Equation (3)) assumes K = 1, in some cases an additional discrimination
factor, ρ, of the person responding is included on the RHS of Equation (3) as the term
ρ · (θ − δ) in a so-called two-parameter item response model. This captures the possibility
that sensitivity can vary from person to person and item to item, for instance because of
illness or emotional reactions [28]. An entropy-based model of item response can then
include, apart from task difficulty δ and person ability θ, an additional entropy contribution.
This can both contribute as a constant offset (intercept) in the overall entropy with the
term H(Y, Z) ∼ ln(ρ), as well as to uncertainties in the Rasch model estimates of task
difficulty δ and person ability θ, to account for potential variations in discrimination from
person to person and/or item to item. The latter uncertainties can be estimated from
the entropy relation H(Y, Z) ∼ ln(ρ) = ln

(√
3 · 2 · u

)
, deduced following the usual

practice of invoking a uniform distribution in a type B evaluation of measurement standard
uncertainty, u, for an instrument (test person) with finite resolution ρ [8]. This uncertainty
determines how steeply the ogive Rasch curve (Figure 2) transitions from one score to
another for the present case of dichotomous responses.

Further terms which could be added to the overall entropy of the measurement process
(Figure 1) could describe, for example, the ability of the operator (C, clinician, in Figure 1) to
make a diagnosis of a test person, as often analyzed in terms of area under the curve (AUC)
of receiver operating curves (ROC), which can also be treated with the Rasch model [12,30].
In fact, entropy expressions of these various kinds can be added at will to the general
Equation (2) describing the measurement process. Examples of such expressions are of the
distortion, fuzziness, and lack of clarity of a wide range of attributes using basic measures
of information content. These effects can be described, not only with probability theory,
but even in terms of possibility, plausibility, belief and so on [6,12,35–37]. Information
content can range from basic messages, such as the number of elementary symbols, to
increasingly more sophisticated information, through syntax, semantic and pragmatic
aspects of meaningful information in many contexts. Entropy can be a semantic measure
based on meaning rather than just the syntax and as such supports not only descriptions
of uncertainty, but also the identification of metrological references for comparability: the
best units for traceability are those with the most order (i.e., least entropy, as an example of
the principle of least action [12]—as discussed in the next section).

In summary, informational entropy (by analogy with thermodynamic entropy as
‘useful energy’ [13]) is a key concept when seeking metrological quality-assurance of
measurement systems, both in terms of measurement uncertainty and of traceability.



Entropy 2021, 23, 212 7 of 16

2.4. Entropy and Construct Specification Equations

Richard Feynman [38] wrote on his last classroom blackboard: “What I cannot create,
I do not understand”. By being able to create and understand, and in turn claim the highest
level of validity, a CSE provides a more specific, causal, and rigorously mathematical
conceptualization of item attributes (e.g., memory task difficulties) than any other kind of
construct theory (Section 1). Indeed, as indicated in Figure 1, in principle, constructs can
be associated with each element (i.e., object, instrument, operator, etc.) of a measurement
system [20]. CSEs were first introduced in 1982 by Stenner and Smith [10] when explaining
item (task) difficulty for the memory test Knox Cube Test (KCT) [39] focusing mainly
syntax-based explanatory variables, such as the number of blocks tapped. Their work has
contributed to the field of education science with the Lexile measure of reading ability as
a prominent example [21,40]. However, a comparable effort in health care has been slow
to develop.

The focus in this paper is on the formulation and verification the CSEs for memory task
difficulties, that is, the construct attributed to the measurement object (entity A in Figure 1).
The relationship between empirically measured memory task difficulties illustrated in this
paper can be expressed in terms of the ‘something’ (i.e., the explanatory variables), which
explains (or “causes”) why some memory tasks are easier than others. The formulation of
a CSE (for the construct memory task difficulty) is often defined as a linear combination of
a set, k, of explanatory (independent) variables, X:

^
Y = ∑

k
βk · xk (4)

State-of-the-art multivariate formulation of CSEs includes three steps of a principal
component regression (PCR) [12]: (i) Principal component analysis (PCA) amongst the
set of explanatory variables, Xk; (ii) linear regression of the measured memory task dif-
ficulty values δj (or person memory ability values θj) against X’ in terms of the principal
components, P; and (iii) conversion back from principal components to the explanatory
variables, Xk, in order to express the CSE for the item (or person) attribute. The results of
this PCR analysis reveal how much each explanatory variable contributes to explaining
and predicting the observed variation in the attribute of interest.

Entropy, perhaps reflecting its semantic formulation, turns out to be a dominant factor
in explaining task difficulty in these memory tests, as will be demonstrated experimentally
in Section 3. It is expected that more ordered sequences will be easier to remember, i.e.,
the informational entropy is lower (i.e., more information) when the order of the test (e.g.,
sequence of blocks or digits) is greater, as previously considered for non-verbal tests of
this kind [41,42]. It will be shown in Section 3 how much the explanatory variable Entropy,
together with other terms—Reversals and Average distance—contribute to determining
memory task difficulty in non-verbal memory tests such as CBT and DST. Furthermore,
when regressing the empirical memory task difficulty values δj against corresponding
predicted values, zR, to yield the CSE, the goodness-of-fit R2 index indicates the amount of
variance in task difficulty accounted for by the construct theory. Although Schnore and
Partington [41] report appreciable entropy reductions from the symmetries of their stylized
block tests, our current studies do not appear to offer any symmetry advantages when
recalling for instance CBT sequences.

Continuing our presentation of entropy and memory task difficulty, the CBT and DST
(and the Knox Cube Test (KCT), as shown in our earlier work [8,12,43], and other memory
sequence tests) can be characterized in general in terms of a message in which a number,
Nj, (j = 1, . . . ,M) of symbols of M different types (blocks or digits) can be distributed in

a number, G, of categories (or cells) G =
M
∑

j=1
Nj. The probability of encountering the jth

symbol is pj =
Nj
G , which can be summed to unity. The total number, P, of messages that

can be obtained by distributing the symbols at random over the G cells (with never more
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than one symbol per cell) is P = G!
∏M

j=1 Nj!
. The information theoretical “Shannon” entropy

(as invoked in Figure 1 and Section 2.3), which is a measure of the amount of information
in these messages, is then given by the classic Brillouin expression [17]:

H(Z) = K · lnP = K ·
[

ln(G!)−
M

∑
j=1

ln
(

Nj!
)] ∼= K ·

[
G · ln(G)−

M

∑
j=1

Nj · ln
(

Nj
)]

(5)

where K is an arbitrary constant. Stirling’s approximation of ln(G!) in the final terms
of Equation (5) applies when G and N are large, but with modern computer power the
approximation is no longer necessary when evaluating the factorial terms.

There remains today, however, some misconceptions about entropy, e.g., “As seen from
(the Shannon) formula, the entropy of a string only depends on the relative proportions of
symbols and is unaffected by the order in which they appear” [44]. This appears to ignore
the work of Brillouin [19] whose expression (Equation (5)) for entropy can be evaluated for
a number of sequences which not only have increasing numbers, G, of taps but also some
repeats, N, of the same symbol (block or digit in the KCT, CBT or DST tests). Task difficulty,
δ, would be expected, according to Equation (6) derived from Equation (5), to increase in
proportion to ln

(
Gj!
)
, where G is the number of symbols encountered in a message. The

second entropy term in this equation shows the expected decrease in entropy (and thus
decreased task difficulty) from Nj repeats:

δ ∝ Entropy = +

[
ln(G!)−

M

∑
j=1

ln
(

Nj!
)]

(6)

Recent examples of how this has been applied in memory tests is for the KCT are
presented by Pendrill et al. [8], Pendrill [12] and Melin et al. [43]. These KCT results will be
set in relation to the experimental demonstrations for the other memory tests CBT and DST
in this paper in Section 3.3.

3. Results

This section presents: (i) how entropy can be used to explain memory task difficulty in
CBT and DST; and (ii) how different items from different tests can be combined according
to entropy-based criteria. Below, the CBT and DST cases are first handled separately and
then related to each other and, finally, combined to create a new measure of memory with
better reliability.

3.1. Case Study: Block Tapping Recall—Corsi Block Test

Table 1 shows the empirical memory task difficulty values, δ, and corresponding
explanatory variables; Entropy, Reversals and Average distance, used for developing the CSE
for CBT with PCR (Section 2.4). As there are no repetitions (N = 0) of blocks tapped in CBT,
the term Entropy is evaluated using the Brillouin-expression (Equation (5)) as a function of
solely the number, G, of blocks tapped. Applying the three steps in the PCR described in
Section 2.4 yielded the following CSE:

zRj = −7(3) + 2.0(7) × Entropyj − 0.8(1.2) × Reversalsj − 0.1(3) × AveDistancej (7)

which is dominated by Entropy (Equation (6)) and where there are negligible contributions
from the number of Reversals and from Average distances in each test sequence compared with
the measurement uncertainties in the β-coefficients (Equation (4)) of the various explanatory
terms in Equation (7) (given in parentheses with a coverage factor k = 2). The contributions
from each of the explanatory variables are also shown graphically in Figure 3a. It is evident
that Entropy increases as the empirical memory task difficulty, δ, increases, while Reversals
and Average distance contribute just noise close to 0.
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Table 1. The empirical Rasch estimates, δj, for each item, j, and its explanatory variables in CBT.

Tapping Sequence Empirical Memory Task Difficulty, δ U(δ)
k = 2

Entropy
(Equation (6)) Reversals Average Distance

2 taps, 1st −6.5 3.8 0.69 0 10.5
2 taps, 2nd −5.1 2.3 0.69 0 4.7
3 taps, 1st −3.5 1.5 1.79 0 7.7
3 taps, 2nd −3.5 1.5 1.79 0 9.9
4 taps, 1st −1.2 0.8 3.18 0 10.3
4 taps, 2nd 1.1 0.6 3.18 1 9.9
5 taps, 1st 3.1 0.6 4.79 0 10.4
5 taps, 2nd 0.9 0.6 4.79 2 7.5
6 taps, 1st 3.1 0.6 6.58 2 9.8
6 taps, 2nd 4.8 0.8 6.58 2 9.7
7 taps, 1st 8.5 3.7 8.53 2 6.1
7 taps, 2nd 8.5 3.7 8.53 2 13.3

Figure 3. (a) Predicted contributions, ∆δ, to task difficulty from the three explanatory variables Entropy (Equation (6)),
Reversals and Average distance for the CBT. (b) Dots with uncertainty intervals indicate the CBT empirical memory task
difficulty, δ and corridors of modeled uncertainties show zR ± UzR (grey lines) for the predicted zR values from the PCR,
coverage factor k = 2. For both (a) and (b) item sequences correspond to those given in Table 1.

A regression of the empirical memory task difficulty values, δ, against corresponding
estimated zR from the CSE, yielded a Pearson coefficient of r =

√
R2 = 0.98, indicating a

high accuracy of the prediction. Furthermore, as shown in Figure 3b the empirical memory
task difficulty values, δ, lie within the corridor of predicted uncertainties. i.e., zR ± UzR
from the PCR (Section 2.4).

3.2. Case Study: Digit Recall—Digital Span Test

For the second memory test DST studied here, a summary of the empirical memory
task difficulty values, δ, and corresponding explanatory variables used for developing a
CSE is given in Table 2. The CSE for DST is found to be very similar to that demonstrated
above for CBT (Equation (7)) with Entropy (from Equation (6)) as the dominate explanatory
variable and with larger measurement uncertainties for the β-coefficients of the other two
explanatory variables Reversals and Average distance:

zRj = −10(3) + 1.5(3) × Entropyj + 0.2(4) × Reversalsj− 0.2(1.5) × AveDistancej (8)
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Table 2. The empirical Rasch estimates, δj, for each item, j, and its explanatory variables in DST.

Number Sequence Empirical Memory Task Difficulty, δ U(δ)
k = 2

Entropy
Equation (6) Reversals Average Distance

3 digits, 1st −8.5 3.7 1.79 1 3.7
3 digits, 2nd −8.5 3.7 1.79 1 2.0
4 digits, 1st −5.4 1.2 3.18 1 2.5
4 digits, 2nd −5.4 1.2 3.18 2 3.5
5 digits, 1st −3.4 0.8 4.79 2 3.2
5 digits, 2nd −2.0 0.7 4.79 3 3.4
6 digits, 1st 0.8 0.6 6.58 3 4.3
6 digits, 2nd −0.1 0.6 6.58 4 2.7
7 digits, 1st 3.3 0.9 8.53 2 2.1
7 digits, 2nd 2.3 0.8 8.53 3 3.6
8 digits, 1st 3.3 1.1 10.60 5 4.4
8 digits, 2nd 6.8 2.2 10.60 6 4.3

Further similarities between the CSE for DST and CBT are the noise around 0 from
Reversals and Average Distance (Figure 4a); the high accuracy of the prediction (Pearson
coefficient r =

√
R2 = 0.98); and the empirical memory task difficulty values, δ, found to be

lying within the corridor of predicted uncertainties, i.e., zR ± UzR from the PCR (Figure 4b).

Figure 4. (a) Predicted contributions, ∆δ, to task difficulty from the three explanatory variables Entropy (Equation (6)),
Reversals and Average distance for the DST. (b) Dots with uncertainty intervals shows the DST Empirical memory task
difficulty, δ and corridors of modeled uncertainties shows zR + UzR (grey lines) for the predicted zR values from the PCR,
coverage factor k = 2. For both (a) and (b), item sequences correspond to those given in Table 2.

As for CBT, the DST sequences of the data did not include any repeated digits. How-
ever, another version of the DST (from the GBG MCI study [25]) does include repeats, for
example a 9-digit sequence which has three digits repeated twice each. Such a sequence
with duplicated digits (N = 2) should have higher order and convey more information (less
entropy) compared with a digit sequence with the same number, G, of digits but with no
duplicates, according to Equation (6). As an example, this 9-digit sequence is predicted
to have an Entropy contribution and corresponding task difficulty comparable with those
properties of an 8-digits sequence without repeats. This ability to indicate the equivalence
of different test items—even those administered in different cohorts and cultural setting—
adds to the theoretical justification for considering an information theoretical approach
including Entropy as an explanatory variable when explaining memory task difficulty.

3.3. Contrasting CSEs from Knox Cube Test, Corsi Block Test, and Digit Span Test

As described above, the CBT is a block tapping test. The KCT is a similar block test
but with only four blocks in a line instead of the nine spread in two dimensions in CBT.
Task difficulty in KCT has been explained by Stenner and his colleagues as a function
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of Number of taps, Reversals, and Sequence length. Importantly, they did not adopt an
entropy-based approach. Alternatively, in our recent work, we explored an entropy-based
argumentation to investigate the advantages CSE for memory task difficulty in the KCT
based on Equation (6). i.e., where repeated taps occur [8,12,43]. Pendrill [12] presented the
following CSE:

zRj = −9(5) + 2(1) × Entropyj + 0.8(1.4) × Reversalsj + 0.7(2.9) × AveDistancej (9)

Despite the different layouts of these three non-verbal memory recall tests, one can
note that the entropy terms in the CSEs from Equation (7) (CBT) and Equation (8) (DST) for
memory task difficulty are essentially equivalent to Equation (9) (KCT), within the quoted
measurement uncertainties. This provides further support for an information theoretical
approach with Entropy as an explanatory variable in CSEs for predicting the memory task
difficulty of non-verbal test sequences.

3.4. Combination of Memory Items from Corsi Block Test and Digit Span Test

The similarities in the administration of the two memory tests CBT and DST, as well
as their similar CSEs, invite the novel combination of the separate items into one set of
memory tasks. The main advantage of combining block and digit items in this way is
that it provides more information about the test persons which in turn, leads to reduced
measurement uncertainties (better reliability) in the assessed persons’ memory abilities.
Combining tests in this way, with judicious choice of items according to an entropy-based
criterion for equivalence, leading to more efficient testing. This improves not only the
number of degrees of freedom but also the targeting of the memory test, where the span of
person abilities should match—both in terms of centering, width, and coverage (without
gaps)—the corresponding range of task difficulty (Section 2.2). This is shown in Figure
5 where uncertainties, U(θ), for each person’s memory ability are reduced in the new
combined test by approximately 0.5 logits compared with U(θ) derived for only CBT. That
reduction in measurement uncertainties corresponds to an improvement in reliability from
0.66 for only CBT to 0.70 for the combined memory test.

Figure 5. Measurement uncertainties (U(θ), y-axis) for each person’s memory ability from CBT in
blue and from the combined CBT and DST in grey. On the x-axis, ability θ ranges, left to right, from
least able persons to most able persons. Measurement uncertainties with coverage factor k = 2.

In addition, combining items from CBT and DST provides, firstly, a hierarchical
ordering of the different memory tasks, and secondly, numerical values to compare the
difficulty of different memory tasks. Figure 6 show a histogram of the memory items, CBT



Entropy 2021, 23, 212 12 of 16

in blue and DST in grey, where the two easiest DST memory tasks, i.e., 3-digit sequences,
are approximately 2 logits easier than corresponding 3-tapping sequences for CBT. In
general, the CBT memory tasks are somewhat more challenging than DST, even though
the two sets of sequence tests have roughly the same number of entities i.e., lengths of
sequence. However, with the same length (and without duplicates), the predicted task
difficulty zR for item j would be the same if Entropy had been the only explanatory variable,
assuming those 3-taps/digits sequences have negligibly small contributions from the two
other explanatory variables, Reversals and Average distance (Tables 1 and 2), as demonstrated
experimentally (Sections 3.1 and 3.2).

Figure 6. Histogram (occupancy on the y-axis) of empirical memory task difficulty, δ, (x-axis) for CBT
in blue and DST in grey scaled together from left to right for the easiest tasks to most challenging
tasks. Item order corresponds to Table 1 for CBT and Table 2 for DST. Horizontal error bars indicate
measurement uncertainties with coverage factor k = 2.

4. Discussion

An information theory approach has been adopted when explaining the difficulty
of the task of recalling non-verbal sequences (of blocks and digits) in memory tests. We
hypothesize entropy is a measure of order; the higher the order, the lower the entropy,
and a more ordered task will generally be easier to perform. We have demonstrated
experimentally: (i) how entropy can be used to explain memory task difficulty; and (ii) how
different items from different tests can be combined according to entropy-based criteria.

For this purpose, raw data from experiment had first to be transformed using the
Rasch model to provide separate and quantitative estimates of task difficulty and person
(instrument) ability on a conjoint interval scale. An entropy-based explanation of the Rasch
model has been given in Section 2.3 which relates measurement system response to task
difficulty, person (instrument) ability and discrimination. The Rasch model enables the
establishment of metrological references for counted fraction data in terms of measurement
system analysis (MSA) and the accuracy of classification of categorical data. Furthermore,
from the metrological point of view, when establishing objective and scalable metrological
units, CSEs come close to ‘recipes for certified reference materials’ for traceability, as
in chemistry [5,43], emphasizing their essential role in both verification and validation,
for instance in the present case when establishing an item bank of memory test item
difficulty [12].

Our understanding means that memory task difficulty could be sufficiently explained
and captured by mathematically formulating CSEs where entropy is shown to be the
dominant explanatory variable. Strikingly, for the memory tests CBT and DST, as well as
in our previous work on KCT [8,12,43], it is found that essentially the same CSE describes
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task difficulty within uncertainties for all these non-verbal sequence tests, with basically
just one explanatory variable, namely Entropy. These results contrast with the conclusions
of several previous studies, e.g., [10,41,42,45] where more than one explanatory variable
was claimed to be significant, while at the same time not explicitly declaring measurement
uncertainties nor using the Rasch model.

Additional novelties in the current work are associated with using the classic Bril-
louin [19] entropy expression to explain the difficulty of recalling non-verbal sequences in
memory tests (to include both CBT and DST): (i) the entropy associated with the number
of taps/digits (Equations (5) and (6)) is a semantic construct communicating meaning,
which differs from the corresponding relation postulated by others in their early work on
KCT [10,45]; (ii) in particular, Equation (6) models the reduction in entropy (and hence
reduced memory task difficulty) associated with tasks involving duplicate symbols (such
as repeated digits in a DST sequence); and (iii) this opens up opportunities to explore
the significance of the degree of order in terms of entropy, which should reasonably be
applicable to other neuropsychological tests of cognition.

As demonstrated in this paper, entropy-based CSEs can show the equivalence of tasks
(with different sequences) in formerly separate versions of these non-verbal tests in a way
not studied by others, to our knowledge. That in turn enables different tests to be merged,
thereby increasing the number of items in a new composite test as well as filling in the
“gaps” in the measurement scale by judicious choice of items, as illustrated in Figure 6.
Both aspects—increased degrees of freedom and better coverage—belong to the advantages
of formulating metrological reference materials semantically in what can be regarded as
pioneering an extension of metrological principles to human-based measurements. These
advances lead to improved reliability (reduced uncertainties) in person ability estimates
(as shown in Figure 5). In addition to the focus on memory task difficulty in this study,
CSEs can also be associated with each element (object, instrument, operator, etc.) of a
measurement system [18].

On-going work on CSEs for person memory ability (as the ‘instrument’ of the mea-
surement system), which are an additional output of analysis using the Rasch model
of the memory test data, is under study in the NeuroMET research project [24]. So far,
well-known dementia-related biomarkers, i.e., physical and chemical quantities, for each
person in the cohort have been tested as explanatory variables [20]. As mentioned in the
Introduction, not only task difficulty but also person ability can be explained semantically
with the entropy concept, where inter-connectiveness in the brain is a ‘major biomarker’
for cognitive ability [46]. This suggests that future studies should focus on structural and
functional brain networks, with continuing emphasis on the concept of entropy.

Moreover, the use of entropy as an explanatory variable in measurements goes beyond
neuropsychological assessments of cognition. The concept of entropy can also explain
efficiency of any organization in terms of entropy-based measures of synergy [47] or how
well human muscles can deliver force ergonomically, for instance when climbing stairs or
lifting heavy packages [48]. This brings us back and links our work to the basic underlying
principle of entropy in thermodynamics. As coined by Carnot [13], who was concerned
that “In any machine the accelerations and shocks of the moving parts represent losses
of moment of activity . . . In other words, in any natural process there exists an inherent
tendency towards the dissipation of useful energy.” Thus, apart from the rattling machines
of the early Industrial Revolution, one can consider how well any task of a certain difficulty
is performed by an agent of a certain ability in terms of entropy.

There are some limitations to bear in mind when interpreting the findings of the
methodological development presented in this paper. Firstly, CBT, DST and KCT were
purposively chosen as they are non-verbal memory tests and rather straightforward to ad-
minister. Thus, additional work is required for other memory tests, such as word recalling
sequences, to further explore the significant role of entropy in explaining memory task
difficulty. Secondly, as is evident from Figures 3b and 4b, the “corridor” of PCR modeling
uncertainties, UzR, is (much) wider than the observed memory task difficulty, δ, with its
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measurement uncertainties, respectively. The measurement uncertainties for each memory
task’s difficulty, u(δ) propagate through the PCR, and, in turn the u(δ) have implications
for U(β) and UzR together with uncertainties in the fit itself, which is an issue of sample
size, collinearity and measurement disturbance. However, we mainly interpret this as
indicating that there are sources of dispersion when making the multivariate regression
which are not yet accounted for. Finally, we focused not on the mental processes in the
brain of each test person (which are more related to explaining person ability, θ) considered
by previous workers, but rather on the aspects of the perceived object, that is, factors which
can explain task difficulty, δ. But as suggested above, forthcoming work are expected to
address structural and functional brain networks, with an emphasis the concept of entropy
also for mental processes.

5. Conclusions

As part of our research to provide descriptions of the intrinsic properties of a measure-
ment system, where a test person acts as a measurement instrument, the use of entropy
as a powerful explanatory variable has been found to explain the difficulty of recalling
non-verbal sequences in memory tests.

Entropy-based CSEs can show the equivalence of tasks (with different sequences of
blocks and numbers) in formerly separate versions of these three—CBT, DST and KCT—
non-verbal memory tests. Despite the different layouts of these three tests, one can note that
the entropy terms in the CSEs are essentially equivalent, within the quoted measurement
uncertainties. Equal values of entropy indicate equivalence of different items, and this
is a key—together with the conceptually understanding and design of those short-term
memory tests—to combine items to form new (and more efficient) tests.

In turn, the resulting improved validity of memory tests accruing from entropy-
based CSEs and the design of novel, combined tests will contribute to ensuring reliable
diagnosis of disease such as dementia by insisting on proper scoring, exploiting the full
potential of the concept of entropy in explaining semantically memory task difficulty and
by estimating conjointly the memory ability of each cohort member. Moreover, this will
hopefully reduce the risks of incorrect interpretation of the degree of correlation between
cognition and various biomarker data, which otherwise would mean potential risks of
incorrect monitoring and improper treatment of neurodegenerative diseases.
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