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Multimodal medical image segmentation is always a critical problem in medical image segmentation. Traditional deep learning
methods utilize fully CNNs for encoding given images, thus leading to deficiency of long-range dependencies and bad gen-
eralization performance. Recently, a sequence of Transformer-based methodologies emerges in the field of image processing,
which brings great generalization and performance in various tasks. On the other hand, traditional CNNs have their own
advantages, such as rapid convergence and local representations. +erefore, we analyze a hybrid multimodal segmentation
method based on Transformers and CNNs and propose a novel architecture, HybridCTrm network. We conduct experiments
using HybridCTrm on two benchmark datasets and compare with HyperDenseNet, a network based on fully CNNs. Results show
that our HybridCTrm outperforms HyperDenseNet on most of the evaluation metrics. Furthermore, we analyze the influence of
the depth of Transformer on the performance. Besides, we visualize the results and carefully explore how our hybrid methods
improve on segmentations.

1. Introduction

Medical image segmentation is an essential area in medical
image analysis and is necessary for diagnosis and treatment,
which aims to label each pixel in images. Motivated by the
recent success of deep learning, researchers in this field have
also attempted to apply deep learning-based approaches to
medical image segmentation, including U-Nets [1–6] and
fully CNNs [7–13]. +ese methods have achieved superior
performance compared to traditional methods in the
medical image segmentation task. In order to obtain more
accurate segmentation for advanced diagnosis, using mul-
timodal medical images has a growing popularity. Com-
pared with single images, multimodal images help to extract
features from different views and bring additional infor-
mation, contributing to diverse data representation and
discriminative power of the network. Previous works usually

follow a fully CNN architecture, which suffers from in-
stinctive defects of CNNs. +ese disadvantages include a
deficiency in extracting nonlocal features and bad gener-
alization. With the development of Transformers in lan-
guage processing, these Transformer-based methods also
attract much attention in image processing [14–18], con-
taining classification, detection, and segmentation. +ese
successful applications show the great ability of nonlocal
feature extraction for the Transformer-based architecture in
images. However, it cannot be directly utilized on multi-
modal medical image segmentation yet. +ese works have
pretrained with various kinds of images and generated prior
knowledge and representations. Pretraining is a self-su-
pervised and auxiliary step and is crucial for the Trans-
former-based methods since these approaches cannot easily
extract enough meaningful representation through the
simple task and therefore need transcendental
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representations from pretraining. Nevertheless, the multi-
modal medical segmentation task lacks images and therefore
cannot follows the pretraining strategy.

In order to tackle these problems, we design a hybrid
architecture named HybridCTrm for combining advantages
from CNNs and Transformers. Specifically, these networks
encode images from CNN and Transformer, two parallel and
independent paths, and then integrate representations for
decoding and segmentation. In this way, CNNs generate
local representations and control gradient descent for rapid
convergence, while Transformers extract nonlocal features
and avoid overfitting and local optimum in the postperiod of
the training. Aiming at fully testing our method, we present
two fusion strategies, namely, single-path strategy and
multipath strategy, and apply our method on these two
different strategies. Experiments and results show that our
method can effectively overcome the disadvantages of both
CNNs and Transformers, and we show a great improvement
in the performance of multimodal medical image segmen-
tation task. Besides, we visualize the results and carefully
explore how our hybrid methods improve on segmentations.

2. Related Works

2.1.MultimodalMedical Image SegmentationBased onCNNs.
Multimodal medical image segmentation derives from the
medical image segmentation task, both aiming to achieve
pixel-level classification for an input image. Traditional
medical image segmentation methods generally follow an
encoder-decoder architecture, such as U-Net [5] and fully
CNN [12]. In these structures, an encoder is usually used to
extract features while a decoder is to restore extracted
features and output the final segmentation predictions. +e
U-Net [5] has been widely used for medical image seg-
mentation, consisting of convolution, pooling, and skip-
connection. Çiçek et al. [2] extended U-Net architecture to
the application of 3D images and proposed 3D U-Net.
Milletari et al. [4] proposed V-Net, with residual connec-
tions for a deeper network. Similarly, Yu et al. [1] proposed
VoxResNet, Lee et al. [3] presented 3DRUNet, and Xiao et al.
[6] proposed Res-UNet. In the multimodal medical image
segmentation field, researchers generally apply a fully CNN
architecture. To effectively employ information from dif-
ferent modalities, Nie et al. [11] proposed a new fully CNN
architecture for the multimodal infant brain tissue seg-
mentation. Kamnitsas et al. [10] trained three fully CNNs
separately and then averaged the confidence of each net-
work. Chen et al. [7] proposed a dual-pathway fully CNN
multimodal brain tumor segmentation network. Wang et al.
[13] proposed a cascaded anisotropic convolution network.
Dolz et al. [19] proposed a 3D fully CNN based on Den-
seNets [8].

2.2. Image Processing Based on Transformers.
Transformers were first applied to natural language pro-
cessing tasks. Vaswani et al. [20] proposed an attention-pure
architecture named Transformer for machine translation
and sentence parsing. Devlin et al. [21] proposed BERT, a

bidirectional Transformer for two-step training with pre-
training and fine-tuning. Brown et al. [22] trained a larger
Transformer. Recently, a sequence of Transformer-based
methods emerged in the image processing field [14–18].
Among them, Vision Transformer [16] and Detection
Transformer [14] are of the most importance. Detection
Transformer formulated the detection task as a sequential
prediction. Vision Transformer (ViT) cropped an image into
a sequence of small patches, which aims to fit the structure of
the original Transformer. ViT proved its power on long-
range dependencies and showed great performance and
therefore was treated as a strong backbone.

3. Methodology

3.1. Overview Architecture. In multimodal medical image
segmentation, the goal is to assign labels for each pixel of the
given input images from different modalities. We propose
two hybrid architectures for multimodal medical image
segmentation as shown in Figure 1. Specifically, we present
two models based on two different strategies: single-path
strategy and multipath strategy. Figure 1(a) describes how a
single-path strategy works. We take MRI-T1 and MRI-T2 as
input modalities. +ese two modalities x1, x2 are combined as
a multichannel image x1,2 and then the image is encoded
using convolutions with m layers and Transformers with n
layers. +e representations are generated from these two
encoders separately and independently and integrated for
subsequent decoding. Multipath strategy is quite similar to
the single-path one, with the way of input different and
Figure 1(b) telling the difference. MRI-T1 (x1) and MRI-T2
(x2) are encoded with independent encoders and represen-
tations are collected afterward. A multipath network can
effectively combine and fully use the information and features
from different modalities, while the single-path one focuses
more on how different modalities interact with each other.
+e most key part of our work is that we use Transformers
and convolutions as two separate encoders and we will
carefully describe the encoders in the rest of the section.

3.2. Convolution Encoder. To avoid gradient vanishing and
explosion, DenseNets [8] apply skip-connections for directly
adding each layer to the follow-up layers. Inspired by the
mentioned points, we keep this idea on our convolution
encoder.

As shown in Figure 2, a single convolution layer is
composed of four parts, batch normalization, PReLU, a
3 ∗ 3 ∗ 3 convolution kernel, and a skip-connection. It is
calculated as follows:

xl � Conv3∗3∗3 PReLU BN xl−1( 􏼁( 􏼁( , xl−1􏼂 􏼃, (1)

where xl is the output of the l-th layer of convolution and
xl−1 is the input of this layer. Particularly, when l represents
the first layer l � 1, then x0 is the input of the images. For
multipath strategy, it represents one modality xi where i is
not greater than the modality number n. Similarly, x0
represents a combination of input modalities x1,2,...,n when it
comes to the single-path model.
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3.3. Transformer Encoder. To avoid overfitting and defi-
ciency of nonlocal dependencies generated from fully CNNs,
we apply Transformers to encode multimodal images and
advance the generalization of the model. Transformers [20]
were firstly applied to natural language processing and re-
cently a novel Transformer architecture named Vision
Transformer (ViT) [16] was proposed. ViT performed quite
well on the image classification task and was quickly ac-
cepted as common backbones for image processing.

Inspired by ViT, we modify and apply Transformers for
multimodal medical image segmentation as shown in
Figure 3. Firstly, we reconstruct a 3D image 􏽢x0 ∈ RH×W×D×C

into a series of flattened 3D cubes xp ∈ RN×(P2 ·C), where N is
the length of the sequence:

N �
HW D

P
2 , (2)

where H, W, D, C are the height, width, depth, and channel
of the origin 3D image 􏽢x0. For the multipath model, C � 1
since each input image represents a single modality. For the
single-path model, C is the modality number n. P is the size
of the cube.

We obtained a patch sequence xp from the above
equations. Transformers apply a constant size D for the
dimension of each hidden layer. +erefore, we linearly
project xp to D dimension and add a position embedding for
patch embedding:
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Figure 1: Two hybrid architectures. (a) Hybrid Convolution-Transformer model with a single path. (b) Hybrid Convolution-Transformer
model with multipath.
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x0 � Wxp + xpos, (3)

where W is a learnable projection parameter and xpos is a
learnable position vector. Position embedding xpos has the
same dimension as xp. It is of great importance in image
processing since Transformers do not generate position
information and need supplementary inputs. +e output,
patch embedding x0, is treated as the input of the first layer
of Transformer.

Afterward, x0 is put into a multilayered Transformer:

xtmp � MHSA LN xl−1( 􏼁( 􏼁 + xl−1,

xl �� FFN LN xtmp􏼐 􏼑􏼐 􏼑 + xtmp,
(4)

where xl and xl−1 are the output and input of the l-th layer of
Transformer encoder. LN (Layer Normalization) is a
common design in Transformers and FFN (Feedforward
Network) consists of two linear projections and a nonlinear
activation function PReLU. MHSA (Multihead Self-Atten-
tion) is the crucial part of Transformers and is carefully
described in the following.

Different from common Transformers in the image
processing field like ViT [16], we modify the position of LN.
Xiong et al. [23] proved that the training is more stable when
normalization blocks appeared in residual blocks. In our
work, multimodal medical image segmentation cannot
utilize a pretraining procedure like ViTand thus resulting in
much fluctuation when training. +erefore, we apply this
modified Transformer architecture to our networks.

MHSA (Multihead Self-Attention) is the core of
Transformers and it can be treated as a stack of several
simple attention networks. A simple attention mechanism
can be calculated as follows:

Att(Q, K, V) � softmax
QK

T

��
dk

􏽰􏼠 􏼡V, (5)

where the input is copied multiple times and then separated
as independent Q (queries), K (keys), and V (values) with
their dimension dq, dk, and dv, respectively.

Multiple stacking with simple attention can focus on
different representations from different subspaces. +ere-
fore, MHSA projects Q, K, V into different subspaces and
conducts attention independently with outputs stacked:

MHSA(Q, K, V) � Concat head1, . . . , headh( 􏼁W
O

,

where headi � Att QW
Q
i , KW

K
i , VW

V
i􏼐 􏼑,

(6)

where the projections are parameter matrices
W

Q
i ∈ R

dmodel ×dk , WK
i ∈ R

dmodel ×dk , WV
i ∈ R

dmodel×dv , and
WO ∈ Rhdv×dmodel . dmodel is the dimension of each hidden
layer of Transformers.

3.4. Decoder. We use the l-th layer output of Transformer
encoder xtrm

l and k-th layer output of CNN encoder xcnn
k to

represent the extracted features from Transformer and CNN.
+en, we integrate the features into one matrix xf:

x
f

� x
trm
l ⊕x

cnn
k , (7)

where ⊕ represents concat operation.+en, feature xf is sent
to a decoder consisting of l layers with batch normalization,
PReLU, and 1 ∗ 1 ∗ 1 convolution kernel, which is calcu-
lated as follows:

x
f

l � Conv1∗1∗1 PReLU BN x
f

l−1􏼐 􏼑􏼐 􏼑􏼐􏽨 􏽩, (8)
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and the output of the last layer x
f

l is sent to a Softmax
function p(x) for the final segmentation.

3.5. Loss Function and Learning Rate Decay. We apply a
common cross-entropy function as our cost function. Let θ
denote the network parameters and yv

s the label of pixel v in
the s-th image segment. We optimize the following:

J(θ) � −
1

S · V
􏽘

S

s�1
􏽘

V

v�1
􏽘

C

c�1
δ y

v
s � c( 􏼁 · log p

v
c xs( 􏼁, (9)

where pv
c(xs) is the softmax output of the network for pixel v

and class c, when the input segment is xs.
We utilize cosine learning rate decay as our decay

strategy:

ηt � ηmin +
1
2

ηmax − ηmin( 􏼁 1 + cos
Tcur

Ti

π􏼠 􏼡􏼠 􏼡, (10)

where ηt, ηmax, ηmin represent learning rate, maximum
learning rate, and minimum learning rate, respectively. Tcur
is the iteration number after recurrence and Ti is the current
iteration number.

4. Results and Discussion

We conduct our experiment on two benchmark datasets,
MRBrainS [24] and iSEG-2017 [25]. Both are multimodal
medical image segmentation datasets and focus on seg-
menting three types of brain tissue, including white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF).
Between them, MRBrainS is a triple-modal segmentation
dataset and iSEG-2017 is a double-modal one.

4.1. Experiment Settings. While subvolumes of size 27 × 27 ×

27 are considered for training, we use 35 × 35 × 35 non-
overlapping subvolumes during inference, as in [19, 26, 27].
We talked about the cropping and flattening of a given image
in the previous sections. Among them, P is the size of a cube
and is crucial for computation costs and performance.When
P � 1, MHSA can calculate with each pixel. However, it will
cause high computation costs and go beyond limited GPU
resources. With a big P, Transformers cannot effectively
capture features. Based on these two points, we set P � 3. For
Transformers, we set the head to be 4, hidden dimension to
be 128, and depth to be 4 according to the experiment
performance. To initialize the weights of the convolution
path, we adopt the strategy proposed in [28], which yields
fast convergence for very deep architectures. In this strategy,
a zero-mean Gaussian distribution of standard deviation����
2/nl

􏽰
is used to initialize the weights in layer l, where nl

denotes the number of connections to the units in that layer.
+e initial learning rate (ηmax) is set to be 1e− 4. For cosine
decay, ηmin is 5e− 5 and Tcur is 50. Considering limited GPU
resources, we set the batch size to be 32.

We compare our modal with several fully CNN-based
architectures, including fCNN [12], CNNsmall [27],
CNNsmall − MS [27], and HyperDenseNet [19]. fCNN [12]
was the first method that applied CNNs to segmentation

tasks. +en, Dolz et al. [27] set a smaller kernel for con-
volutions and presented two kinds of methods including
traditional one and multiscaled one. HyperDenseNet [19]
was a commonly used fCNN-based method in multimodal
image segmentation tasks. +ese models can be effectively
compared with our hybrid model, HybridCTrm. To fairly
compare with baselines, we conduct experiments with two
strategies, single-path and multipath separately, and set a
postfix, like -Multi and -Single, for each method.

We apply Dice Similarity Coefficient (DSC) as evaluation
metrics, a common method for segmentation evaluation
[19, 26, 27]:

DSC �
2TP

FP + 2TP + FN
. (11)

5. Results on MRBrainS

We apply leave-one-out-cross-validation for a five-sample
dataset, MRBrainS, that is, four samples for training and one
for testing. We report DSC on three tissues (CSF, GM, and
WM) and their average.

5.1. Main Results. Table 1 shows general results of our
method and baselines onMRBrainS and the highest score on
each column is bold.

A general view shows that our hybrid network achieves
the highest score on eachmetric. To have a clear comparison,
we firstly compare two simple-path models. We mostly
compare our method with HyperDenseNet, since this model
performs the best among CNN-based architectures on each
strategy. Compared with HyperDenseNet-Single,
HybridCTrm improves by about 3%, 1%, and 26% in WM,
GM, and CSF, respectively. At the same time, the average
score outperformance is 10%. For multipath models,
HybridCTrm-Multi improves by 4% and 18% on CSF and
WM tissue compared with HyperDenseNet-Multi. +en, we
focus on the performance of the same model on different
strategies. For segmenting GM and CSF tissue, multipath
strategy is more fitting, while single-path one performs
better on WM. +is may infer that, for segmenting GM and
CSF information from different modalities, it is needed to
encode independently first and then integrate with each
other, while for WM it is the opposite.

5.2. Analysis of Hyperparameters. In order to better analyze
the influence of Transformers on performance, we conduct
experiments with different depths of Transformers settings.

Figure 4 shows how depth influences performance on
single-path and multipath models. For HybridCTrm-Single,
the average DSC reaches the peak at the depth of 4.+e curve
increases firstly and then drops with the increase of depth
from 1 to 5. For HybridCTrm-Multi, the peak reaches the
depth of 5 and the trendy of the curve is quite similar, from
rising to declining. +is similar trend is probably because
different depths capture different representations and a
suitable depth can extract the most effective information for
segmentation.
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5.3. Ablation Study. Our hybrid architecture consists of a
CNN encoder and Transformer encoder to capture local and
nonlocal features for segmentation. To research how CNN
and Transformer branches influence our hybrid model, we
conduct an ablation study. As shown in Table 2, we separate
the CNN branch and Transformer branch, respectively,
based on the single-path model and multipath model. After
removing the CNN branch, the mean DSC drops by about
48% and 46% for single andmultistrategy, respectively, while
it drops by about 16% and 13% with removing the Trans-
former branch. It shows that compared with the Trans-
former branch, the CNN branch is more important because
nonlocal features extracted by the Transformer encoder play
an auxiliary role in the segmentation.

5.4. Auxiliary Experiments with Dual Modality. To further
analyze the importance of segmentation of different mo-
dalities, we choose two modalities and conduct auxiliary
experiments with dual modality.

As shown in Table 3, the results of three modalities
perform better compared with the twomodalities. However, a
careful comparison clearly shows that the results based on the
T1 and T2-FLAIR modalities have the lowest performance
degradation (only 2%–3%), indicating a strong comple-
mentarity between these twomodalities.+e other twomodal
combinations, T1 and T1-IR, and T1-IR and T2-FLAIR, show
significant performance degradation (10%–13%), indicating
that the T1-IR modality does not bring more information. A
further comparison of the performance of CSF, GM, andWM
tissues shows that the performance of the combination of T1
and T2-FLAIR on CSF and WM is comparable to that of the
three modalities under the corresponding strategies. And the
former is even 0.6% higher than the latter under themultipath
strategy, which indicates that the information in these two
modalities is sufficient to segment the CSF and WM tissues.
+is indicates that the information in these two modalities is
sufficient to segment CSF and WM tissues. On the contrary,
the performance of segmentation on GM tissues is best only
when the information in the three modalities is complete, and
there is a 5%–6% degradation in the results of the other two
modalities.

5.5. Results on iSEG-2017. We divide the iSEG-2017 dataset
with 10 samples into a training set (train), a development set

(dev), and a test set (test) in the ratio of 8 :1 :1. +e detailed
results are presented in Table 4, and the maximum value of
each item is bold.

5.6. Main Results. First, our HybridCTrm network outper-
forms in seven out of eight metrics among all these methods.
Compared with HyperDenseNet-Single, HybridCTrm-Sin-
gle outperforms in all metrics. +is is because the infor-
mation in the single-path strategy is integrated at the
beginning, and the Transformer structure can fully model
this complex information. In the multipath strategy,
HybridCTrm-Multi also outperforms HyperDenseNet-
Multi in seven metrics, further validating the modeling
capability of Transformer. However, the gain is not as great
as the single-path model. +is is probably because the in-
formation content of each individual modality is small, so
the Transformer cannot learn enough features like the CNN
with strong inductive bias.

5.7. Analysis of Generalization and Stability. Having already
concluded that hybrid structure-based models work better
than pure fCNN models, we are also concerned about the
stability and generalization performance of the models.

Figure 5 shows the performance of the twomodels on the
development set and the validation set under the two
strategies after every 5 epochs. +e left panel shows the
performance of the two models under the single-path
strategy. +e red line represents HybridCTrm and the blue

Table 2: Ablation study.

CSF GM WM Mean
HybridCTrm-Single 75.09 85.30 88.54 82.98

W/o CNN branch 30.39 44.91 54.64 43.31
W/o Transformer branch 56.18 84.11 68.64 69.64

HybridCTrm-Multi 76.53 85.52 88.37 83.47
W/o CNN branch 32.72 50.36 52.48 45.19
W/o Transformer branch 75.32 81.48 62.03 72.95

Table 3: Auxiliary results with dual modality.

Modality CSF GM WM Mean
HybridCTrm-
Single T1, T1-IR 53.89 79.75 81.88 71.84

HybridCTrm-
Single T1, T2-FLAIR 75.09 79.88 87.92 80.96

HybridCTrm-
Single

T2-FLAIR,
T1-IR 56.13 79.78 69.94 68.61

HybridCTrm-
Single 3 modalities 75.09 85.30 88.54 82.98

HybridCTrm-
Multi T1, T1-IR 69.88 78.17 71.68 73.25

HybridCTrm-
Multi T1, T2-FLAIR 74.07 78.97 88.89 80.64

HybridCTrm-
Multi

T2-FLAIR, T1-
IR 68.54 80.20 64.17 70.97

HybridCTrm-
Multi 3 modalities 76.53 85.52 88.37 83.47

Table 1: Main results on MRBrainS.

CSF GM WM Mean
fCNN-Single [12] 52.55 73.62 74.82 66.99
fCNN-Multi [12] 67.03 80.59 62.50 70.04
CNNsmall-Single [27] 58.49 74.66 71.31 68.16
CNNsmall-Multi [27] 62.26 81.93 81.67 75.29
CNNsmall-MS-Single [27] 42.88 70.02 80.66 64.52
CNNsmall-MS-Multi [27] 64.08 82.09 59.23 68.46
HyperDenseNet-Single [19] 49.12 84.14 85.85 73.04
HyperDenseNet-Multi [19] 72.90 85.06 70.64 76.20
HybridCTrm-Single 75.09 85.30 88.54 82.98
HybridCTrm-Multi 76.53 85.52 88.37 83.47
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line represents HyperDenseNet, while the solid line repre-
sents the performance on the development set and the
dashed line represents that on the test set. It can be seen that
HybridCTrm is always better than HyperDenseNet in both
the early and late stages of model training, and it can be
concluded that the hybrid structure can converge more
rapidly than the fCNN structure under the single-path
strategy. Meanwhile, in the middle and late stages of model
training, it can be found that the training based on
HyperDenseNet is not stable, and sometimes there is a
sudden drop, while HybridCTrm is more stable. For the
multipath strategy, HybridCTrm is significantly better than
HyperDenseNet in the early and middle training stages,
indicating that the former can provide faster convergence
under the multipath strategy. +e stability of Hyper-
DenseNet is slightly better than that of HybridCTrm in the
middle and late stages of training. +is may be because the
model has learned enough good features in the middle and
late stages of training, and further learning is much difficult
for Transformers to utilize each modal information sepa-
rately. +erefore, there may be some bad features in the

layers of the Transformer, resulting in a decrease in the
stability of the model. For HyperDenseNet, the features of
the CNN are more stable and therefore do not produce large
fluctuations. On the other hand, the slight instability in the
later stages also allows the model to learn more randomly
and avoid falling into local minima that lead to poor global
generalization performance.

5.8. Visualization. To further explore the advantages and
disadvantages of different models and preferences for seg-
mentation content, segmentation results from a partial test
set are shown for visual analysis.

Figure 6(a) shows a segmented 2D section. In the frame
region, the CSF tissue (blue part) shows a striped distri-
bution, while HyperDenseNet performs poorly on CSF
under both the single-path strategy and multipath strategy.
On the contrary, HybridCTrm performs well in CSF seg-
mentation, especially in the single-path strategy, where the
continuous bar distribution of CSF is reflected. For GM
tissue (green part), HyperDenseNet misclassifies a large part
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Figure 4: Performances of different depths of Transformers.

Table 4: Main results on iSeg-2017.

Dev Test
CSF GM WM Mean CSF GM WM Mean

fCNN-Single [12] 89.21 86.56 78.31 84.55 85.66 83.13 82.84 83.87
fCNN-Multi [12] 89.98 85.35 78.31 84.55 85.66 83.13 82.84 83.87
CNNsmall-Single [27] 92.42 89.00 81.74 87.72 88.59 85.47 83.47 85.84
CNNsmall-Multi [27] 93.13 89.24 82.73 88.36 88.92 85.85 85.26 86.68
CNNsmall-MS-Single [27] 92.75 89.59 82.98 88.44 88.69 85.95 84.36 86.33
CNNsmall-MS-Multi [27] 92.81 89.77 82.01 88.20 89.35 85.71 83.09 86.05
HyperDenseNet-Single [19] 92.24 88.58 81.18 87.33 88.59 85.40 83.92 85.97
HyperDenseNet-Multi [19] 92.99 89.39 83.24 88.54 88.85 85.87 85.35 86.69
HybridCTrm-Single 93.38 88.66 82.21 88.08 89.24 85.90 85.11 86.75
HybridCTrm-Multi 93.46 90.26 83.71 89.14 89.75 86.40 85.34 87.16
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of the gray matter as WM (yellow part) and generates a lot of
“adhesions” in the WM region. +e HybridCTrm, on the
other hand, has a good performance on the GM and better
reflects the contour structure, indicating that the hybrid
structure fully exploits the long-distance dependence.

Figure 6(b) shows another segmentation profile, in
which we focus on the forebrain part: the boxed area in the
figure. We can see that there is a clear section of the GM
pathway in the target region, which is missegmented as WM
tissue in the HyperDenseNet, but better segmented in the
HybridCTrm. Meanwhile, on the rightmost side of the box,
there is a small piece of CSF tissue, which is not segmented at
all under the HyperDenseNet-Single and is minimally
segmented under the HyperDenseNet-Multi. In the
HybridCTrm, this part is also well segmented.

6. Conclusion

+is paper discusses the application of hybrid networks
based on CNNs and Transformers in the field of multimodal
medical segmentation and proposes a novel multimodal
medical segmentation architecture, HybridCTrm. Two
multimodal segmentation strategies are proposed, namely,
single-path strategy and multipath strategy. In the experi-
ment, the HybridCTrm architecture is tested on two
benchmark datasets under single-path and multipath
strategies and compared with HyperDenseNet, an archi-
tecture based entirely on the fully CNNs. HybridCTrm
outperforms HyperDenseNet in most of the metrics.
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