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Objective. Previous studies have demonstrated that target direction information presented by the dorsal premotor cortex (PMd)
during movement planning could be incorporated into neural decoder for achieving better decoding performance. It is still
unknown whether the neural decoder combined with only target direction could work in more complex tasks where obstacles
impeded direct reaching paths. Methods. In this study, spike activities were collected from the PMd of two monkeys when
performing a delayed obstacle-avoidance task. We examined how target direction and intended movement selection were
encoded in neuron population activities of the PMd during movement planning. The decoding performances of movement
trajectory were compared for three neural decoders with no prior knowledge, or only target direction, or both target direction
and intended movement selection integrated into a mixture of trajectory model (MTM). Results. We found that not only target
direction but also intended movement selection was presented in neural activities of the PMd during movement planning.
It was further confirmed by quantitative analysis. Combined with prior knowledge, the trajectory decoder achieved the best
performance among three decoders. Conclusion. Recruiting prior knowledge about target direction and intended movement
selection extracted from the PMd could enhance the decoding performance of hand trajectory in indirect reaching movement.

1. Introduction

Brain-machine interfaces (BMIs) develop a direct pathway
between the brain and external devices, which aims to help
amputees or paralysis patients regain their movement
functions [1, 2]. The decoding method is the essential part
of BMIs which maps the neural activities to movement tra-
jectories. Numerous decoding methods have been proposed
in recent decades, such as state-space model [3, 4], artificial
neural networks [5], and reinforcement learning [6, 7], which
have been applied in many BMIs successfully, such as a robot
arm [8–10] and computer cursor trajectory estimation in two
and three dimensionality [11, 12]. In most studies, the task
is point-to-point target-oriented center out or variant center

out [13–18], in which the target direction and initial move-
ment direction are correlated.

However, the environment of daily life is more complex.
For example, obstacles between food and human beings
would make fetching trajectories curved to avoid running
into it. Such cases challenge the performance of decoding
methods with the decoupled target direction and initial
movement direction. The study of the complex task could
push the limits of BMIs and accelerate the clinical translation
[19]. Actually, researchers have designed tasks to dissociate
the target direction from initial movement direction, such
as curved movements [20], environment with specific paths
[19], or obstacles [2]. However, most of the decoding
methods were applied to the point-to-point target-oriented
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tasks. Work needs to be done to extend the proposed
methods to more complex tasks, which could extend the
performance limits of BMIs.

Multiple cortices are involved corporately and hierarchi-
cally to process the complex tasks. The primary motor cortex
(M1) plays the role of passing neural impulses down to
the spinal cord and controlling the execution of movement.
The dorsal premotor cortex (PMd) is responsible for higher-
level movement control, including movement preparation,
sensory and spatial guidance of reaching, or some direct con-
trol of reaching movement [21–23]. Planning could happen
before movement onset, and a delay epoch can contribute
to mature performance. In 2012, Pearce and Moran designed
an obstacle-avoidance task in which the initial movement
direction was confined to induce a curved center-out task,
and they found that population vectors (PVs) [15] of one
monkey point to the target at first and then turn to the move-
ment direction with relevant visual cues showing up during
the delay epoch [2]. In fact, target direction and initial move-
ment direction are two key instructions to finish the indirect
reaching. In 2007, Yu et al. extracted target direction during
planning as a prior information for the following trajectory
estimation [16]. In 2013, Shanechi et al. estimated the target
information from the PMd and SMA before movement initi-
ation to improve the trajectory decoding in a center-out task
[18]. Similarly, the movement direction could be estimated
and integrated to improve the trajectory decoding based on
the finds of Pearce and Moran [2].

Several methods have been proposed to decode the
indirect reaching movement task [3, 24, 25]. In 2012, Gilja
et al. proposed the recalibrated feedback intention-trained
Kalman filter (ReFIT-KF) to improve the online decoding
performance of target-oriented reaching movement task
[3]. Researchers also applied ReFIT-KF on the obstacle-
avoidance task with promising performance. However, the
design of ReFIT-KF did not consider the properties of indi-
rect reaching movement and the obstacle-avoidance perfor-
mance benefitted from the visual feedback and modulation
of neural activities. So the algorithm would not work well
in an offline case. Similarly in 2017, Shanechi et al. enhanced
the online reaching movement control by rapid control and
feedback rates [24]. They applied this method to the
obstacle-avoidance task. However, the same issue exists as
ReFIT-KF. In our previous studies, the correntropy-based
attention-gated reinforcement learning (CAGREL) was pro-
posed to decode the obstacle-avoidance task by setting a
secondary target to avoid the obstacle manually [25]. For
obstacle-avoidance task, more kinematics parameters are
involved, so an algorithm framework that integrates different
information is needed [26]. In 2007, Yu et al. built the mix-
ture of trajectory models (MTM) based on recursive Bayesian
estimation (RBE) [18, 27–32] for neural decoding of goal-
directed movements [16]. They combined several trajectory
models, each of which was more accurate within the limited
regime of movement (trajectory to one specific target), with
probabilistic weights predicted by planning activities. The
probability of target direction was estimated from the PMd
during the planning period. However, for a more complex
task such as obstacle-avoidance task, it is still unknown

whether the neural decoder combined with only target direc-
tion information could work.

In this study, we examined how target direction and
intended movement selection were encoded in neuron pop-
ulation activities and tried to improve the indirect decoding
by integrating more prior knowledge. Two monkeys were
trained to perform delayed obstacle-avoidance task. One
Utah array was implanted in the PMd area for each monkey.
Population vector (PV) and principal component analysis
(PCA) were utilized to analyze neuron encoding properties
during planning epoch. For comparison of movement trajec-
tory estimations among decoders with no prior knowledge,
only target direction and both target direction and intended
movement selection were carried out.

2. Experiments and Methods

2.1. System Setup and Training Tasks. In this study, two
male rhesus monkeys (Macaca mulatta, labeled as monkeys
B and C) were trained to perform a delayed obstacle-
avoidance task using their upper limbs (right upper limb
for monkey B and left upper limb for monkey C). In the task,
monkeys were seated in a primate chair and one monitor
was placed 50 cm away in front vertically. As shown in
Figure 1(a), the monkey was trained to manage a 2D manip-
ulator (20× 20 cm range) to move a computer cursor (small
blue ball) from the start position to the target (big yellow
ball) without touching the obstacle (green bar) to get a
water reward.

The target position could appear on the left, top, and
right with the start position on the bottom, as shown in
Figure 1(b). The average trajectories across 20 trials were
shown. And trajectories to the same target were labeled
by the same color. The bold cyan trajectory was the case
shown in Figure 1(a). There were six trajectories with a
fixed start position. Additionally, the cases that the start
position was located at the left, top, and right were also
collected. Generally, the target position in the current trial
was the start position for the next. Sometimes, monkeys
moved the cursor away from the start positions during rest,
and those cases were discarded in our study. In total, there
would be 24 (6 trajectories × 4 start positions) conditions
where data were collected. This task partly simulated the
complex environment by adding an obstacle between the
start position and target position, which challenged the per-
formance of decoding methods.

Specifically, the task started with the appearance of the
computer cursor and target, as illustrated in Figure 1(a).
The cursor was located at the bottom and surrounded by a
red square, indicating that monkeys had to hold at this start
position. And the target was located at the top. This epoch
would last for 300ms (delay 1) for monkeys to acquire the
information of target direction. Then the obstacle appeared
and lasted for another randomized time (uniform distribu-
tion from 500ms to 800ms, delay 2), which was for monkey
planning to avoid the obstacle. The disappearance of the red
square signaled the go cue. Monkeys moved the cursor from
the bottom to top in a curved trajectory to avoid the obstacle.
Monkeys were required to hold at the target position for
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500ms to get a liquid reward. A rest time of 500ms was set
between two trials.

2.2. Surgery Procedures and Data Acquisition. Neural data
were collectedby a 96-channelmicroelectrode array (arranged
in a 10× 10 matrix, 4.2× 4.2mm, Blackrock Microsystems,
Salt Lake City, UT, USA) [33] implanted in the contralateral
PMd for both monkeys. Additionally, two head posts were
fixed on the skull with titanium screws to stabilize head and
array pedestal during neural recording [34]. The surgery was
performed under general anesthesia induced by ketamine
(10mg/kg) and diazepam (1mg/kg). A deep anesthesia
was induced by endotracheal administration of isoflurane
(1%-2%) with veterinary anesthesia ventilator (Matrx VME2,
Midmark, Orchard Park, NY, USA) during the surgery. The
vital signs were monitored by a physiological monitor. Body
temperature was maintained by a heating pad (T/PUMP,
Gaymar, Orchard Park, NY, USA). Craniotomy was per-
formed over the premotor cortex, and the dura was incised
to place the array. The array was quickly inserted into the
cortex by a pneumatic insertion device (Micro Implantable
Systems, Salt Lake City, UT, USA). The surgical procedure
was detailed previously in [5]. After the surgery, the antibi-
otic therapy lasted for 5 days and monkeys had at least one
week to recover. All procedures were approved by the Animal
Care Committee at Zhejiang University, strictly complying
with the Guide for Care and Use of Laboratory Animals
(China Ministry of Health).

Neural activities acquired by the array were transmitted
to Cerebus data acquisition system (Blackrock Microsystems,

Salt Lake City, UT, USA). Analog waveforms were amplified,
band-pass filtered (Butterworth, from 0.3Hz to 7.5 kHz), dig-
itized (16-bit resolution and 30 kHz sampling rate), and high
pass filtered (Butterworth, 250Hz). The spikes were detected
using a thresholding method (at a level of −4.5 times root
mean square of baseline) and sorted by commercial software
(Offline Sorter, Plexon Inc., Dallas, TX, USA). Trajectories
of manipulator and epochs of the task were recorded simul-
taneously with neural signals, as shown in Figure 1(c). Ten
data sessions (from ten different days) have been collected
(five for monkey B and five for monkey C). The spikes were
binned in 100ms time scale to predict the prior knowledge
and the following trajectory.

2.3. Mixture of Trajectory Model. To decode the continuous
hand trajectory accurately, we employed a mixture of trajec-
tory models (MTM), which is based on recursive Bayesian
methods, developed by Yu et al. [16]. Recursive Bayesian
methods need a statistic model of hand trajectories for train-
ing, while the MTM probabilistically subdivides the whole
trajectories into a limited regime of movement, which could
maximally optimize the decoding model in the specific
regime. The idea was fitting well with our experiment, in
which there were three possible targets for each start point
and two possible intended movement selection for each
target. This would result in 3 subregimes for targets and 2
subregimes for intended movement selection. According to
the MTM framework, the decoding accuracy would be
boosted if the information about the regimes were known
or partly known. We utilized Bayes’ method to obtain the
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Figure 1: Delayed obstacle-avoidance task and data acquisition. (a) Task epochs (top) and timeline (bottom). The red square (length of side:
130 pixels) in task epochs indicates delay cue, during which monkeys had to hold at the start position. The green bar represents an obstacle,
touching of which would result in trial failure. The small blue ball and big yellow ball represent the moving cursor and target, respectively.
The red and blue bars above the timeline show the intervals used for target direction and intended movement selection decoding,
respectively. (b) Averaged reaching trajectories from the start position (small blue ball) to target position (big yellow ball) in one
representative session (B140530). Depending on the position of the obstacle (not shown), there were two trajectories to the same target
represented by solid and dashed lines in the same color. One trial would be started from any one of the four positions (top, down, left,
and right), and the target ball would be on one of the rest three positions randomly. (c) Simultaneously recorded hand positions
(X position, red; Y position, green) and spike trains in one representative trial.
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possible targets and intended movement selection during the
planning epoch, which will be introduced in the next section.
In this section, we will describe the MTM with recursive
Bayesian estimation framework included.

The particular probabilistic model in our study referred
to that in Kalman filter [4], where kinematics accord with
random walk model and observation model is Gaussian
[31], which are formulated as follows:

xt xt−1,m N Amxt−1 + bm,Qm ,
yt xt ,m N Hmxt + pm,Vm , 1

where m ∈ 1,…,M is the label of movement regimes.
Taking target direction and initial movement selection into
account, there are six movement regimes. Considering target
direction only, the number is three. xt ∈ R2×1 represents hand
position at time step t ∈ 1,…, T . yt ∈ Rn×1 represents the
neural activities at time step t, where n represents the number
of single units. The state transition matrix Am ∈ R2×2, obser-
vation transition matrix Hm ∈ Rn×2, variance matrix
Qm ∈ R2×2 and Vm ∈ Rn×n, and bias bm ∈ R2×1 and pm ∈ Rn×1

were all fit to training data and remained consistent during
the test.

The dependency relationships between movement
regimes, kinematics, and neural activities are shown by the
graphic model in Figure 2. Both of the kinematics and neural
activities depend on the movement regimes. Neural activities
depend on the kinematics by the observation model and
kinematics conform to the random walk model.

Based on the graphic model and Bayes’ method, the
kinematic estimation at time step t is equal to the pos-
terior distribution of hand position xt conditioned on
neural activities from the initial time step to current
time step t, which is defined as P xt y t

1 . To expand
the posterior term conditioned on movement regime m,
we get

P xt y t
1 = 〠

M

m=1
P xt y t

1,m P m y t
1 , 2

where P m y t
1 means the probability of movement regime

m given the neural activities from the beginning to current

time step. Furthermore, Bayes’ rule was utilized on that term
to obtain the following equation:

P xt y t
1 = 〠

M

m=1
P xt y t

1,m
P y t

1 m P m

P y t
1

, 3

where term P m is the probability of movement regimem. If
the prior knowledge is not available, a uniform distribution is
substituted. In order to calculate the posterior distribution
recursively, one-step estimation is calculated as

P xt y t−1
1 ,m = P xt xt−1,m P xt−1∣ y t−1

1 ,m dxt−1 4

Then the posterior distribution conditioned on m can be
obtained by Bayes’ rule:

P xt∣ y t
1,m = P yt∣xt ,m P xt ∣ y t−1

1 ,m
P yt y t−1

1 ,m
, 5

where the term P yt xt , y t−1
1 ,m has been replaced by

P yt xt ,m . Because given the current hand position and
movement regime, the current neural activities are indepen-
dent of neural activities from the beginning to last time step,
as illustrated by the graphic model in Figure 2. We can calcu-
late posterior distribution recursively by substituting (4) into
(5) and feeding (5) back to (4) in the next time step. In prac-
tice, P xt y t

1,m was calculated by Gaussian approxima-
tion with parameters matched to the location and curvature
of two terms [35]. The expectation and covariance matrix
were calculated based on P xt y t

1 to derive estimation
and credible intervals.

2.4. Target Direction and Intended Movement Selection
Prediction from Delay Epoch. Neural activities during plan-
ning (delay 1 and delay 2) contain key information for the
forthcoming movement. In our application, there were two
prior information, target direction and intended movement
selection, which could be extracted in delay epoch (delay 1
and delay 2, resp.). Let P m1 y1 be the estimation of target
direction m1 given the neural activity y1 in delay 1, and
P m2 y2 be the estimation of intended movement selection
m2 given the neural activity y2 in delay 2. With independence
assumption, the estimation of final movement regimes m
given the neural activity y in whole delay epoch can be
calculated as

P m y = P m1 y1 P m2 y2 6

The estimation result of P m y is substituted into the
MTM as prior knowledge. In our study, two other estima-
tions, P m and P m1 y1 , were also used to represent decod-
ing with no prior and target direction prior only, respectively.
The results were compared with P m y substitution, which
correspond to decoding with both target direction and
intended movement selection prior.

To obtain the probabilities of movement regimes, statis-
tical Bayes’ rule was utilized in our study [16]. Supposing
neural activities from all units are independent and the

m m m

xt‒1 xt xt+1

yt‒1 yt yt+1

Figure 2: Graphic model for MTM. m represents specific
movement regime. xt and yt represent hand positions and neural
activities at time t, respectively. Arrows mean dependency
relationship between parameters.
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distribution of spikes for each movement regime is Gaussian
[28, 36], the distribution of neural activity y from all units
to each movement regime m can be fitted as follows:

y m ∏
n

i=1
N yi μi,m, σ2

i,m , 7

where μi,m and σ2
i,m are the mean and variance for the ith

unit and mth movement regime and both of the parameters
are obtained during training by maximum likelihood. For
the test trials, the probability that movement regime is m
conditioned on activity y in delay can be calculated by Bayes’
rule illustrated in (4).

P m y = P y m P m
P y = P y m

〠
m′P y m′ , 8

where P m is assumed to be uniform according to task
settings. Actually, the accuracy of the estimated prior infor-
mation is correlated with the duration and location of the
time window, as well as the spike count model. Optimizing
the prior information decoder is beyond the scope of our
study. The time windows utilized to decode target direction
and intended movement selection are shown in Figure 1(a).

3. Results

In this study, two monkeys (monkeys B and C) were well
trained to perform the delayed obstacle-avoidance task.
Accuracy rates of trials exceeded 95% and 93% for monkeys
B and C, respectively. Neural signals in the PMd utilized in
this study were recorded from 10 sessions (five for each
monkey) distributed in one month, and each data session
contained 307± 43 and 321± 50 trials for monkeys B and
C. 45± 4.3 and 38± 3.8 units were isolated with Offline Sorter
for monkeys B and C, respectively. Leave-one-out cross-
validation was utilized in both target direction and move-
ment selection prediction [18], which means one trial was
regarded as a test sample and the rest trials were utilized to

train the model parameters. Take one of the leave-one-out
cases for example, the first to the last trials but one were
training samples, and the last trial was the test sample.

3.1. Target Direction Encoding Properties in Delay 1 Epoch.
We examined the target direction encoding properties during
rest and delay 1 epoch. PV, which is defined as the sum-
mation of weighted preferred direction, was carried out to
investigate the evolution of unit-encoding directions [15].
Velocity-based PV was utilized in our study [2]. Because

Monkey B Monkey C

Rest Delay 1

Delay 2

Monkey CMonkey B

(a) (b)

Figure 3: Temporal evolution of PVs across rest and delay epochs for both monkeys. (a) The specific task cases were shown on the left of each
row, in which the arrow pointed from the start position (blue dot) to target (solid yellow dot). The dashed yellow circle represented other
target candidates. The grey, blue, and red arrows represented PVs during rest, delay 1, and delay 2 epochs, respectively. The middle and
right columns represented the PVs evolution for monkeys B and C, respectively. PV evolution in one row for a specific monkey
represented the summation of PVs in 20 trials with the same task case for stability. (b) The same as (a) but with start point at the left.
Trials were from sessions B140530 and C150430 for monkeys B and C, respectively.

Table 1: Expectation of target direction prediction for monkey
B. Asterisks represent the significance level (Student’s t-test) of
0.05 (∗) and 0.01 (∗∗) that the expectations were above chance
level (0.33).

Data sessions
for monkey B

Expectation of target
direction prediction

B140527 0.43± 0.13∗
B140528 0.42± 0.12∗

B140529 0.42± 0.09∗∗
B140530 0.58± 0.12∗∗
B140531 0.56± 0.13∗∗

Table 2: Expectation of target direction prediction for monkey
C. Asterisks represent the significance level (Student’s t-test) of
0.05 (∗) and 0.01 (∗∗) that the expectations were above
chance level (0.33).

Data sessions
for monkey C

Expectation of target
direction prediction

C150423 0.52± 0.13∗

C150427 0.51± 0.11∗

C150428 0.48± 0.09∗∗
C150430 0.58± 0.12∗∗
C150501 0.74± 0.11∗∗
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all of the recorded units were analyzed regardless of their
tuning depth, preferred direction was not normalized to
unit [2]. So strong tuning had higher weights, and weak
tuning had lower weights. Target direction was estimated
from 0 to 900ms (whole rest, delay 1 plus 100ms in delay 2;
considering causal time delay, the first bin in delay 2 was
also collected for the prediction of target direction [37]),
during which the moving cursor and target ball were shown
to the monkeys.

Figure 3 demonstrates the behavior of velocity-based PVs
for two starting position conditions for each animal as they
changed over the course of rest and delay epochs. Five bins
in rest, three bins in delay 1, and one bin in delay 2 were
shown. Figure 3(a) represents PV temporal evolution with
start position on the right. During rest epoch with nothing
on the screen, the direction of PVs remained insignificant.
During delay 1 and first bin in delay 2, PVs pointed in
the direction of the target with bigger length. Figure 3(b)
demonstrate the consistent results as (a) with the starting
position on the left. Some PVs had direction preference
during the rest epoch. For example, in cases of monkey B
in Figure 3(b), PVs tended to point to the right during rest

epoch and the angles between PVs and direct right were
within 45 degrees. One possible reason is that an overtrained
monkey could predict that the target would appear on the
right (top right, bottom right, or direct right) during the
trials, where the initial position was set on the left [38].

Bayes’ rule with Gaussian hypothesis was utilized to
estimate the target direction quantitatively. Neural activities
labeled by red bars shown in Figure 1(b) were analyzed.
Tables 1 and 2 demonstrate the expectation of target direc-
tion for monkey B and monkey C, respectively. The leave-
one-out technique was utilized here to train Gaussian
parameters. The accuracy rate was calculated as the expec-
tation of selecting the right target. Student’s t-test between
the expectations and the chance level was performed.

3.2. Intended Movement Selection Encoding Properties in
Delay 2 Epoch. Delay 2 epoch began with the appearance of
the obstacle. There were two obstacle opening positions for
each pair of start point and target. During delay 2 epoch with
obstacle appearance, two intended movement selections
(clockwise and counterclockwise) exist for monkeys to avoid
the obstacle. We are interested in investigating whether there
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Figure 4: Low-dimension projections of neural activities during delay 2 for monkey B (a) and monkey C (b) in two representative sessions.
(Inset) the two movement selections were represented by solid blue circles and red triangles, respectively. The x-axis and y-axis represented
the first and second PC components, respectively. Trials were from sessions B140530 and C150430 for monkeys B and C, respectively.

Table 3: Expectation of intended movement selection prediction
for monkey B. Asterisks represent the significance level (Student’s
t-test) of 0.05 (∗) and 0.01 (∗∗) that the expectations were above
chance level (0.5).

Data sessions
for monkey B

Expectation of intended
movement selection prediction

B140527 0.64± 0.12∗
B140528 0.57± 0.13∗
B140529 0.72± 0.10∗∗
B140530 0.70± 0.11∗∗
B140531 0.63± 0.12∗

Table 4: Expectation of intended movement selection prediction
for monkey C. Asterisks represent the significance level (Student’s
t-test) of 0.05 (∗) and 0.01 (∗∗) that the expectations were above
chance level (0.5).

Data sessions
for monkey C

Expectation of intended
movement selection prediction

C150423 0.74± 0.11∗∗
C150427 0.69± 0.11∗∗
C150428 0.62± 0.10∗
C150430 0.68± 0.12∗
C150501 0.59± 0.13∗
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are differences in neural patterns between the two selections.
Intended movement selection was estimated from 900 to
1300ms (100–500ms of delay 2), after the obstacle showed
up. We use PCA to visualize neural patterns during delay 2
by dimensionality reduction, as shown in Figure 4. Each
dot (blue circles and red triangles) in Figure 4 represents
the neural pattern in 100ms bin. Figure 4(a) refers to PCA
projection results for monkey B with start point at the bot-
tom and target at the top. The opening positions of obstacles
could appear on the left or right. The two obstacle-avoidance
trajectory candidates were represented by dashed curves and
labeled by solid circles and triangles. The neural activities
projected to the top two PCA components were clustered
into two groups with some overlaps, corresponding to trajec-
tory candidates. Although there were some overlaps, the two
clusters were distinguishable, which implies that monkeys
were involved in the intended movement selection during
delay 2 epoch. Figure 4(b) shows the results of monkey C,
which was consistent with (a).

WefurtherutilizedBayes’ rulewithGaussianhypothesis to
estimate the intended movement selection. Neural activities
during movement planning labeled by blue bars shown in
Figure 1(b) were analyzed. Tables 3 and 4 demonstrate the
expectation of intended movement selection for monkey B

andmonkey C, respectively. The leave-one-out technique was
utilized here as well. Student’s t-test between the expectations
and the chance level was performed. Expectations of both
monkeys were above the chance level significantly.

3.3. Decoding Results with Prior Knowledge. The prediction
results of target direction and intended movement selection
imply that the neural activities during delay epoch contained
information of the task. We tried to integrate the predicted
information during delay epoch to MTM framework to
improve the trajectory estimation during movement. In this
study, to evaluate the effects of prior knowledge on decoding
performance in obstacle-avoidance task, decoders with three
different prior knowledge were compared: (1) no prior
knowledge (the prior term in RBE obeys uniform distribu-
tion); (2) integrating estimated target direction into RBE;
and (3) integrating sequentially estimated target direction
and intended movement selection into RBE.

Figure 5(a) shows decoding results in horizontal and ver-
tical positions, respectively, while Figure 5(b) demonstrates
the estimated trajectories in two-dimensional space. Decoder
with no prior knowledge performed worst with the largest
95% credible interval, as illustrated in Figure 5(a). The esti-
mated trajectory followed the real trajectory relatively well
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Figure 5: Decoding results with three decoders in one representative trial. (a) Normalized horizontal and vertical trajectories in one trial. The
x-axis represents the samples (each sample has time windows of 100ms) and normalized kinematics. The red line represents the real
trajectory. The lines with light blue, blue, and dark blue mean estimation with no prior, target direction only, and target and intended
movement selection, respectively. The shadows around the lines represent 95% credible intervals. (b) The reconstructed 2D reaching
trajectories. The inset at the top represents the representative trajectory in the workspace. The small blue and big yellow ball represent the
start position and target position, respectively. The dashed yellow circles represent the target candidates. The green bar represents the
obstacle. The x-axis and y-axis represent normalized horizontal and vertical positions, respectively.
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for the first half, which may even be steered by the obstacle.
However, it lost direction in the second half and failed to
reach the target. The estimation with target direction only
tended to reach the target in a relatively direct way, which
may run into the obstacle. The trajectory estimated with both
target direction and intended movement selection curved to
steer around the obstacle and reached the target successfully,
as shown in Figure 5(b).

Pearson’s correlation coefficient (CC) and mean square
error (MSE) were utilized to evaluate the performance of
trajectory regression. Success rate means the rate of trials that

monkeys steered around the obstacles and reached the target
successfully, which was utilized to evaluate the decoding per-
formance in view of task completion. Figure 6 shows
estimation performance of three decoders with different
prior knowledge for both monkeys across ten data sessions.
Figure 6(a) shows the mean CC (top), MSE (middle), and
success rate (bottom) of each data session labeled by different
colors for monkey B. The histograms represent the mean CC,
MSE, and success rate of all the data sessions. Histograms
show that decoder with no prior information had the smal-
lest CC and biggest MSE, while decoder with both target
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Figure 6: Summary of estimation performance with different decoders for monkey B (a) and monkey C (b). Decoding performances with no
prior, target direction only, and both target direction and intendedmovement selection were shown. The x-axis represents three decoders, and
the y-axis represents the decoding performance (CC, MSE, and success rate). Dots with different colors represent the mean decoding
performance for each data session. Dots in one line represent performances with different prior knowledge for one data session.
Significance level (paired Student’s t-test) of 0.05 (∗) and 0.01 (∗∗) was shown.
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direction and intended movement selection had the biggest
CC and smallest MSE. Actually, the CC of the decoder with
both target direction and intended movement selection
exceeded that without prior information, with only target
direction by 15.9% and 5.3%, respectively (MSE descending
rate: 18.8%, 7.9%). Figure 6(b) shows the decoding perfor-
mance of monkey C (CC ascending rate: 14.4%, 7.7%; MSE
descending rate: 16.4%, 6.5%), which was consistent with
the results shown in (a). The success rate obtained by both
target direction and intended movement selection exceeded
that without prior information, with only target direction
by 113.1% and 45.7% for monkey B and 93.4% and 59.0%
for monkey C, respectively. With more prior knowledge,
decoders obtained more instructive information, which
improved the trajectory estimation and trial completion
performance. More information was needed to estimate the
trajectory in a complex task. The results demonstrate that
both target direction and intended movement selection were
essential in the obstacle-avoidance task.

4. Discussion and Conclusion

In this study, we predicted the target direction and intended
movement selection during delay epoch and integrated the
planning information to MTM framework to improve the
decoding performance in movement epoch. The results of
PV and PCA demonstrated that units tuned to the target
direction and initial movement direction during delay 1
and delay 2, respectively. We sequentially integrated this
two prior knowledge to MTM. Compared to the decoders
with no prior and only estimated target direction, the CC of
trajectory estimation was promoted by 15.9% and 5.3%,
and 14.4% and 7.7% for monkeys B and C, respectively, while
the descending rates of MSE were 18.8% and 7.9%, and 16.4%
and 6.5% for monkeys B and C, respectively. The trial success
rates were improved significantly with both target direction
and intended movement selection for both monkeys. Results
imply that integrating target direction and intended move-
ment selection could improve the hand trajectories estima-
tion in an indirect reaching.

The indirect reaching is common in daily life. The envi-
ronment animals live in is very complex and full of obsta-
cles, which poses difficulties for decoding. The study here
proposes an approach to generalize the BMIs from a
point-to-point task to more complex task with planning
information integration strategy. The PMd is considered
to be related to planning during delay epoch [21–23].
Pearce and Moran have visualized the planning activities
of the PMd by PVs [2]. And the evolution of PVs during
delay 1 epoch in this study agreed with the above report.
We also found that the neural activities during delay 2
tuned to the intended movement selection. The neural
activities during rest epoch of some trials were beyond
our expectation. We found that both monkeys made some
prejudging during the rest epoch based on the task settings.
That implies that to some extent, overtrained monkeys had
the sense of workspace and made the prejudging based on
the hand position [38]. Furthermore, the shape or the place
of the obstacle might influence the performance of the

trajectory estimation. Although our study mainly focused
on incorporating prior information to improve decoding
performance, it would be important to further study the
influence of obstacles by using indirect reach movements
in the following studies.

MTM framework was proposed to improve the trajectory
estimation by integrating target information [16]. This
framework works well by conforming to the timeline of
performing a task: first planning and then moving. For some
more complex tasks, neural activities during planning are
always corresponding to the key information about the task.
So the extracted planning information provide some instruc-
tions for the following estimation. In this study, we generalize
this framework to a more complex task by integrating one
more prior knowledge. It is easy to extend the framework
to three or more prior knowledge by our methods. With
more prior information included, the trajectory of more
complex tasks could be estimated smoothly and accurately.
As mentioned in the Introduction, the state-of-the-art
ReFIT-KF promotes the online reaching movement estima-
tion performance by retraining the parameters with the
intention to target information [3]. The comparison of
ReFIT-KF and methods here would be conducted in online
BMIs in further study.

There are some limitations in our study. In practice, the
situation is more complex than the task performed in our
study. So more complex models [39] should be utilized to
extract more valid information. In addition, the time win-
dows to extract the planning information were fixed in this
study, where uncorrelated neural activities were involved in.
Several methods have been proposed to estimate the state
evolution during the task [39–42]. However, detecting the
time windows that planning happens is still an open ques-
tion. Only offline analysis was carried out here. More
experiments for online validation [17] needs to be done in
the following studies.
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