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Abstract
Background: Highly selective antiretroviral (ARV) regimens such as single dose nevirapine (NVP)
used for prevention of mother to child transmission (PMTCT) in resource-limited settings produce
transient increases in otherwise marginal subpopulations of cells infected by mutant genomes. The
longer term implications for accumulation of further resistance mutations are not fully understood.

Methods: We develop a new strain-differentiated hybrid deterministic-stochastic population
dynamic type model of healthy and infected cells. We explore how the transient increase in a
population of cells transcribed with a common mutation (modelled deterministically), which occurs
in response to a short course of monotherapy, has an impact on the risk of appearance of rarer,
higher-order, therapy-defeating mutations (modelled stochastically).

Results: Scenarios with a transient of a magnitude and duration such as is known to occur under
NVP monotherapy exhibit significantly accelerated viral evolution compared to no-treatment
scenarios. We identify a possibly important new biological timescale; namely, the duration of
persistence, after a seminal mutation, of a sub-population of cells bearing the new mutant gene, and
we show how increased persistence leads to an increased probability that a rare mutant will be
present at the moment at which a new treatment regimen is initiated.

Conclusion: Even transient increases in subpopulations of common mutants are associated with
accelerated appearance of further rarer mutations. Experimental data on the persistence of small
subpopulations of rare mutants, in unfavourable environments, should be sought, as this affects the
risk of subverting later regimens.

Background
The rapidity of human immunodeficiency virus (HIV)
replication, combined with its high reverse transcriptase
error rate [1], leads to rapid viral evolution, in particular
the emergence of drug resistance. Treatment that is unable
to sufficiently inhibit viral replication allows the appear-

ance and/or selection of drug-resistant strains. Further
accumulation of resistant variants may limit therapeutic
efficacy and jeorpadize subsequent treatment options.

A single dose nevirapine (NVP) regimen for prevention of
mother to child transmission (PMTCT) is a well known
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example of a suboptimal regimen that inevitably, if tem-
porarily, exerts selective pressure in favour of resistant
strains. This is still a major concern in developing coun-
tries where a prophylactic regimen of single dose NVP is
widely used for PMTCT [2]. Given the high frequency of
mutation, some minority resistant mutants are always
preexisting, albeit in trace quantities, at the moment ther-
apy is initiated. Because of the long half-life of single dose
NVP, with blood levels detectable up to 2–3 weeks after
exposure [3,4], the duration of sub-therapeutic NVP con-
centrations may present a significant hazard of developing
resistance for the mother. There is a risk of treatment fail-
ure after single dose NVP exposure, if the treatment
includes a NNRTI [5]. The question arises whether, and to
what extent, a transient treatment-induced boost to an
otherwise marginal subpopulation results in increased
risk of accumulation of further resistance mutations that
could potentially increase the risk of subsequent NNRTI-
based treatment failure.

In the search for better PMTCT regimens, improved effi-
cacy has been demonstrated for a number of short course
regimens for PMTCT in resource-limited settings. For
example, 1) use of single dose NVP with additional short
course of zidovudine/lamivudine during 3–7 days post-
partum [6], 2) addition of single dose NVP to zidovudine
short course during the antenatal period [7] and, recently,
3) use of intrapartum single dose of combined tenofovir/
emtricitabine taken after antenatal short course of zidovu-
dine plus intrapartum single dose NVP [8]. These regi-
mens improve on single dose NVP either in efficacy for
PMTCT or reduction of NVP resistance in the mother, or
both. However they appear suboptimal in that they select
for NNRTI-resistant strains and therefore increase the
mothers' risk of virologic failure for subsequent NNRTI-
based therapy. For example, in the MASHI study [7] a total
of 218 women started post partum NVP-based therapy
after they had received zidovudine from 34 weeks of ges-
tation through delivery. Of these, 112 had received single
dose NVP, whilst the rest had received a placebo during
labour. After 6 months of post partum treatment with a
NVP-based regimen, women without prior NVP exposure
were less likely to have virologic failure compared to
women who had received intrapartum NVP. Strikingly, of
women who started NVP-based therapy within 6 months,
41.7% from the single dose NVP group, but none from the
control group, had virologic failure.

In-vivo mathematical models have been useful in explor-
ing the evolution of drug resistance, suggesting that signif-
icant evolution can occur during treatment or before
initiation of treatment [9-15]. Based on the models, the
authors argued that chances of resistance evolving during
treatment are small compared to chances of resistance
evolving before suppressive therapy. However these stud-

ies did not explore, in any dynamically consistent frame-
work, the emergence/accumulation of multiple mutations
in a possibly non constant environment. In this study, we
extend these standard models to explicitly investigate the
consequences of population dynamical effects amongst
common resistant mutants. We show how the determinis-
tic dynamics of the common mutants affects the time
taken to produce the rarer mutants.

We start from an ordinary differential equation (ODE)-
type model of in-vivo viral replication in the deterministic
regime, applicable to cell populations that are large
enough for statistical fluctuations to be relatively small
(wild-type and common mutant strains). We explicitly
add expressions for Poisson rates for the occurrence of
rare mutations. Using standard survival analysis, we com-
pute, as a function of time, the probability of avoiding a
mutation event. Furthermore, we introduce an additional
timescale to the 'survival function' to capture the time
over which cells infected by an unfit genome persist
before being ecologically overwhelmed. This 'survival
function' is a continuous state variable that is incorpo-
rated into the system of ODEs without much complexity.

We apply our modelling framework to clinically inspired
scenarios. Firstly, we explore the quasi steady state that
corresponds to chronic treatment in the presence of two
viral populations. We characterize treatment regimes in
which rates of appearance of rare mutants are either
increased or decreased. Secondly, inspired by regimens
used for PMTCT in resource limited countries, we investi-
gate the transient behaviour of the model under a short
perturbation of the fitness parameters, such as occurs dur-
ing a short course of suboptimal therapy. Transient ther-
apy significantly increase the hazards of rare mutations.
Thirdly, we explore the interaction between a mono-
therapy short course and subsequent ongoing antiretrovi-
ral therapy (ART). The appendix deals with details of
mutation combinatorics.

Methods
We develop a hybrid deterministic-stochastic model of
healthy and infected T cell populations. Our analysis
starts with a standard multi-strain model of in-vivo viral
replication that distinguishes cells infected with one of Ns
viral strains. These kinds of models have been used to try
to understand viral evolution in the context of immune
response and antiretroviral therapy [9,10,12,16,17]. For
our purposes, we add a new self-consistent stochastic ele-
ment to the standard deterministic model of viral evolu-
tion.

Uninfected T cells are produced at rate ST and die at rate
μT. Virus-producing cells, infected with strain i, are
counted under Pi and have a mean lifetime of 1/μP. Mass-
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action (perfect mixing) contact between infected and
healthy cells produces new infected cells, with a rate con-
stant ki. The probability of error free transcription is given
by f and εij is the probability of a particular mutation, that
is strain i arising out of strain j from a reverse transcription
error. This leads to the base model equations:

where Nd is the number of strains which are modelled by
a deterministic process, i.e. those strains which are
assumed to be present with sufficiently large populations
for deterministic models to be sensible. We address the
incorporation of rare strains shortly.

Physiologically, HIV transmission occurs either by cell-
free viral particles released by infected cells, or by direct
cell-to-cell contact. It has been demonstrated that cellular
contacts drastically enhance productive viral transfer com-
pared to what is observed with free virus infection [18].
Our model, like previously published models of in vivo
HIV dynamics, does not have free virions. Even if free vir-
ions are physiologically important, including them for the
present purposes would not change any of our conclu-
sions as the dynamical effects appear only at very short
time scales. In our basic model, ki is a composite fitness
parameter that captures the effective cell-to-cell transmis-
sion efficiency via all mechanisms. Antiretroviral therapy
with currently known drugs does not affect virion or
infected-cell survival, but interferes with some stage of the
viral replication cycle, i.e. reduces the values of the fitness
parameter ki. This basic model also does not explicitly
incorporate the dynamics of immune system response
such as clonal expansion of effector cells or feedback link-
ing viral and infected-cell clearance rates to the healthy
cell population.

Our base parameter values are given in Table 1. We used
previously estimated values for μT = 0.02 [19] and μP = 0.5
[20]. Since it is not possible to measure all of these directly
in-vivo, some of these values are hypothetical, but they
give rise to reasonable dynamics. We assume a universal,
single-point-mutation rate, where the substitution rate of
any base is of the order 10-4 [21]. The derivation of any
particular εij follows directly from combinatorial argu-
ments outlined in the Appendix.

Latently infected cells may be responsible for ongoing
viral production in treated individuals, and their presence
will introduce a longer timescale into a model. To capture
effects of long-lived cells, we can consider the following
model:

A fraction F of infected cells become virus producing. The
others become latent and, on average, take time 1/a to
reactivate to become virus-producing cells. For simplicity,
we assume that latently infected cells have a much longer
lifetime than their activation time. Note that for F = 1, we
obtain system (1). By adjusting F (it cannot be very realis-
tically estimated directly from data) we can vary the
importance assigned to the presence of latently infected
cells, without changing the equilibrium values of healthy
and virus-producing infected cells. We do not attempt to
capture fine physiological details of latently infected cell
dynamics, but rather the concept that these cells can be
the source of new productively infected cells and hence
give rise slower dynamics than a model with just virus
producing infected cells.
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Table 1: Model parameters

Symbol Description Value Source

μT natural healthy cell death rate 0.02 day-1 [40–50 days] [19]
μP productively infected cell death rate 0.5 day-1 [1–2 days] [20]
ST supply rate of target cells 2 × 108 cells day-1 Estimated
ki viral strain infectivity varies Estimated
ε21 single-point mutation rate 2.5 × 10-5 see Appendix
f probability of error free transcription 0.37 Implied by ε21
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Our main goal is to model rare mutation events which are
characterized by waiting times rather than continuous
processes. We consider scenarios in which the initial pop-
ulations of these rare mutations are zero, and we would
like to model the waiting time to their appearance. In this
regime, the appearance of rare mutant strains i (Nd <i ≤
Ns) should be modelled as a nonhomogenous Poisson
process with intensity

which captures mutations from all the deterministically
modelled strains. (Recall that Ns is the total number of
strains.) According to standard survival analysis, the prob-
ability of there being no rare mutant of type i, at time t,
given that there was none at time 0, is

The phylogenetic relationships amongst all strains, and
the initial conditions, determine the number of continu-
ously and stochastically modelled strains. We adopt the
following computational procedure:

1. Initially run the deterministic model with populations
for Nd strains, and survival functions for avoiding the Ns -
Nd rare mutants.

2. Draw a uniformly distributed random variable Ri ∈ [0,
1] for each possible rare mutation event.

3. When Λi reaches Ri the appearance of mutant i occurs.

4. If the mutant appears into an environment in which it
is fit enough to thrive, pause the simulation.

5. Add one cell of the new rare mutant.

6. Resume running the new deterministic model with 

= Nd + 1 strains.

This piecewise deterministic model is hardly more com-
plex than a purely deterministic model. The abrupt
changes to the evolving process transforms the ODE sys-
tem into differential equations involving impulse effects
(impulsive differential equations) [22]. The difference
between our computational approach and previously
considered schemes of which we are aware, is that in our
scheme, mutation hazards are derived from explicit deter-
ministic model state variables, and also, they depend on

mutational pathways, whereas, for example, in Nowak et
al [23], the probability of generating a new mutant is pro-
portional to the total virus population.

Note that in the computational procedure just outlined,
we have only explicitly modelled the consequences of
those rare genomes which have a fitness above a critical
value. Of course, the appearance of low fitness mutations
is also possible. We now propose that genomes with sub-
critical fitness, which do not give rise to explicitly mod-
elled populations, survive, presumably in trace quantities,
for a typical time (which we call Δ) before they are driven
to extinction. If there is an environmental shift during this
persistence period, such as initiation of therapy that
strongly suppresses the other genomes, this one can then
begin to thrive and grow in the same manner as any muta-
tion which arises into an initially favourable environ-
ment. If the perfect-mixing model is assumed to be valid
on all size scales, this new timescale would simply be the
lifetime of the infected cell bearing the new genome, as an
unfit variant will be unlikely, under a fully stochastic treat-
ment, to produce daughter cells. However, it is far from
certain that this simple view captures the dynamics sur-
rounding rare mutations. A small local cluster of cells
bearing the new genome may have a good chance of aris-
ing from the seminal mutation, but then be almost certain
to be overwhelmed ecologically within a typical time as
mixing or directly competing with fitter variants occurs.
Since we do not know what this time may be, we simply
note the crucial role it plays in our modified survival anal-
ysis. Now, instead of simply considering the probability
that the mutant has never occurred since time 0, as in
equation (4), we consider the probability that a rare
mutant has not occurred in the most recent time interval
of size Δ, i.e.

This new state variable is just the probability that the rele-
vant mutant genome is absent at time t. The smallest phys-
ically feasible value of Δ is the lifetime of an infected cell
(as noted above for the case where the rare mutant pro-
duces no daughter cells from the seminal mutation) and
the largest feasible value is greater than the expected sur-
vival time of the infected individual (if the genome is sig-
nificantly banked into a latently infected cell population)
i.e. essentially infinite for practical purposes. It is particu-
larly relevant when we model environmental shifts, such
as the start or end of an antiretroviral (ARV) regimen. We
will demonstrate scenarios in which the presence or
absence of a 'currently unfit' genome, at the moment of
initiation of therapy, can have an impact on rates of treat-
ment failure.
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Results and discussion
We now apply, to clinically inspired scenarios, the sur-
vival analysis of the model presented in the previous sec-
tion. The particular model implementations are in certain
respects simplistic preliminary work, but they demon-
strate the kinds of questions that can be seriously investi-
gated within this framework. We use a model with two
continuously variable strains (wild-type and common
mutant) and a waiting time for the appearance of the third
strain (rare mutant). In the absence of treatment, the wild-
type strain is dominant and the mutant subpopulation is
present in trace quantities, of the order of the mutation
rate.

We are interested in modelling mutations that occur rarely
i.e. those that do not typically exist at most points in time.
Consider a mutant which differs from the wild-type by
three single-point mutations (say M1, M2 and M3) and
from a common mutant (M1) by two-point mutations
(M2 and M3). We assume that strains bearing just M2 or
M3, or any two of M1, M2 and M3 are highly fitness com-
promised i.e. the M1 M2 M3 (P3) are all compensatory
mutations. We use this particular phylogeny to illustrate
the application of our method. Adding a rare mutant to a
two-strain deterministic model as strain i = 3 gives the
Poisson rate

λ3(t) = T(t)(ε31k1P1(t) + ε32k2P2(t)), (6)

which shows how a rare mutant variant can arise through
a number of pathways, such as sequential single-point
mutations or simultaneous higher-order mutations.

First, we consider a quasi steady state scenario corre-
sponding to chronic treatment, then we model a short
course of monotherapy, followed, after some delay, by
initiation of chronic therapy. Important interactions
between the two regimens are captured by the newly
introduced state variable ΛΔ.

Chronic treatment/Steady state
We start by analyzing the steady-state dynamics of the two
continuously modelled strains in the absence of a rare
mutant. The choice of parameter F, which introduces
latently infected cells, does not affect this analysis. As is
typical with these simple in-vivo models, our two-strain
deterministic model has two steady states: the uninfected
steady state and a unique infected steady state which is
either physical (a positive number of infected cells) or
unphysical (a negative number of infected cells) depend-
ing on the fitness parameters. For a two-strain determinis-
tic model (with wild-type strain P1 as the initially infecting
strain and common mutant strain P2, a result of single-
point mutations from the wild-type strain), the exact equi-
librium solution is given by

where k1 > k2. An approximate, much simpler, equilib-

rium solution can be derived directly from the exact equa-

tions (7) by setting  and other higher-order terms to

zero.

where the wild-type is the fitter strain (k1 > k2). The basic
reproductive ratio of strain i is given by

We are interested in modelling the regime where  is

always greater than one in the absence of therapy, since
our main focus is on persistent infection. Note that

The less-fit strain is present in trace quantities that will be
very difficult to detect by standard clinical assays, even if
the fitness difference is marginal. This is a modified ver-
sion of the usual ecological phenomenon that two species
in a single niche do not coexist even with very similar fit-
ness; one dominates and drives the other to extinction.
The non-extinction of the less-fit quasispecies observed in
this case results from the high mutation rate, which leads
to waiting times between mutation events that are very
small compared to the lifetimes of productively infected
cells, so that the subdominant species persists in signifi-
cant quantities. Given realistic orders of magnitude for
infected cell populations (109) and lifetimes (a day), and
the mutation rates between strains that differ by a single
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base mutation (10-5), certain minority populations (sin-
gle-point and double-point mutations relative to a domi-
nant wild type) are large enough to be modelled
deterministically.

The mean waiting time to the occurrence of a rare muta-
tion according to the Poisson rate (equation (6)) before
treatment (evaluated at the pre-treatment equilibrium
state) is given by

It is important to understand how fundamentally differ-
ent this result (and reality) is from a what can be obtained
in a model which treats all strains deterministically. Math-
ematically, it is perfectly sensible to define a model with
any number of deterministically strains, as per the basic
model above, and to try to capture the 'rare' mutants by
using suitably small mutation rates. When a purely deter-
ministic model runs from an initial condition in which
the fitter strain is absent, this absent strain is immediately
produced continuously. The new strain then grows
according to its fitness advantage (see figure 1). Thus, the
time taken for it to reach some proportion of the total
infected cell population is deterministic, and substantially
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Growth of a rare mutant in the deterministic modelFigure 1
Growth of a rare mutant in the deterministic model. Growth of a rare mutant strain (ie. with no waiting time) in the 
deterministic model. The initial value of the rare mutant (P3) is zero whereas viral strains: wild-type (P1) and common mutant 
(P2) begin their dynamics from the steady state. The rare mutant is immediately produced continuously and grows according to 
its fitness advantage. The time required to attain one cell infected by this rare mutant is of the order of weeks. In these simula-
tions, the differential fitness parameters are given by (k3, k2, k1) = (2k1, 0.9k1, k1) where k1 = 2 × 10-8; that is, the environment 
favours the rare mutant to outgrow existing viral variants.
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dominated by the dynamical interaction of the two
strains. The time required to attain one cell infected by the
new strain (P3 = 1) can be derived by solving P3(t) = 1
from an initial value of P3 = 0, and using the dynamical
equation

where

This implements the assumption that the other cell popu-
lations are not significantly perturbed from their initial
values over the time it takes to produce one cell of the rare
mutant. Then

For the chosen parameter values (Table 1), the time
required to attain one cell infected by the new strain is of
the order of weeks (see figure 1). On the other hand, the

explicitly modelled mean waiting time (7τw8) to the

occurrence of the new mutation according to the constant

Poisson rate  is of the order of years. It seems to us that

the latter is a reasonable model of rare events and the
former is fundamentally flawed.

We now return to the stochastic waiting time model,
which at the pre-treatment equilibrium state, has a wait-
ing time to the occurrence of a rare mutant of the order of
years for the chosen parameter values given in Table 1. We
are interested in the impact of long term treatment on
these waiting times. Let treatment efficacy on strain i be

denoted by ξi ∈ [0, 1], so that the infectivity parameter

during treatment is  = ξiki.

In figure 2, we show the surface plots of the waiting times
to the occurrence of rare events as a function of drug effi-
cacy on viral strains. A key result is that waiting times are
significantly smaller when the common mutant is only
marginally less fit, than when there is a large fitness cost.
Note that these plots describe a relationship between
'clinical' parameters (waiting times) and pharmacological
parameters (drug efficacies) which are difficult to deter-

mine in-vivo. On the other hand, quantitation of plasma
HIV RNA can be performed to determine viral popula-
tions which in turn can be used as alternative parameters
to calculate the waiting times to the occurrence of rare
mutations. We demonstrate this by introducing parame-
ters which express treatment effectiveness at the level of
changes in the equilibrium viral loads. Let the treated
equilibrium values of the wild-type and the mutant-
strain-infected cell populations, relative to the pre-treat-
ment wild-type infected cell level, be given by

respectively. Recalling that in the untreated state, the viral

load is strongly dominated by the wild type ( (k1, k2)),

this notation facilitates comparisons between the treated
and untreated states, both in terms of overall viral sup-
pression, and selection between strains.

Disruption of the pre-treatment equilibrium state (Fw = 1
and Fm << 1) by therapy leads to different possible effects
on the "benchmark" (pre-treatment) waiting time. The
limiting case scenarios of interest are

1. Therapy suppresses the mutant subpopulation (Fm → 0)
but allows the dominant wild-type strain to replicate rela-
tively unhindered (Fw ≈ 1); this increases the waiting times
to the occurrence of a new strain. In other words, even
though the total viral load is barely affected, there is a ben-
efit in terms of impaired viral evolution.

2. Treatment is optimal against the wild-type strain (Fw →
0) but barely affects the common mutant i.e.

where  is strain i reproductive ratio. This leads to a dra-

matic reduction in waiting times to the appearance of rare
mutations, i.e. the much more rapid emergence of the rare
mutant.

3. Treatment is optimal; that is, treatment that successfully
suppresses both viral subpopulations ((Fw, Fm) → (0, 0)).
This essentially guarantees the non-occurrence of rare
mutations.

Transient Nevirapine monotherapy
We use our piecewise deterministic model to explore the
consequences of transient increases in the relative fre-
quency of common mutations (such as K103N) on the
occurrence of rarer mutations, during and after short-
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Surface plots of waiting times as a function of drug efficacyFigure 2
Surface plots of waiting times as a function of drug efficacy. Surface plot showing the waiting times to the occurrence 
of rare mutations as a function of drug efficacy on viral strains (ξi) for (a) k2 = 0.9k1 and (b) k2 = 0.1k1 where k1 = 2 × 10-8. The 
point ((ξ1, ξ2) = (0, 0)) represents potent treatment that results in viral elimination. Less effective selection pressure or treat-
ment that successfully suppresses both viral subpopulations results in increased waiting times or even guarantees the non-
occurrence of rare mutations. Suboptimal treatment that suppresses the wild-type strain but barely affects the common 
mutant leads to dramatic reduction in waiting times to the occurrence of rare mutations. On the other hand, treatment that 
affects the common mutant but allows continuation of wild-type strain replication, increases the waiting time to the occur-
rence of a rare mutant.
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course monotherapy. To obtain curves resembling the
K103N decay data shown in figure 3[24], we incorporate
a population of latently infected (i.e. long-lived and non-
virus-producing) cells [25,26] that are activated to pro-
ductively infected cells on a timescale of 2 to 3 weeks, by
setting F = 0.9.

First we explore the effect of a single short course of highly
selective treatment on waiting times to the appearance of
rare mutations. Initiating suboptimal therapy results in
dramatic increase of the common resistant mutant
(K103N) population and an equally dramatic decrease in
the wild-type strain (K103) population. When pressure of
therapy is discontinued, the common mutant population
declines to pre-treatment levels. At every time point dur-
ing and after short course therapy, we evaluate the cumu-
lative probability of a rare mutation having occurred.
Figure 4 illustrates the transient increase and decline in
the proportion of a common mutant, and figure 5 shows
the corresponding cumulative probabilities of observing a
rare mutant. We compare the cumulative probability
under transient treatment to the case in which therapy is

not given at all. For the chosen parameters, the probability
of observing a rare mutation, within a year in the absence
of therapy, is negligible. However, transient therapy dra-
matically increases this probability.

Next we explore the interaction between a monotherapy
short course and subsequent continuous therapy, as was
investigated in the MASHI study. We evaluate the proba-
bility that a rare mutant is currently present at time t, given
various possible values of the rare mutant persistence
timescale Δ (see figure 6). For values of Δ less than 60
days, the probability of a rare mutant being present, at
some point more than 6 months after the single dose of
NVP, is small (< 5%) i.e. cells infected by the new genome
are unlikely to be present, and hence pose a low residual
risk if the mother is put on treatment more than six
months after single dose Nevirapine for PMTCT. This is
not inconsistent with the clinical findings from the
MASHI study [7]. The reality is presumably more complex
than what our model can capture, but little is known
about the persistence of unfit mutants. It has been
observed that resistant genomes may persists, even at

Clinical nevirapine dataFigure 3
Clinical nevirapine data. Relative fractions of K103N variants in maternal plasma viral RNA after single dose nevirapine for 
three individual women (NVP16, NVP19 and NVP196). We read data off a chart published in [24]. In this study, the relative 
abundance of K103N declined to undetectable levels by 12 months [24].
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undetectable level, for prolonged periods [27,28]. It
makes sense that initiating therapy in the presence of a
therapy defeating mutant, or an immediate precursor to
such a mutant (even at levels too low for detection by typ-
ical assays), will reduce chances for treatment success.

Conclusion
We have considered a number of more-or-less standard
deterministic multi-strain models of in-vivo viral dynam-
ics, which are tunable to produce scenarios like a chronic
ARV regimen, and a short course of monotherapy. We
have adjoined a stochastic component to these models, in
the form of a 'sliding window' survival analysis, which
substantially expands the possible analyses of rare strain
dynamics within the framework of ordinary differential
equations.

We have considered scenarios which capture the concepts
of a dominant wild-type strain, a relatively unimpaired 1
base mutant, a number of unviable 2 base mutants, and

the possibility of compensatory mutations which lead to
a treatment defeating 3 base mutant that is reachable by
different pathways, which have different relative importance
at various stages during transient dynamics. Different phylog-
enies, together with different chosen fitness parameter
values, will result in different numbers of deterministi-
cally and stochastically modelled strains and pathways, all
of which can immediately be accommodated into our
general model.

The transient increases in common subpopulations of
cells infected by mutant genomes produced by the short
course of antiviral therapy affects waiting times to the
appearance of rare mutations, conceived as differing more
from the wild type than from the deterministically mod-
elled primary mutant. Over a range of model choices
which produce a transient of the order (size and duration)
of that known to occur under nevirapine monotherapy
used for PMTCT, there is significant acceleration of viral
evolution – even from just the short course alone. This

Transient increase of common mutationsFigure 4
Transient increase of common mutations. Relative frequency of K103N during and after 7 days of idealized treatment. 
Short-course highly selective therapy results in dramatic increases in pre-existing resistant viral variants. Withdrawal of therapy 
results in a slow decline of the subpopulation. We assume that 10% of infected cells become long-lived infected cells and are 
activated after 2 weeks i.e. we set F = 0.90 and a = 1/14.
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effect is suspected, but not unambiguously observed, from
clinical studies.

A further important set of questions arises about the risks
associated with initiation of chronic therapy (HAART) a
short while after the suboptimal transient regimen like for
PMTCT. Our newly proposed additional timescale Δ, rep-
resenting the persistence of a new genome in an infavour-
able environment has a substantial impact on the rates of
treatment failure.

These models demonstrate that even transient subpopula-
tions of common mutants which appear to fade are asso-
ciated with accelerated appearance of rarer mutations.
Further work which should be performed includes 1) var-
iations on these models which are designed to capture
precise genetic differences (and hence realistic pathways
and mutation rates) between sets of quasispecies being
directly observed in studies utilising highly sensitive
assays, and 2) biological investigation into the dynamics

of small populations of new mutants, which these models
summarise into the timescale ΛΔ.
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Appendix: mutation combinatorics
We relate the HIV mutation process parameters εij and f to
an underlying single-point-mutation process.

The error rate per site for HIV reverse transcriptase (for any
given nucleotide A, C, G and T) is assumed to be 10-4 [21],
so that the rate of change to any of the three alternatives

(for example substitution of A by C, G or T) is given by η

=  × 10-4. The probability that a site within a gene will1
3

Probabilities of observing a new mutationFigure 5
Probabilities of observing a new mutation. The cumulative probabilities of observing a new mutation in the absence 
(Equilibrium) and presence (Transient) of drug pressure. Model choices which produce a transient of a magnitude and duration 
shown in figure 4 lead to significant acceleration of viral evolution. In the absence of selective pressure chances of observing a 
new mutant are negligible.
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remain unchanged after reverse transcription (i.e. A → A,

C → C, T → T or G → G) is given by (1 – 3η). Then the

probability of a particular mutation (strain j → strain i),
where i and j differ by precisely m point mutations, given
a genome length L (approximately 104 bases for HIV) is
given by

εij = (1 – 3η)L-mηm ≈ (1 – 3η)Lηm ≡ fηm, (17)

where m <<L and 1 – 3η ≈ 1. Note that f = (1 – 3η)L ≈ 0.37
is the probability of error free replication. For example, we
consider particular point mutations at codon 103 of
reverse trancriptase gene that are associated with 103K/N
viral populations. Given that AAA & AAG code for K and
AAC & AAT code for N, the rate of lysine (K) substitutions
by asparagine (N) at this codon is given by

P(K → N) = 2fη. (18)

The single point mutation rate at this codon using equa-
tion (18) is given by ε21 = 2.5 × 10-5. Then, using equation
(17), we have ε31 = fη3 ≈ 1.4 × 10-14 and ε32 = fη2 ≈ 4.1 ×
10-10.
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