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Abstract

The motor cortex controls motor behaviors by generating movement-specific signals and

transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and

well-coordinated muscle activation patterns are necessary for accurate movement execu-

tion. Therefore, the activity of cortical neurons should correlate with movement parameters.

To investigate the specifics of such correlations among activities of the motor cortex, spinal

cord network and muscles, we developed a model for neural control of goal-directed reach-

ing movements that simulates the entire pathway from the motor cortex through spinal cord

circuits to the muscles controlling arm movements. In this model, the arm consists of two

joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint

and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spi-

nal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse

problem based on a proposed straight-line trajectory to a target position and a predefined

bell-shaped velocity profile. Thus, the controller generates a motor program that produces a

task-specific activation of low-level spinal circuits that in turn induce the muscle activation

realizing the intended reaching movement. Using the model, we describe the mechanisms

of correlation between cortical and motoneuronal activities and movement direction and

other movement parameters. We show that the directional modulation of neuronal activity in

the motor cortex and the spinal cord may result from direction-specific dynamics of muscle

lengths. Our model suggests that directional modulation first emerges at the level of muscle

forces, augments at the motoneuron level, and further increases at the level of the motor

cortex due to the dependence of frictional forces in the joints, contractility of the muscles

and afferent feedback on muscle lengths and/or velocities.

Introduction

Even simple arm movements such as reaching require complex interactions among the central

and peripheral nervous systems, and skeletal muscles to generate the intended arm move-

ments. Over three decades, a lot of effort has been put into understanding neural mechanisms
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controlling reaching movements [1–4]. Reaching is broadly defined as the arm’s movement

starting at some initial position in space and ending at a target position. In experiments,

unperturbed reaching movement usually occurs along a straight-line trajectory with a bell-

shaped velocity profile [5]. Dynamically, reaching movements result from complex concurrent

or sequential activation patterns of multiple muscles used to accelerate and then, slow down

and stop the arm along the intended trajectory. To generate the required muscle activation pat-

terns, the motor cortex needs to solve a corresponding “inverse problem” and, based on this

solution, provide the appropriate dynamical inputs to the spinal circuits [6–8].

In reaching tasks, the relationships between neuronal activity in the motor cortex and

movement parameters have been widely debated, and remain controversial [9–12]. It has been

suggested that the neuronal activity in the primary motor cortex (M1) encodes such movement

parameters as direction [2, 12–14], hand position [15–18], velocity [19], acceleration [20],

and reaching distance [13, 18]. However, other studies have argued that neural activity in the

motor cortex correlates with kinetic variables, such as forces and torques [21, 22]. In 1982,

Georgopoulos et al. demonstrated for the first time a correlation between neuronal activity in

the motor cortex and the direction of reaching movement [2]. They showed that the average

firing rate of M1 neurons during reaching movements varied with the direction of movement,

and that each M1 neuron had a preferred direction (PD) for which its average firing rate was

maximal. Since then, directional tuning has been ubiquitously considered as a key property of

neural activity in the motor cortex. However, it remains controversial whether directional

preference is the fundamental property of cortical neurons or a side effect of muscle activity or

other movement features [11, 23–27].

Although many movement parameters correlate with cortical activity, the cause of these

correlations is still not clear. For example, it has been suggested that the directional sensitivity

of cortical neurons is the result of a specific organization of inhibitory interactions within and

between neuronal columns in the motor cortex [28, 29]. A competing viewpoint is that cortical

activity is related to the activity of corresponding muscles that have anisotropic properties and

thus, form cortical directional tuning [27, 30–32]. Moreover, the contribution of the spinal

cord circuitry to directional modulation is not well understood.

Mathematical models have been used to better understand the relationship between the

activity of neurons in the motor cortex and movement parameters during reaching [32–34].

However, previous models did not consider the spinal cord network and/or length/velocity-

dependence of contractility of the muscle controlling the movement. In the present study, we

have developed an integrative mathematical model of a motor control system that incorporates

cortical neuronal populations, complex spinal neural circuits controlling arm muscles and

receiving afferent feedback from them, and a two-joint arm actuated by these muscles that per-

forms reaching movements in a 2D space. The arm model includes the shoulder and elbow

joints whose movements are generated by pairs of flexor and extensor muscles controlling a

single joint and two bi-articular flexor and extensor muscles controlling both joints at the

same time. The arm model is very similar to the model developed by Lillicrap and Scott [32].

Unlike Lillicrap and Scott who used a complex cortical neuronal network including a learning

system to control the arm, we focused on a spinal cord network which receives aggregate sig-

nals from six supraspinal neuronal pools. The cortical activity (hereinafter referred to as a

motor program) was calculated by solving an inverse problem based on a straight-line trajec-

tory to a target position and a predefined bell-shaped velocity profile. This approach allowed

us to generate and analyze a variety of activity profiles of cortical neurons that may be used to

perform movements to the same or different target positions. We evaluated our findings in the

context of different theoretical hypotheses concerned with the neural control for reaching [30–

32]. Particularly, Lillicrap and Scott [32] showed that limb geometry, intersegmental dynamics,
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and the force length and force velocity properties of muscle are the main causes of directional

preferences of cortical neurons during reaching movements. In agreement with Lillicrap and

Scott, our results show that the muscle length and velocity dependent contractile components

of the muscle forces are the root causes of the directional preference of spinal motoneurons.

Furthermore, we showed that afferent feedback has significant impact on the directional

behavior of cortical neurons and proposed that directional dependence of the mean firing

rates of M1 neurons primarily results from afferent feedback signals carrying information

muscle lengths and velocities. Moreover, our results show that the spinal cord circuit may play

a comparable or even more significant role in directional tuning of M1 neurons than the con-

tractile components of the muscle forces. The model reveals the mechanisms by which direc-

tionally indifferent torques in the arm joints imply directionally tuned cortical activity.

Results

The model presented here comprises three main modules: Arm, Spinal Cord, and Motor Cor-

tex (Fig 1A). The Arm module is modeled as a mechanical system of two rigid segments and

two joints (shoulder and elbow) controlled by six Hill-type muscles, namely: the shoulder

flexor (SF) and extensor (SE), the elbow flexor (EF) and extensor (EE), and the two-joint

extensor (BE) and flexor (BF) (see Fig 1C). Arm movements are restricted to a horizontal

plane and are produced by coordinated activation of the muscles. The Spinal Cord module has

neural circuits that receive descending signals from the Motor Cortex, and relay them through

spinal motoneurons to the corresponding muscles. The Spinal Cord neurons receive afferent

feedback from the muscles and form local reflex circuits. These include (1) monosynaptic exci-

tation of homonymous motoneurons by Ia muscle afferents; (2) reciprocal inhibition between

the antagonistic flexor and extensor motoneurons via Ia interneurons receiving Ia afferents;

(3) non-reciprocal inhibition of homonymous and synergistic motoneurons by Ib muscle

afferents via the Ib interneurons; and (4) recurrent inhibition of motoneurons via correspond-

ing Renshaw cells (see Fig 1B). The Motor Cortex module projects the activity of six cortical

neuronal populations (M1-N) down to six motoneuron pools in the Spinal Cord to control

movements of the arm (see Fig 1A and 1B). This descending command quantitatively repre-

sents the aggregate cortical input rather than specific mono- or poly-synaptic projections. A

detailed description of the model including mathematical formulations is provided in the

Methods section.

Directional modulation of cortical neurons

Using our mathematical model, we simulated center-out reaching tasks in 8 different direc-

tions and analyzed the activity of each M1 neuron (Fig 2). We found that the firing rate of

these neurons depended on the movement direction, such that it was maximal for one direc-

tion (preferred direction, PD, denoted byΘPD), and minimal for the opposite direction (anti-

PD, 180o apart from ΘPD). Fig 3 shows an example of the neural activity of a population of M1

cortical neurons that projects to the elbow flexor motoneuron and is therefore responsible for

the contraction of the elbow flexor muscle during reaching movements in all 8 directions. The

activity profiles (outer traces in Fig 3) show dynamical and quantitative changes when the

movement direction changes. This particular population of M1 neurons showed the highest

amplitude of activity when reaching movements were made in the 270o-315o direction, and

the lowest amplitude of activity when reaching movements were made in the 90o-135o direc-

tion. The firing rate of this particular neuron averaged over the entire reaching movement

exhibited the highest value for the 270o direction and the lowest value for the 90o direction

(polar curve in the center of Fig 3). This type of directionality has been previously observed in
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Fig 1. Model structure. (A) The motor cortex sends motor signals to the spinal cord neuronal network which sends its outputs to the muscles. The spinal

cord combines motor signals with afferent feedback to generate the motorneuron outputs. (B) Organization of interconnections between Renshaw cells

(RC), motoneurons (MN) and other interneurons in the spinal cord network. Motoneurons send their outputs to their corresponding arm muscles. Ia and Ib

inputs are the feedback signals from the muscles. (C) A 2-joint arm with six muscles: four major flexor and extensor muscles about the shoulder and elbow

joints, and two biarticular muscles controlling both shoulder and elbow joints. SF, EF and BF represent shoulder, elbow and biarticular flexors, and SE, EE

and BE represent shoulder, elbow and biarticular extensors, respectively.

https://doi.org/10.1371/journal.pone.0179288.g001
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the experimental studies; see an example of the spiking activity of a cortical neuron recorded

during a center-out reaching task performed by a primate in 8 different directions by Moran

and Schwartz (Fig 6 in [19]). This example is qualitatively similar to our simulation results in

terms of both average firing rate and changes in pattern.

Due to the redundancy of arm biomechanics, a continuum of different muscle activation

patterns may result in the exactly same movement (see Methods). To examine similarity of

directional properties among different possible motor programs, we performed 50 center-out

reaching trials while randomly selecting the torque distribution parameter (d) between mono-

and bi-articular muscles (see Methods) in the range (0.5 ~ 1) using a uniform probability

Fig 2. Setup of the center-out reaching task in 8 directions with a simulated arm model. The arm model

performs movements from the initial position (center, red point) to one of the 8 peripheral target positions

(outer, dark blue points). For all simulations, except where noted, the reaching distance, equal to the radius of

the circle, was fixed to 0.2 meters, and the reaching time was fixed to 1 second. Angles θ1 and θ2 represent

the shoulder and elbow joint angles, respectively, with respect to the vertical axis, similar to Fig 1C.

https://doi.org/10.1371/journal.pone.0179288.g002
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distribution for the 8 movement directions. All six M1 neurons–corresponding to SF, SE, EF,

EE, BF, and BE–showed similar changes in their activity profiles and averages in conjunction

with the change in movement direction, regardless of the torque distribution. We computed

single-trial averages of the M1 neuron’s firing rate over the duration of each movement. For

each reaching direction, we computed the mean of the single-trial averages to produce a multi-

trial average. We found that multi-trial averages varied in an orderly fashion with movement

direction (Fig 4, black curves). Multi-trial averages were maximal for one unique movement

direction, which was the PD for that particular M1 neuron. Each M1 neuron had a PD distinct

from the other five neurons. The multi-trial activity of four M1 neurons (corresponding to SF,

EF, EE, and BF) demonstrated coefficients of determination (R2, a measure of the precision of

the regression fit) greater than 0.7 when fitted to cosine tuning curves (Fig 4, green curves),

implying that the activity of these four M1 neurons was strongly correlated with movement

direction. However, the two M1 neurons corresponding to SE and BE did not demonstrate as

good a fit with the cosine-shaped tuning curve (R2 = 0.47 and 0.30, respectively), suggesting

weaker directional modulation. The M1 neurons’ PDs, as determined by their cosine tuning

curves, were 154o, 312o, 268o, 92o, 225o and 67o, corresponding to SF, SE, EF, EE, BF and BE,

respectively. Activity of M1 neurons, corresponding to antagonist flexors and extensors, exhib-

ited opposite PDs separated by approximately 180o (Fig 4). We have found that there is no

Fig 3. Directionally modulated cortical activity. Model performance: activity of a population of cortical

neurons (a single simulation computed based on Eq 16) that controls the 1-joint elbow flexor. For the center-out

reaching movement in 8 directions (45º intervals), the activity patterns of this neuronal pool are shown by black

solid curves, demonstrating the highest and lowest mean firing rates in opposite directions (180º apart). The

average firing rate (solid polygon) is highest for the 270º direction.

https://doi.org/10.1371/journal.pone.0179288.g003
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change in preferred directions when the model uses only the shoulder and elbow muscles (by

removing the biarticular muscle), which is in an agreement with Lillicrap and Scott [32]. How-

ever, the simulations show that biarticular muscles have significant impact on the coefficients

of determination of the tuning curves.

Directional modulation of spinal motoneurons and afferent feedback

The analysis of activity of both spinal motoneurons and Ia afferents showed directional tuning

properties similar to M1 neurons (see Fig 5). However, the correlation coefficients between

Fig 4. Cortical activity fits well to the cosine tuning curve. Average cortical activity (black, ± SD) of neurons controlling each of the 6 arm muscles fit to a

cosinusoidal tuning curve (green curve). Four of the six cortical activities are strongly directionally tuned (coefficient of determination R2 > 0.7). Error bars

show standard errors across trials with randomly chosen motor strategy (see text for more details). Simulation results are in agreement with experimental

studies (Georgopoulos, Kalaska et al. [2], Fu, Suarez et al. [13], Moran and Schwartz [19]).

https://doi.org/10.1371/journal.pone.0179288.g004
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Fig 5. Directional modulation of spinal motoneurons and Ia afferents. (A) The pools of spinal motoneurons are sensitive to movement directions. The

average responses (Av. R) of populations of these motoneurons (black, ± SD) are fitted with cosine tuning curves (green curve) and less directionally tuned

than primary cortical neurons. (B) Activity of Ia afferent (FBIa) is strongly directionally turned (coefficient of determination R2 > 0.9) for all six muscles.

https://doi.org/10.1371/journal.pone.0179288.g005
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neuronal activity and PDs show that spinal motoneurons have weaker directional modulation

compared to M1 neurons. Ia afferent feedback also demonstrates directional modulation

which have more accurate fits with cosine tuning curves compared to neuronal activity (Fig

5B). The PDs of Ia afferent feedback was fairly uniformly distributed over 0o ~ 360o (Fig 6B)

similarly to distribution of M1 cortex cell PDs recorded by Fu et al. (see Fig 2 in [13]). More-

over, the PDs of Ia afferents were opposite to the PDs of their corresponding M1 neurons (Fig

6A and 6B).

In the model, directional modulation of the Ia afferent feedback signals emerges from their

explicit dependence on muscle lengths and velocities (see Eq (5)). This is consistent with the

results of Jones et al. [35] who showed that directional tuning of individual muscle afferents

during voluntary wrist movements in humans can be predicted from the length changes of the

corresponding muscle.

To quantify the effects of feedback on cortical activity, we increased the amplitude of feed-

back signals to spinal motoneurons 2-, 5- and 10-fold. The outcome showed that as the ampli-

tude of feedback signals increased, cortical activity became more directionally tuned to a PD

opposite to the corresponding feedback signal’s PD. For example, when feedback inputs were

amplified by 2, 5 and 10-fold, the coefficient of determination for the directional tuning curve

Fig 6. Distribution of preferred directions. Preferred directions (PDs) of cortical neurons (A) and Ia afferents (B) are fairly uniformly distributed over 360º.
Colored lines show averaged PDs of cortical neurons and Ia afferents (FBIa) for corresponding muscles. The gray areas around each line represent standard

deviation across 50 simulations with randomly chosen torque distribution parameter values. The length of each vector reflects the index of directional

modulation. PDs of antagonist flexor and extensor related neurons and feedback are 180º apart. PDs of cortical activity are similar to the PDs of the

antagonist Ia feedback. Please note that the afferents are independent of the torque distribution and have the same PD for all 50 simulations.

https://doi.org/10.1371/journal.pone.0179288.g006
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of SE-M1 activity increased from 0.47 to 0.69, 0.85, and 0.9, respectively. Moreover, removing

the feedback signals decreases the coefficient of determination to 0.1. These results support the

idea that the cortical activity may be modulated by afferent feedback signals. Obviously, ampli-

fication of the feedback signals does not affect the directional tuning curves of the spinal

motoneurons.

To examine the effect of reaching distance on directional modulation of cortical and feed-

back activity, we tested 6 different reaching distances and observed no significant change in

the directional tuning curves of M1 neurons and Ia afferents. The PDs of M1 neurons and

Ia afferent feedback remained relatively constant over the 6 reaching distances used (Fig 7),

suggesting that PD is independent of reaching distance. Similarly, Fu, Suarez et al. [13]

showed that PDs of neurons in the premotor and primary motor cortices of monkeys were

Fig 7. Preferred directions are invariant of reaching distance. The PDs of cortical neurons (CA) (A)

and Ia feedback (FBIa) (B) are independent of reaching movement distance, which is in agreement with

experimental results of Fu, Suarez et al. [13] (compare with Fig 3A in [13] showing that the PDs of 17 recorded

cells over varying reaching distances are preserved). (C) The difference between the PD of each population

and that of its corresponding Ia feedback is about 180º over six different reaching distances.

https://doi.org/10.1371/journal.pone.0179288.g007
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independent of reaching distance (see Fig 3A in [13]). The preservation of PD across different

reaching distances and speeds was also observed by Churchland, Santhanam et al. [36]. More-

over, the relationship between PDs of M1 neurons and Ia afferents was also independent of

reaching distance; the difference between PDs of M1 neurons and their corresponding Ia affer-

ents remained approximately 180o over all 6 reaching distances (Fig 7C).

Directional modulation of the contractile components (force-length and

force-velocity) in the muscle force

While reaching movements are performed in different directions, six arm muscles in our

model contracted (shortened) or stretched (lengthened) with different magnitudes depending

on the direction of the movement. Fig 8 shows the directional modulation of the muscle force.

The averaged force-length (Fig 8A) component of each muscle was highest for a distinct (pre-

ferred) direction, and lowest for the opposite (anti-preferred) direction, with a smooth transi-

tion in between. Cosine functions provided excellent fits (R2 > 0.95, see Fig 8A, green curves)

for the force-length components of all six muscle. The contractile components of the antago-

nist muscles demonstrated opposite PDs and tuning curves (Fig 8A), consistent with the find-

ings of Cherian A. et al. [37], who showed that EMG activity of biceps and triceps had opposite

directional tuning.

Similar to force-length components, the averaged force-velocity component of each muscle

strongly correlated with the movement direction in our simulations. Specifically, it exhibited

the same PD as that of the averaged force-length component, and had a similar tuning curve

(Fig 8B).

Directional modulation of other movement variables

An identical velocity profile, with fixed peak velocity, was used to model the arm’s movements

in all directions. Accordingly, the magnitude of the acceleration of the arm endpoint was not

dependent on the direction; neither were the magnitudes of the joint torques (which primarily

depend on joint angular accelerations). To determine if muscle forces had any correlation with

movement direction, we performed 50 simulations where the torque distribution parameter

d was varied from trial to trial in the range (0.5 ~ 1) using a uniform probability distribution.

The results demonstrated that muscle forces were very weakly directionally tuned compared

to cortical input tuning, muscle contractile component tuning, and feedback tuning (Fig 9);

for all six arm muscles, the correlation coefficient between force and movement direction was

relatively small (0.05 to 0.4). Muscle forces had large standard deviations (2.5 to 10 N), and

although average muscle forces slightly changed with direction, the change was not significant.

We further checked that weak correlations shown in Fig 9 emerge from the effects of joint

viscosities (frictional forces, see Methods), as eliminating viscose friction forces in the joints

decreased the six muscle forces’ correlations to almost zero (not shown). In summary, muscle

forces are weakly modulated by the direction of the reaching movement compared to the mod-

ulation of spinal motoneurons and cortical neurons.

Shoulder-centered reference frame

Although Cartesian coordinates have been frequently used as a reference frame for center-out

reaching tasks, coordinate systems connected to the joints (shoulder or elbow) can also be

used to represent the direction of the arm movement. It was previously suggested that cortical

neurons, both in the motor and premotor areas, encode movement directions with an intrinsic

coordinate system representing the shoulder-centered reference frame [38, 39].
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Fig 8. Directional modulation of contractile components of the muscle force. Dependence of force-length (A) and force-velocity (B) components of

muscle force for six arm muscles on the movement direction. All profiles precisely follow cosine tuning curves shown in green (R2 is close to 1 for each

muscle; see right column of the figure).

https://doi.org/10.1371/journal.pone.0179288.g008
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Moving the workspace without changing the shoulder location can potentially affect the

PDs and tuning curves of cortical neurons because of the changes in arm posture. To investi-

gate this, we shifted the workspace in our model to the left and right, using the shoulder joint

Fig 9. Muscle forces do not have significant directional dependence. Average forces for the six arm muscles (black) fitted with cosine tuning curves

(green). The R2 is relatively small, implying that muscle forces are not directionally tuned. Error bars show standard deviations across 50 trails with

randomly chosen motor strategy.

https://doi.org/10.1371/journal.pone.0179288.g009
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as a reference frame (Fig 10A). The whole workspace (including initial position and 8 targets)

was translated with respect to the shoulder joint. The vector from the shoulder joint to the ini-

tial position (Fig 10A, black vector) was used as a reference for this transformation. The default

workspace, used in most of our simulations, had coordinates (0.0, 0.4) for its initial position,

and the vector from the shoulder joint to this initial position was parallel to the positive y-axis

(Fig 10A, Center). Fig 10B (Center) shows the PD distribution of M1 neurons for the default

workspace. When the workspace was rotated counter-clockwise by 45o with respect to the

shoulder joint (Fig 10A, Left), all preferred directions were shifted in the same direction by

approximately the same angle (44.83o ± 2.04o) (Fig 10B, Left). Similarly, when the workspace

was rotated clockwise by 45o with respect to the shoulder joint (Fig 10B, Right), all PDs were

shifted in the same direction by approximately the same angle (45.67o ± 3.8o) (Fig 10B, Right).

The PD shift of the EF and EE neurons was exactly 45o for both clockwise and counter-clock-

wise workspace transformations. Transforming the workspace by 20o clockwise or counter-

clockwise also shifted the PDs by 20o clockwise or counter-clockwise (not shown). In other

words, a shift in the reference frame resulted in a similar shift in the PDs of M1 neurons,

which means that the relationship between movement direction and activity of M1 neurons is

invariant once the direction is defined relative to the line connecting the shoulder and the ini-

tial point of the movement.

Fig 10. Rotating the workspace by an angle shifts the preferred directions in the same direction by the same angle. (A) Rotation of the workspace

about the shoulder. The default workspace (center) was rotated by 45º counter-clockwise (Left), or by 45º clockwise (Right). (B) The distribution of preferred

directions for the three workspaces corresponding to panel A. Vector lengths represent directional modulation index (see text for details).

https://doi.org/10.1371/journal.pone.0179288.g010
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In summary, rotating the workspace about the shoulder joint shifts all PDs of M1 neurons

by the same angle in the same direction. Similarly, Lillicrap and Scott [32] also showed that

preferred directions shifted to the left or to the right when the work space was shifted to the

left or right, respectively (see Fig 6 in their paper). The changes in muscle lengths during the

movement largely depend on the relative direction to the shoulder joint because of the rota-

tional symmetry of the arm geometry. Hence, in our model the directional modulation mani-

fests as dependence on the angle between the direction of movement and the direction from

the initial position to the shoulder joint. This is consistent with an idea that the motor cortex

encodes direction based on the shoulder reference frame, suggested in other experimental [38,

39] and modeling [33] studies.

Directional modulation and the movement distance

To evaluate the relationship between cortical activity and reaching distance, we simulated cen-

ter-out reaching tasks in 8 directions with 7 reaching distances per direction. Since the reach-

ing time was fixed based on previous experimental studies [13, 40], both the peak velocity and

peak acceleration increased as the reaching distance increased. In our model, the average activ-

ity of each M1 neuron increased monotonically with the reaching distance (Fig 11). However,

the changes in average firing rate with respect to the distance were different across M1 neu-

rons, and depended on the movement direction as well. Our simulation results are consistent

with experimental findings of Fu et al. [13] who also showed a direction dependent increase in

the average firing rate of cortical neuron with increasing reach distance (see Fig 4 in [13]).

Fig 11. Cortical activity strongly correlates with reaching distance. The average cortical activity of the shoulder flexor (black traces) and

the shoulder extensor (red traces) related neurons linearly increase with the reaching distance for the center-out task in all directions when the

reaching time is fixed (1 second). Subplots show representative simulations made in 8 directions at 45˚ intervals. Error bars are the standard

deviations across trials with randomly chosen motor strategy.

https://doi.org/10.1371/journal.pone.0179288.g011
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Due to constant reach time, greater reaching distances result in higher peak acceleration of

the arm endpoint. In our model, the dependence of cortical activity on the reaching distance

emerges from strong correlation of the latter with peak acceleration. Greater acceleration

requires stronger torques at the joints, and hence, stronger activation of M1 neurons. To evalu-

ate this hypothesis experimentally, it would be sufficient to vary the reaching time in propor-

tion to reaching distance, such that longer reaching distances require a greater reaching time.

In this case, the peak velocity would be fixed, and contrary to the task presented here, the peak

acceleration would decrease as the distance increases. In our model, such a change results

in the decline of average cortical activity with increased reaching distance (not shown). We

suggest that correlation of cortical neuronal activity with reaching distance may depend on

experimental constraints, e.g. reaching time limitations. Hence, the correlation of M1 neurons

with distance emerges from the correlation between M1neurons and peak velocity or peak

acceleration.

Discussion

Most motor cortical neurons were found to have specific preferred directions in which their

mean firing rate during reaching movement was maximal [2, 13]. Some studies showed that

the activity of cortical neurons correlated with torques at joints and muscle tensions [41, 42],

or with other kinematic variables [13, 19, 43]. It has also been suggested that the activity of a

particular cortical neuron may correlate with more than one movement parameter [13, 14, 18,

44, 45]. Although many previous studies addressed these phenomena (see for review [9, 46–

48]), the origin of the directional tuning properties continues to be subject to debate. Neuronal

activity in the motor cortex may reflect the complexity of movement dynamics [49] as well as

higher-order features such as cognitive information related to a motor task or function [50].

This complexity has led to different viewpoints and interpretations [51].

During center-out reaching movements, average values of muscle forces and joint torques

do not have pronounced directional dependence, so that anisotropy of motor cortical activity

is truly non-trivial. The model presented here suggests that directional tuning in the primary

motor cortex is the result of movement geometry and muscle dynamics. Arm muscles contract

and stretch during reaching. Geometrically, the magnitude of muscle contraction or stretching

depends on movement directions. As a result, muscle state variables such as muscle lengths

and their rate of change (muscle velocities) have significantly different average values when the

movement is performed in different directions. Our simulations have demonstrated that aver-

ages of muscle state variables fit perfectly the cosine tuning curves. This leads to similar direc-

tional tuning of afferent feedback and muscle contractile components, which are functions of

muscle state variables.

Mechanisms of directional modulation

Most studies agree that M1 neurons are sensitive to movement directions, but fail to explain

how directionally tuned motor commands produce non-directionally tuned endpoint kine-

matics (arm endpoint acceleration and velocity) and kinetics (net joint torques), or why non-

directional endpoint variables require directionally tuned motor commands.

Different factors contribute to directional modulation at different levels of the system’s

hierarchy. At the lowest level, frictional forces are proportional to joint angular velocities. The

latter are controlled by muscle stretch/contraction and, hence, have directional modulation

similar to muscle velocities. Therefore, since muscle forces have components working against

frictional forces, they should exhibit some directional modulation. However, the resulting cor-

relation between muscle forces and movement direction is pretty weak (Fig 12, blue bars) due
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to relatively weak friction in the joints. As an obvious implication, one can expect more pro-

nounced directional modulation of muscle forces at higher viscous friction, e.g. if reaching

movements are performed under water.

At the next level, we found that motoneurons showed stronger directional modulation than

muscle forces (Fig 12, green bars). Muscle forces induced by inputs from motoneurons depend

on muscle lengths and velocities (see Eq (4) in Methods). This implies that for muscle forces to

be directionally indifferent, motoneuronal activities should have directional modulation oppo-

site to those of contractile components of the corresponding muscles (see Eq (15) in Methods).

Further, motoneurons are influenced by afferent feedback from the muscles arriving at the

spinal cord neural network. This feedback carries information about muscle lengths and veloc-

ities, which are strongly directionally dependent. That is, supra-spinal cortical signals have to

be directionally tuned in the directions opposite to those of their corresponding feedback to

provide appropriate activation patterns of spinal motoneurons.

Interestingly, all factors described above are synergistic in a sense that all of them–frictional

forces, muscle contractility, and afferent feedback–have the same directional modulations as

the corresponding muscle lengths and velocities. This explains why directional tuning be-

comes more and more pronounced when ascending on the schematic in Fig 1A from net joint

torques through muscle forces and motoneurons to the cortex (Fig 12).

Previous studies have also suggested that directional tuning in the motor cortex can be

attributed to muscle-state variables [30], muscle-state-dependent variables [31, 52], or limb bio-

mechanics [27, 32]. The hypothesis that directional tuning is the result of directional dependence

of muscle length dynamics is not new or unique. However, our model provides additional sup-

porting evidence and reveals several remarkable differences from previously published studies.

Mussa-Ivaldi [30] described cortical activity as a linear function of muscle velocity, and sug-

gested that directional tuning of cortical activity emerges from muscle state variables. Our results

support this idea in general, but disagree with the notion that activity in the primary motor cor-

tex is a simple linear function of the muscle velocity. Moreover, the linear relationship suggested

by Mussa-Ivaldi [30], does not clearly determine whether cortical activity and muscle velocity

have the same directional tuning properties or opposite ones. Our findings specifically show that

motor cortical neurons and their corresponding muscle state variables, velocity and length, have

Fig 12. Directional modulation becomes more pronounced from muscle forces through motoneuron

activity to cortical level. Coefficients of determination for cosine fits of directional dependence of time-

averaged muscle forces (blue), motoneuronal outputs (cyan), and cortical inputs (yellow). Muscle forces are

less directionally modulated than spinal motoneurons, which in turn are less directionally tuned than M1

neurons.

https://doi.org/10.1371/journal.pone.0179288.g012
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opposite directional modulation. Moreover, this modulation nonlinearly propagates across the

spinal cord network and affects all spinal neurons (see Fig 12).

Todorov, using a simplified mathematical model [31, 52], demonstrated that activity in the

primary motor cortex encodes arm muscle activity. He argued that correlation between corti-

cal activity and high-level parameters, such as movement direction, speed, and target position,

was a secondary effect. He suggested that cortical neurons are directionally tuned as a result of

directional tuning of muscle state-dependent variables (forces generated due to muscle length

and velocity). Similarly, contractile components in our model (force-length and force-velocity)

contribute to the directional tuning of motoneurons and, thus, cortical neurons, which is in

agreement with Todorov’s findings. In addition, our model illustrates the interplay between

cortical signals and afferent feedback, which leads to augmented directional tuning of neuronal

activity in the motor cortex compared to the spinal cord. In contrast to Todorov’s assumption

that the spinal cord circuitry was not involved in directional tuning [31, 52], our model pro-

vides evidence suggesting that spinal circuitry may play a significant or even major role.

The arguments above also explain why directional modulation of cortical neuron activity is

independent of the biomechanical redundancy of the arm, which we tested by simulating

reaching tasks with randomly distributing the torques between mono- and bi-articulate mus-

cles. Indeed, additional directional modulation emerging at each level is solely defined by vari-

able dependent on muscle lengths and/or velocities, i.e. by the kinematics of movement in a

particular direction. The same reasoning explains the results of Lillicrap and Scott [32], who

used an optimized artificial neuron network to show that limb geometry, intersegmental

dynamics, and force-length/velocity properties of muscles are dominant factors in the emer-

gence of directional modulation.

In light of the above, the directional modulation in the cortical activity can be thought as a

product of motor learning which has interesting implications for the emerging neuro-pros-

thetic technology, a.k.a. brain machine interface (BMI). BMI utilizes neural signals of motor

area in the brain to control external devices such as a robotic arm. Even though BMI decoders

attempt to use natural neuronal tuning to actuate the movement, the initial motor perfor-

mance is usually poor, but improves with training engaging the same neuroplastic mechanisms

that are involved in motor learning. Since proprioceptive feedback responsible for the initial

directional tuning is no longer relevant for the artificial actuator, one could predict that the

neuronal tuning should change during the learning process to eventually reflect the BMI

decoder properties. This prediction finds substantial experimental support and may explain

difficulties in interpretation of neuronal tuning during BMI control (see [53] for review).

Directional modulation is invariant in the “right” coordinate system

We showed that transforming the workspace shifts the tuning curves (PDs) of M1 neurons

and other directionally tuned variables. Similar changes in tuning properties have been

observed in previous experimental studies. When the workspace was transformed counter-

clockwise from the left side to the middle and then to the right side of the animal’s body, the

PDs of cortical neurons shifted clockwise [38]. Tanaka and Sejnowski also reported shifts

of PDs when the workspace was transformed [33]. Lillicrap and Scott [32] also showed that

optimal preference movement distributions change as a function of limb posture and muscu-

loskeletal organization. In addition, it was observed that directional tuning of motor cortical

neurons was affected by the posture and orientation of the monkey’s arm [23] even when the

workspace remained fixed. Our analysis suggests that directional modulation remains virtually

invariant with respect to the transformations above if defined in terms of the angle between

reaching direction and the line connecting the shoulder joint and the initial arm position.
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Directional tuning may vary depending on task conditions

It was proposed that directional tuning in the motor cortex, as defined by Georgopulos, is not

robust; it varies depending on task conditions [54, 55]. In particular, some studies showed that

directional tuning changes with the limb’s velocity or reaching distance [36, 49]. Similarly, our

simulations suggest that the fit of cortical activity by a cosine tuning curve gets less accurate

when the movement speed is increased (not shown) which may result in significantly different

(more variable) PD estimates. Neuronal activity patterns both in the cortex and the spinal cord

have two components–the dynamic component aimed at generating a specific movement, and

the compensatory component that counteracts the effects of directional modulation of muscle

length and velocity dependent variables (frictional forces, contractile components, and afferent

feedback). The latter is responsible of the directional modulation of neuronal activity. With

increasing speed and/or distance of the movement, the dynamic component begins prevailing

the compensatory component, and, thus, partially destroys cosine-like fits.

Higher-level and supra-spinal structures

The spinal cord circuitry we described in this study is the low-level circuit close to output

motoneurons. In our model, we assumed that, M1 neurons directly control spinal motoneu-

rons to activate muscles in the arm. Some pyramidal neurons in M1 of monkeys do directly

project to motoneurons in the spinal cord [56–58]. However, a majority of M1 neurons indi-

rectly control them through interneurons [59]. Various types of these interneurons with com-

plex interconnections may be involved in relaying motor commands from the motor cortex to

the spinal motoneurons. The Modularity Theory, for example, suggests that all motor behav-

iors may be constructed by combining motor primitives generated by composite motor mod-

ules in the spinal cord [60–65]. According to this theory, the brain does not control individual

muscles directly, but rather activates sets of muscles via motor primitives to produce complex

movements. Therefore, directional properties of the cortical neurons controlling motor primi-

tives would depend on geometry of multiple muscles, and our finding that cortical neurons

have directional preferences opposite to the corresponding muscle lengths and velocities may

not be entirely valid. However, our main conclusion about directional dependence of the neu-

ronal activity in the higher-level and supra- spinal structures due to directional dependence of

the muscle geometry still holds.

Comparison with other models

Several previous models of arm reaching movements were developed to understand activity

patterns in the motor control system and their relationships with movement parameters. In

some studies, simple mathematical equations have been suggested to describe relationships

between motor cortex activity and movement characteristics [30, 66]. These models, however,

were synthesized to illustrate particular directional tuning hypotheses, and did not have spe-

cific biological justification.

Activity patterns of motor cortical neurons have also been modeled based on endpoint

velocity, acceleration and limb position to understand tuning properties derived from muscle-

state dependent variables [31, 52]. However, spinal cord circuits and biomechanics of the arm

were not considered in these studies. Tanaka and Sejnowski [33], for example, developed a

three-joint arm model performing reaching movements in 2D space, where muscle forces

were described as a rectified sum of motor cortical activities taking into account neither mus-

cle contractile components nor spinal reflexes. Lillicrap and Scott [32] developed a two-joint

arm model controlled by six muscles for reaching movements in 2D space, which is very simi-

lar to our arm’s model. However, there are major differences between the model structures.
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For example, their model did not include any spinal circuits, but included complex cortical

neural computations to adjust parameters in the cortical network via a learning procedure

using the feedback from the arm dynamics. We can argue that this learning procedure is

aimed at finding a particular solution of the same inverse problem we are addressing in our

study. However, the cost function used and a specific implementation of the learning process

define which particular solution is selected. That may potentially induce the directional pre-

ference of its own. In our study, we analyzed a family of possible motor programs for the

movements in each direction, and confirmed that all members of each family possess similar

directional properties.

In summary, Lillicrap’s and other models used optimal control theory based on specific

assumptions that cortical activity is optimized to achieve certain behavioral objectives [32, 34,

67]. We do not use any assumptions about optimality. Instead, we focus on a particular type of

movement, i.e. goal-directed reaching, explicitly assimilating information that reaching move-

ments follow straight-line trajectories with a bell-shaped velocity profile as it was shown in pre-

vious experimental studies [36, 68, 69].

Conclusion

In the present study, we proposed mechanistic explanation of the fact that during planar re-

aching arm movements directional dependence of time-averaged activity of cortical neurons

originates from the anisotropy of average muscle lengths and velocities. Specifically, cortical

neurons have opposite preferred directions compared to the “preferred” directions of lengths

and velocities of corresponding arm muscles. This anti-correlation builds up as one ascends

along the hierarchy of the motor control system. First, the directional preference emerges at

the level of muscle forces as a consequence of viscous friction in the joints. Second, it augments

at the level of spinal motoneurons to compensate for the muscle contractile component

(which are functions of the muscle lengths and velocities) directional dependence. Third, neu-

ronal directional modulation is further amplified at the cortical level to counteract the direc-

tional dependence of afferent feedback inputs carrying information about muscle lengths and

velocities to the spinal cord network. To conclude, we showed that the motoneurons and affer-

ent feedback have significant impact to modulate the directional tuning behavior of cortical

neurons.

Methods

Biomechanical model of the arm

The Arm (see Fig 1C) is modeled as a 2-joints mechanical system of rigid segments connected

by revolute joints, which operates in the horizontal plane. The dynamics of the arm’s motion

are derived from the Lagrange equations and include angular velocities and accelerations,

Coriolis and centrifugal forces, muscle forces, and viscoelastic forces at the joints. The parame-

ters of mechanical system such as masses and lengths of correspondent arm segments are

based on human biomechanics [70]. Kinematics of the segments is described by the following

differential equations:

q1 ¼ I1 €y1þm2L2
1
€y1þm2L1d2

€y2cosðy1 � y2Þ � m2L1d2
_y2ð

_y1�
_y2Þsinðy1 � y2Þ þm2L1d2

_y1
_y2sinðy1 � y2Þ

q2 ¼ I2 €y2þm2d2
2

€y2þm2L1d2
€y1cosðy1 � y2Þ � m2L1d2

_y1ð
_y1�

_y2Þsinðy1 � y2Þ � m2L1d2
_y1

_y2sinðy1 � y2Þ
ð1Þ

where: q1 = q1v − q2v + q1M and q2 = q2v + q2M are generalized forces (torques), which include

joint friction forces (q1v, q2v) and torques created by muscles (q1M, q2M); θ1, θ2 are the ge-

neralized coordinates (the angles between positive y-axis and the upper arm or forearm,

Modelling reaching movements

PLOS ONE | https://doi.org/10.1371/journal.pone.0179288 June 20, 2017 20 / 32

https://doi.org/10.1371/journal.pone.0179288


respectively); I1 ¼ m1L2
1
=3 is the moment of inertia of the upper segment around an axis

through the point of suspension; I2 ¼ m2L2
2
=12 is the moment of inertia of the lower segment

about an axis through its center of mass;m1 = 1.79 kg,m2 = 1.55 kg are the masses of the upper

and lower segments, respectively; L1 = 0.34 m is the length of the upper segment, L2 = 0.31 m is

the length of the lower segment; d1 = L1/2 is the distance from the shoulder joint to the center

of mass of the upper arm, d2 = L2/2 is the distance from the elbow joint to the center of mass of

the forearm.

After simplifying Eq (1), the movement of the 2-joint arm can be described by angular

accelerations at the shoulder and elbow joints given by:

€y1¼ ða1ðq1 þ f1cÞ � bðq2 þ f2cÞÞ=ða1a2 � b2Þ

€y2¼ ða2ðq2 þ f2cÞ � bðq1 þ f1cÞÞ=ða1a2 � b2Þ
ð2Þ

where: a1 ¼ I1 þm2L2
1
, a2 ¼ I2 þm2d2

2
, b ¼ m2L1d2 cosðy1 � y2Þ, f1c ¼ m2L1d2

_y2
2

sinðy1 � y2Þ,

f2c ¼ m2L1d2
_y2

1
sinðy1 � y2Þ. The joint viscous friction forces are given by: q1v ¼ � Zv

_y1 ;

q2v ¼ � Zvð
_y2 �

_y1Þ, where the viscosity parameter ηv = 0.05.

Muscles

We considered six muscles, which control arm movements in horizontal plane. Specifically,

four 1-joint muscles (shoulder flexor (SF), shoulder extensor (SE), elbow flexor (EF) and

elbow extensor (EE)) and two 2-joints muscles (shoulder and elbow extensor (BE) and shoul-

der and elbow flexor (BF)) control the arm’s movements. Muscles, which perform the similar

action and have similar anatomy, were substituted by one muscle with averaged parameters.

Total muscle torques, q1M and q2M, are produced by all muscles at the shoulder and elbow

and calculated as:

q1M ¼ FSFRSF � FSERSE þ FBFRBFS � FBERBES
q2M ¼ FEFREF � FEEREE þ FBFRBFE � FBERBEE

ð3Þ

where: F and R represent muscle forces and averaged moment arms [71, 72] for all muscles

(see Table 1). Muscle indices are defined as follow: SF and SE represent the shoulder flexor

and extensor; EF and EE represent the elbow flexor and extensor. BFS, BES represent 2-joint

flexor; BES, BEE represent 2-joint extensor, respectively.

Description of muscle forces is based on the Hill-type model proposed by Harischandra

and Ekeberg [73] was also adapted to human biomechanics. The total force F for each muscle

is calculated as:

F ¼ Fmax � ðMN � Fl � Fv þ FpÞ ð4Þ

where: Fmax is the maximum force (see Table 1) based on experimental data [71, 72];MN is the

Table 1. Muscle model parameters.

Muscle Maximal force, Fmax (N) Optimal length, Lopt (m) kv Vmax Moment arm, R (m)

Shoulder Flexor (SF) 420 0.185 2.1 Δ/1 � RSF 0.015

Shoulder Extensor (SE) 570 0.170 2.0 Δ/1 � RSE 0.008

Elbow Flexor (EF) 1010 0.180 1.7 Δ/2 � REF 0.035

Elbow Extensor (EE) 1880 0.055 1.7 Δ/2 � REE 0.021

Biarticular Flexor (BF) 460 0.130 2.0 Δ/1 � RBFS + Δ/2 � RBFE 0.020/0.036

Biarticular Extensor (BE) 630 0.150 2.1 Δ/1 � RBES + Δ/2 � RBEE 0.005/0.021

https://doi.org/10.1371/journal.pone.0179288.t001
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activity of the corresponding motoneuron; Fl, Fv are the normalized length- (Fl) and velocity-

(Fv) dependent variables describing the muscle contractile component and Fp is the passive

parallel component. The length- (Fl) and velocity- (Fv) dependent components of contractile

elements are described as: Fl = exp(−|(l2.3 − 1)/1.26|1.62) and Fv = (−0.69 − 0.17v)/(v − 0.69) if

v< 0 or Fv = ((5.34 � l2 − 8.41 � l + 4.7) � v + 0.18)/(v + 0.18) if v� 0. Passive element (Fp) is cal-

culated as: Fp = 3.5 � ln(exp((l − 1.4)/0.005) + 1) − 0.02 � exp(−18.7 � (l � 0.79)) − 1). The muscle

lengths (l) and velocities (v) for different muscles are specified in Table 2.

Afferent feedback

Muscle afferent feedback activities (Ia and Ib feedback signals) are derived and modified from

the formulas suggested by Prochazka [75]:

Ia ¼ kv � vpvnorm þ kdI � dnorm þ knI � y þ constI
Ib ¼ kF:Fnorm

ð5Þ

where: vnorm = v/Vmax is the normalized muscle velocity, dnorm = (l − 0.2 � Lopt)/Lopt is the nor-

malized muscle lengthening if l> Lopt or 0 otherwise, y is the output activity of the correspond-

ing motoneuron, Fnorm = (F − 0.1 � Fmax)/Fmax is the normalized muscle force.

Parameters Vmax, Lopt and Fmax are based on averaged parameters of correspondent muscles

of upper of human male dataset [71, 72] and specified in Table 1. The coefficients kv are opti-

mized in order to normalize Ia signal from each muscle operating within locomotor range

(see Table 1). The remaining coefficients are defined as follows: kdI = 0.8, knI = 0.05, kF = 1.0,

constI = 0.01.

Spinal neuronal network

The Spinal Cord circuit provides direct control of the arm biomechanical model via corre-

sponding motoneurons (Fig 1A). Although the activity of the motor cortex is correlated to

muscle activity during voluntary movements such as reaching task [9–11], spinal reflexes still

play an important role in arm kinematics [76]. In our model of the spinal cord we imple-

mented several basic reflexes such as: stretch reflex; autogenic inhibition reflex; and recurrent

inhibition of motoneurons via Renshaw cells (see Fig 1B).

Table 2. Muscle lengths and velocities.

Muscle Length, l (m) Velocity, v (m/sec)

Shoulder Flexor (SF) Lopt
/max

1
� y1

D/1
H /max

1
� y1

� �
� _y1RSF

Shoulder Extensor (SE) Lopt
y1 � /

min
1

D/1
H y1� /

min
1

� �
� _y1RSE

Elbow Flexor (EF) Lopt
/max

2
� ðy2 � y1Þ

D/2
H /max

2
� y2 � y1ð Þ

� �
� ð _y2 �

_y1 ÞREF

Elbow Extensor (EE) Lopt
ðy2 � y1Þ� /

min
2

D/2
H y2 � y1ð Þ� /min

2

� �
� ð _y2 �

_y1 ÞREE

Biarticular Flexor (BF) Lopt
/max

1
þ/max

2
� y2

D/1þD/2
H /max

1
þ /max

2
� y2

� �
� _y1RBFS � ð _y2 �

_y1 ÞRBFE

Biarticular Extensor (BE) Lopt
y2 � /

min
1
� /min

2

D/1þD/2
H y2 � /

min
1
þ /min

2

� �� �
� _y1RBES � ð _y2 �

_y1 ÞRBEE

H(.) is the Heaviside step function. Based on experimental data [74], the angle limitations at the shoulder

joint are/max
1
¼ 55o and/min

1
¼ � 135o; the angle limitations at the elbow joint are/max

2
¼ 155o and/min

2
¼ � 5o;

D /1 ¼ 0:97ð/max
1
� /min

1
Þ; and D /2 ¼ 0:97ð/max

2
� /min

2
Þ for both Tables 1 and 2.

https://doi.org/10.1371/journal.pone.0179288.t002
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A simplified scheme of the stretch reflex including monosynaptic excitation of synergist

motoneurons and disynaptic Ia reciprocal inhibition circuitry is based on previously published

work [77]. The additional Ia-interneurons, which receive Ia afferent input and mediate inhibi-

tion to antagonist motoneurons, are introduced for all pairs of antagonist muscles. These

interneurons also receive mutual inhibition from antagonist Ia-interneurons.

Because of autogenic inhibition reflexes, activation of Golgi tendon organ Ib afferents evokes

inhibition of synergist motoneurons [78, 79]. The inhibitory pathway includes an additional

Ib-interneuron that receives an excitatory Ib feedback from the corresponding muscle and

relays the inhibitory signal to the same motoneuron and its synergists. Schematic of this reflex

is based on previously described circuitry [77, 80].

The activity of motoneurons is also regulated by Renshaw cells [81]. These interneurons

innervate and inhibit the very same motoneurons which activate them as well as synergetic

motoneurons [82]. Renshaw cells also inhibit ipsilateral interneurons which provide Ia recip-

rocal inhibition [78]. In addition, the activity of Renshaw cells is regulated by the activity of

contralateral Renshaw cells excited by antagonist motoneurons (see Fig 1B).

Each neuron in our model represents the activity of a population of corresponding spik-

ing neurons and is based on a non-spiking description of the neuron model. The output ac-

tivity (firing rate) of each neuron (y) is represented by a sigmoidal function of the aggregate

input:

y ¼ sðvÞ ¼ ð1þ expf� ðv � v1=2Þ=kgÞ
� 1

ð6Þ

where v ¼ bþ
PN

i¼1
wixi; xi is the i-th input and wi is the synaptic weight (or strength of con-

nection) between the i-th input and the neuron, b is a bias term that controls the excitability of

the neuron, and s(v) is an activation function. The parameters v1=
2

¼ 0:5 and k = 0.1 in Eq (6)

specify the threshold and the slope of the activation function, respectively.

As mentioned above, the spinal cord neuronal network consists of six local circuits which

are responsible for controlling corresponding muscles. Each circuit includes a motoneuron

(MN), Renshaw cell (RC), Ia-interneuron, and Ib-interneuron. The bias term was the same

(b = −0.28) for all neurons in the spinal cord.

The gains of the feedback inputs were chosen in such a way that all reflexes modulate the

motoneuron activity within 15% of maximum. This roughly corresponds to existing experi-

mental data on contribution of reflexes in the EMG activity during voluntary limb’s move-

ments [83, 84]. The connections in the network are defined as follows [80] (see also Fig 1B).

The synaptic weights are indicated in brackets.

• RCs receive excitation from corresponding MNs (+0.25).

• RCs inhibit antagonist RCs (-0.25).

• RCs inhibit corresponding MNs (-0.25).

• Flexor (extensor) RCs also inhibit all other flexor (extensor) MNs (-0.125).

• RCs inhibit Ia interneurons (-0.25).

• Ia interneurons inhibit antagonist Ia interneurons (-0.25).

• Ia interneurons inhibit antagonist MNs (-0.25).

• Ib interneurons inhibit corresponding MNs (-0.25).

• Flexor (extensor) Ib interneurons inhibit all other flexor (extensor) MNs (-0.125).
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• Ib interneurons are excited by corresponding Ib feedback (+0.15).

• MNs and Ia interneurons are excited by corresponding Ia feedback (+0.15).

• MNs, Ia, and Ib interneurons are excited by corresponding cortical neurons (+0.15).

The spinal cord neuronal network contains recurrent connections, and, hence, the firing

rates cannot be calculated in a feed-forward way. We assumed that the firing rate variables of

the network are in instantaneous equilibrium, which can be found by an iterative procedure

explained below. The “current” state of the network, Y!k, that includes spinal motoneuron

activities as well as firing rates of all spinal interneurons, is described by:

Y!kþ1 ¼ sðB
!
þW � Y!k þMC

��!
þ FB�!Þ ð7Þ

where W is the matrix of connection weights between elements (including ascending feedback,

neuron outputs, and descending signals from upper levels, see above) in the network, vector

B! consists of bias terms for all neurons in the network, k is the iteration number,MC��! is the

input from the motor cortex, FB�! is a vector of afferent feedback from the muscles, and s is the

sigmoid activation function (6). Eq 7 is iterated until Y!k reaches a steady state with a preset

tolerance. Its equilibrium value, Y!, is accepted as the network response to the cortical input

MC��! given the feedback FB�!. We verified that with the synaptic weights used (W) the map (7)

always had a unique stable equilibrium. Hence, the network state can be considered as a func-

tion of the cortical inputs and afferent feedback signals:

Y!ðMC��!; FB�!Þ ¼ limk!1Y
!

k ð8Þ

calculated by iterating (7).

The cortical controller

We model the execution of a reaching task by moving the arm endpoint (the wrist) from a

given initial position to a desired target position. Based on the specified target position, the

model calculates a set of activity profiles for the motor cortical neurons (a motor program),

which provide the wrist movement along a defined trajectory, ending at the target position.

Given the initial and target positions of the arm’s endpoint in the (x, y) orthogonal coordinate

system, and preset reaching time, we first calculate muscle forces required to generate the

desired motion along a straight-line trajectory with a defined velocity profile. Using the muscle

forces, we then calculate required motoneuron activity (motoneuron signals), and finally

supra-spinal input generated by motor cortical neurons.

Arm trajectory and joint angles

Let the initial and target positions of the arm’s endpoint be (x1, y1) and (x2, y2), respectively.

The velocity profile along the trajectory, v(t), of the arm’s endpoint is defined as follows:

vðtÞ ¼
L
T

1 � cos
2pt
T

� �� �

; ð9Þ

where T is the reaching time (time to reach the target), L is the distance between the initial and

target positions in meters (reaching distance), v(t) is in m/s and time t is in seconds. The veloc-

ity has a bell-shaped profile and is zero at the initial and target positions. The peak velocity is

controlled by T and L; the inverse relationship between reaching time and peak velocity has
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been experimentally reported [85]. Using (9), we can calculate the dependence of the endpoint

coordinates on time as follows:

x tð Þ ¼ x 0ð Þ þ Ux

Z t

0

vðtÞdt ¼ x1 þ x2 � x1ð Þ
t
T
�

1

2p
sin

2pt
T

� �� �

;

y tð Þ ¼ y 0ð Þ þ Uy

Z t

0

vðtÞdt ¼ y1 þ y2 � y1ð Þ
t
T
�

1

2p
sin

2pt
T

� �� �

:

ð10Þ

Here Ux and Uy are the components of the unit vector along the trajectory. We then calculate

the coordinates of the elbow joint (xe, ye) by finding the intersection of two circles with centers

at the origin (shoulder) and at the endpoint of the arm with radii L1 and L2, respectively (see

Fig 1C):

x2
e þ y

2
e ¼ L

2
1

ðx � xeÞ
2
þ ðy � yeÞ

2
¼ L2

2

ð11Þ

Given the time dependencies of the wrist and elbow coordinates, we calculate the joint

angles and their first and second derivatives using these simple geometrical relationships:

xe ¼ L1siny1; ye ¼ � L1cosy1; x � xe ¼ L2siny2; y � ye ¼ � L2cosy2 ð12Þ

by differentiating Eqs (10), (11) and (12) twice with respect to time and solving the resulting

equations for y1; y2;
_y1;

_y2;
€y1 ;

€y2 . We omit the explicit formulas due to their complexity. As a

result of these procedures, we obtain the values for the joint angles and their first and second

derivatives (angular velocities and angular accelerations) at every time t during the reaching

movement.

Muscle forces

Using Eq (2) and the angular accelerations, we calculate total torques q1 and q2 at the shoulder

and elbow joints:

q1 ¼ a1
€Y

1
þ b €Y

2

q2 ¼ a2
€Y

2
þ b €Y

1

ð13Þ

which allows us to calculate the torques generated by the muscles after subtracting frictional

torques:

q1;M ¼ q1 � ðq1;v � q2;v � q2;MÞ

q2;M ¼ q2 � q2;v

ð14Þ

where q1,M and q2,M are the total muscle torques at the shoulder and elbow joints, respectively;

q1,v and q2,v are the frictional torques in the shoulder and elbow joints, respectively, that are

defined by angular velocities (see Eq (2) and the text below it).

Since torque values (q1,M, q2,M) are created by 6 muscles, there may be significant redun-

dancy in possible muscle activation patterns. To limit possible solutions, we made the follow-

ing assumptions: 1) positive torque values correspond to flexor activity, and negative torque

values correspond to extensor activity; 2) since bi-articular muscles are concurrently active

with shoulder and elbow muscles, there are infinitely many ways to distribute the load over

the muscles to provide the same aggregate torque. Therefore, we introduced a dimensionless

control parameter d which dictates how the torque at the shoulder joint is distributed between

the bi-articular muscles and single flexor and extensor muscles. Thus, muscle forces were
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calculated using the following equations:

dðFSFRSF þ � FSERSEÞ þ ðd � 1ÞðFBFRBFS þ � FBERBESÞ � q1M ¼ 0

FEFREF þ � FEEREE þ FBFRBFE þ � FBERBEE � q2M ¼ 0;

where d represents torque distribution about the shoulder, and other notation are similar to

those in Eq 6. We chose to include the torque distribution parameter at the shoulder joint,

rather than at the elbow, because the shoulder joint experiences significantly larger torque

loads compared to the elbow joint; 3) the calculated forces cannot exceed the maximal possible

force values associated with the muscles (see Table 2). The above assumptions allow us to find

one parameter family of solutions for the system (3) (a family of motor programs) for all six

muscle forces. Parameter d defines the bi-articular muscles’ level of participation, such that

d = 1 indicates that the torque at the shoulder is fully generated by the single-joint shoulder

muscles, while d = 0 indicates that the torque at the shoulder is fully generated by the bi-articu-

lar shoulder muscles. In all the performed simulations, the torque distribution parameter d
was randomly varied in the interval (0.5, 1) (unless otherwise stated), using a uniform proba-

bility distribution, to construct an ensemble of possible motor programs for every particular

reaching movement.

Motoneuron pool signals

Activities of six motoneuron populations (MN) corresponding to and controling the six mus-

cles actuating the biomechanical arm is given by:

MN ¼ ðF=Fmax � FpÞ=ðFl � FvÞ ð15Þ

where F is the muscle force calculated in the previous step, and Fmax, Fp, Fl, and Fv are muscle

specific parameters explained above (see Eq (4) and comments below the equation).

Activities of cortical neurons

The six cortical neurons form the supra-spinal input drives (MC��!) to the motoneurons. Calcu-

lation of their desired activity patterns is achieved by numerically inverting the dependence of

motoneuron activity on cortical inputs (8) using the adapted secant method implemented as

the following iterative procedure:

MCjiþ1 ¼ MC
j
i � ðY

j
i � MNjÞðMCji � MC

j
i� 1Þ=ðY

j
i � Y

j
i� 1Þ; ð16Þ

where j ¼ 1; 6 is a component number, i is the iteration number, and Yi
!
¼ Y!ðMC��!i; FB

�!
Þ (see

Eq (8)). The map (16) converges to the solution of the inverse problem Y!ðMC��!; FB�!Þ ¼ MN��!

concerned with finding the vector of cortical inputsMC��!, such that the activity of spinal moto-

neurons isMN��! given the feedback FB�!. All component of the feedback FB�! depend on the cur-

rent state of the arm only, and are therefore fixed for every time step; and calculated using Eq

(5).

Simulation setup and regression analysis

Following many previous experimental studies, the movement direction was defined as the

direction from the initial center position to a peripheral target position [2, 13, 14]. The 0o

direction is defined as moving the arm’s endpoint (wrist) to the right along a horizontal line,

and moving the wrist in the opposite direction is the 180o direction. Moving the wrist away

from the body along a vertical line is the 90o movement direction, and moving the wrist in the
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opposite direction is the 270o movement direction. To understand the relationship between cor-

tical activity and movement direction, our arm control model simulated several center-out

reaching movements with an identical initial center position and equal reaching distances (radii)

to 8 peripheral target positions in 8 different directions, at 45o intervals from each other (Fig 2).

The same type of center-out task has been used extensively in experimental studies [2, 13]. Aver-

age cortical activity, average muscle length and velocity, and average feedback signals were fitted

to a cosine tuning curve using a regression function. The cosine tuning curve is given by:

f ¼ b0 þ b1 sinðyÞþb2 cosðyÞ;

which is equivalent to:

f ¼ b0 þ c1 cosðy � yPDÞ;

where b0, b1, b2, and c1 are regression coefficients. θPD is the preferred direction in which the

function has a maximal value. The coefficient of determination R2 was used to measure the

degree of the regression fit. Note that the average of f across all directions (8 directions in this

case) is equal to b0. The same regression analysis of cortical activity using a cosine tuning curve

was previously used in several experimental studies [2, 13] to investigate the directional tuning

of cortical neurons. The index of directional modulation, which describes the proportional

increase or decrease over the mean activity level, is given by I = c1/b0.

For most of the center-out reaching tasks, except where noted, the following simulation

parameters were used: integration time step of 0.001s; reaching time of 1s; reaching distance of

0.2m; and initial center position with Cartesian coordinates (0.0, 0.4). Note that we further investi-

gated the center-out tasks with 16 different directions at 23o intervals and found no significant dif-

ferences in the obtained results. Therefore, we elected to use 8 directions for our study.

Model validation

In order to evaluate the robustness of the model we independently varied basic parameters of

the mechanical system (masses and lengths of arm segments) within ±15% range. In addition,

we investigated the model’s behavior by varying maximal forces (Fmax) for each muscle in the

same range (±15% around mean). For all simulations, there were no qualitative differences in

the model’s performance. Specifically, the tuning curves of the cortical activities were similar

to the corresponding tuning curves for the default values of the biomechanical variables. The

statistical analysis based on the 50 simulations also did not show any significant differences in

PDs for the chosen ranges of the basic biomechanical parameters (see Table 3).

Software

The model of the motor control system was implemented under MATLAB 8.4. The code used

for the simulations presented here will be made available.

Table 3. Variations in directional preferences of the cortical neurons and motoneurons due to variations in model parameters.

Neurons PDs and R2 corresponding to different components

Sh-F Sh-E El-F El-E Bi-F Bi-E

PD R2 PD R2 PD R2 PD R2 PD R2 PD R2

Cortical

neurons

154.20

±1.03

0.73

±0.01

312.64

±0.78

0.48

±0.01

267.82

±0.77

0.91

±0.02

92.16

±0.84

0.97

±0.01

225.08

±1.38

0.86

±0.03

66.72

±0.73

0.30

±0.05

Moto-neurons 159.96

±0.99

0.43

±0.01

295.88

±0.77

0.11

±0.01

270.90

±0.74

0.69

±0.07

96.18

±1.97

0.86

±0.02

208.24

±2.74

0.50

±0.05

123.88

±4.69

0.02

±0.01

https://doi.org/10.1371/journal.pone.0179288.t003
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Supporting information

S1 File. Directional modulations and tuning curve fittings. The compressed zip file contains

the data in ‘.mat’ format and the Matlab codes which can be accessed by MATLAB. The data

and codes in this file produce reaching movement in 8 directions, directional modulation

curves, tuning curves, preferred directions and coefficient of determinations.

(ZIP)
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