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Abstract

INTRODUCTION: It is necessary to accurately account for systematic differences due

to variability in scanners, radiotracers, and acquisition protocols in multisite studies

combining amyloid imaging data.

METHODS: We propose Probabilistic Estimation for Across-batch Compatibility

Enhancement (PEACE), a fully Bayesianmultimodal extension of thewidely used Com-

Bat harmonization model, and we apply it to harmonize regional amyloid positron

emission tomography data from two scanners.

RESULTS: Simulations show that PEACE recovers true harmonized values better than

ComBat, even for unimodal data. PEACE harmonization of multiscanner regional amy-

loid imaging data yields results that agree better with longitudinal data compared to

ComBat, without removing the known biological effects of age or apolipoprotein E

genotype.

DISCUSSION: PEACE outperforms ComBat in both unimodal and bimodal contexts, is

applicable to multisite amyloid imaging data, and holds promise for the harmonization

of other neuroimaging data over ComBat.
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HIGHLIGHTS

∙ We introduce PEACE, a fully Bayesian multimodal extension of ComBat harmoniza-

tion.

∙ Simulations show that PEACE recovers true harmonized values better thanComBat.

∙ PEACE accurately harmonizes multiscanner regional amyloid imaging data.

1 INTRODUCTION

Amyloid-𝛽 positron emission tomography (PET) allows for the assess-

ment of an early neuropathological hallmark of Alzheimer’s disease

(AD).1 Multisite studies combining amyloid PET data from differ-
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ent scanners, radiotracers, and acquisition protocols are becom-

ing more common to enable the examination of research ques-

tions where effect sizes may be small. Combining data across

sites requires accounting for systematic differences in amyloid

measurements.
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Several approaches have been proposed for harmonizing amyloid

PET data. They can be grouped into three categories based on the

type of measurement being harmonized: reconstructed PET image,

parametric image, or regional or global statistics of the parametric

image. An approach in the first category is to apply spatial smooth-

ing to the reconstructed PET image to achieve a common resolution

across sites.2 Examples in the second category for harmonizing stan-

dardized uptake value ratio (SUVR) images include approaches based

on non-negative matrix factorization (NMF)3 and deep learning.4 Both

of these approaches have been trained using cross-over data (i.e., data

for same participants scanned with multiple radiotracers, scanners,

or acquisition protocols), though the models can be applied without

requiring cross-over data if an applicable trained model is available.

Examples in the last category include Centiloids5 and Nonlinear Dis-

tributional Mapping (NoDiM).6 Centiloids were developed to calibrate

global amyloid measurements from various sites and radiotracers

against a common reference scale. The function for converting amy-

loid PET measurements to Centiloids is an affine transformation that

yields a mean of 0 within a control group aged ≤ 45 and a mean of 100

within a group of AD patients. When such groups are not available,

an approximate transformation can be determined by applying one’s

imageprocessingpipeline to theGAAINCentiloiddataset for the radio-

tracer of interest (https://www.gaain.org/centiloid-project) and finding

the transformation using the results of this processing. However, this

approximate procedure does not account for inherent differences due

to scanners or acquisition protocols. Recent work has focused on

using parametric image-based harmonization, such as the NFM-based

method, in conjunction with Centiloid calibration, to further minimize

site differences.3,7 NoDiM is similar tohistogrammatchingbut uses the

estimated cumulative density functions based on a two-class Gaussian

mixture model (GMM) for aligning the distributions of global amyloid

measurements across sites.6 While NoDiM improves upon Centiloids,

it assumes that the proportion of individuals with elevated amyloid in

each site is the same.

ComBat is a harmonization approach originally developed for gene

arraydata8 andhas sincebeenappliedwithmodifications and improve-

ments to magnetic resonance imaging (MRI) data,9–12 including vox-

elwise and regional measurements. It has been extended to handle

longitudinal measurements13 and non-linear relationships.14 ComBat

has also been applied to fluorodeoxyglucose PET,15,16 but its util-

ity has not been demonstrated for amyloid PET. ComBat assumes

a unimodal distribution of measurements conditional on covariates.

This assumption is violated in the case of amyloid imaging data,

which exhibit a bimodal distribution.17 The unimodality assumption

was relaxed in GMM-ComBat,12 where a two-class GMM is fitted to

each feature separately and the model with the best fit is used to

assign each scan to one of the two clusters. The cluster assignment

is then used as a batch effect in ComBat, followed by another appli-

cation of ComBat to account for site effects separately within each

cluster. This method seeks to remove cluster differences. In the con-

text of amyloid PET imaging, this amounts to removing differences

between low and high amyloid burden groups and, therefore, is not

suitable.

RESEARCH INCONTEXT

1. Systemic review:We conducted literature searches using

Google Scholar andPubMedwith the keywords “amyloid”,

“PET”, “harmonization”, and “ComBat”. We also reviewed

relevant citations in the papers thatwe identified through

our literature search.

2. Interpretation: ComBat is not suitable for harmonizing

multi-site datawith bimodal distributions such as amyloid

PET measurements. Our method, PEACE, has a theoreti-

calmodel that is in better alignmentwithmultimodal data

and yieldsmore accurate harmonized values for unimodal

data as well, suggesting its applicability beyond amyloid

imaging data.

3. Future direction: PEACE should be tested on other neu-

roimaging data and in the context of harmonization of

more challenging data sets that have multiple sources

of systematic differences such as differences in scanner,

radiotracer, and protocol.

In this paper, we propose an approach to harmonizing regional amy-

loid PET measurements across different sites that does not require

data from specific subgroups or cross-over data and does not make

the assumption that the proportion of individuals with elevated amy-

loid is the same across sites. Our approach, Probabilistic Estimation for

Across-batch Compatibility Enhancement (PEACE), makes two substan-

tial changes to ComBat. First, we incorporate a GMM informed by all

input features simultaneously, integrating cluster assignment within

harmonization. Second, instead of empirical Bayes, we employ a fully

Bayesian approach, enabling the computation of uncertainty around

harmonized values. Using simulations, we demonstrate that PEACE

yields harmonized values that agree better with true values compared

to ComBat. We then apply PEACE to a multiscanner amyloid PET

dataset and show that it retains the biological associations of age and

apolipoprotein E (APOE) genotype with regional amyloid levels while

reducing scanner differences.

2 METHOD

2.1 ComBat

We briefly review ComBat. Let i ∈ {1,2,… , I} indicate subject, bi ∈

{1,2,… , B} the batch for subject i, and k ∈ {1,2,… , K} a biomarker or fea-

ture index. yik is the value of biomarker k and xil is the value of covariate

l for subject i.

The original ComBatmodel is

yik = 𝛼k +
∑
l

𝛽klxil + 𝛾bik + 𝛿bik𝜀ik (1)

https://www.gaain.org/centiloid-project
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𝜀ik ∼  (0,𝜎2k ), (2)

where 𝛾 and 𝛿 describe batch differences in biomarker level and noise

variance, respectively, and have priors that help control their variances

within a batch:

𝛾bk ∼ 
(
mb, 𝜏

2
b

)
, (3)

𝛿bk ∼ Inv-Gamma(ub, vb). (4)

mb, 𝜏b, ub, and vb are fixed at their empirical Bayes (EB) estimates,

whose identifiability is satisfied by deriving them under the constraint

that
∑

b nb𝛾bk = 0 for each k, where nb is the number of subjects in

batch b. It is also possible to not use priors on 𝛾 and 𝛿, which yields

non-EB ComBat.

The harmonized measurement, which removes batch effects but

retains covariate effects, is given by

yComBat
ik =

yik −
(
�̂�k +

∑
l 𝛽klxil + �̂�bik

)
�̂�bik

+ �̂�k +
∑
l

𝛽klxil, (5)

where �̂�, 𝛽, �̂�, and �̂� are the estimated parameters. In our analyses, we

consider the first batch as the reference against which the remaining

batches are harmonized. This is also known as modified ComBat (M-

ComBat).18

2.2 PEACE

PEACEmakes two substantialmodifications toComBat. First, we allow

for the possibility that the data may follow a multimodal distribution

by modeling the observations as a mixture of Gaussians. We incorpo-

rate this into the model by introducing latent variables zi ∈ {1,2,… , Z}

to indicate the cluster subject ibelongs to. Eachobservation is assumed

to be drawn from a normal distribution whose mean and variance

depend on the latent cluster and batch. We want to be able to remove

the effects of a batch without removing latent cluster effects; as a

result, we need a model whose batch and latent cluster parameters

are separable.

The PEACEmodel is given by

yik = 𝛼zik +
∑
l

𝛽ziklxil + 𝛾bik + 𝛿bik𝜀ik, (6)

𝜀ik ∼ 
(
0,𝜎2zik

)
, (7)

zi ∼ Categorical
(
𝝓bi

)
. (8)

We seek to harmonize all observations to the first batch, so we fix

𝛾b=1,k = 0 and 𝛿b=1,k = 1 ∀k.

The second modification we make to ComBat is a fully Bayesian

implementation of priors rather than an EB approach. We use the

following priors and hyperpriors:

𝛼zk ∼ 
(
�̄�k, s̄

2
yk

)
, (9)

𝛽zkl ∼ 
(
0, s̄2yk∕s̄

2
xl

)
, (10)

𝛾bk ∼ 
(
0, 𝜏2b

)
for b > 1, (11)

𝛿bk ∼ Half-Cauchy (0,1) for b > 1, (12)

𝝓b ∼ Dirichlet(1Z), (13)

𝜏b ∼ Exponential
(
s̄−1b

)
, (14)

𝜎zk ∼ Exponential
(
s̄−1yk

)
, (15)

where �̄�k =
1

I

∑
i yik and s̄

2
yk =

1

I−1

∑
i(yik − �̄�k)

2 are the empirical mean

and variance of the observations for feature k, respectively, and s̄2xl is

the variance of xl. 𝝓b is a vector in the unit (Z − 1)-dimensional sim-

plex and indicates the probabilities of belonging to each latent cluster

in batch b. Lastly,

s̄2b =
1|Ωb|K − 1

∑
k

∑
i∈Ωb

(yik − �̄�k)
2 (16)

is the variance of observations across all features in batch b, where

Ωb = {i ∣ bi = b}.

We selected the prior distributions for 𝛼, 𝛽, and 𝜎 based on the

recommendations for weakly informative priors for Bayesian linear

regression models implemented in Stan19 [p. 124], omitting the 2.5

multiplier on the standard deviations of 𝛼 and 𝛽 to make the prior dis-

tributionsnarrower. Thismakes thepriorsmore informative than those

used in literature,19 helping to guidemodel fitting by prioritizing batch-

agnostic parameters 𝛼 and 𝛽 before relying on the batch-dependent

parameters 𝛾. Similarly, we assumed a normal prior for 𝛾 whose vari-

ance was modeled with an exponential distribution similar to that of

𝜎. We selected the prior distribution for 𝛿 based on the recommenda-

tions for weakly informative prior alternatives to the inverse Gamma

distribution in settings where distribution conjugacy is not required.20

We set the scale parameter of the half-Cauchy distribution for 𝛿 to

1 to obtain a prior with approximately equal density in the intervals

(0,1) and (1,∞), reflecting that a priori, a given batch is approximately

equally likely to have a smaller noise variance (0 < 𝛿 < 1) or a greater

noise variance (𝛿 > 1) than that of the reference batch. We used the

Dirichlet distribution as a prior for 𝝓 to ensure that the mixing coeffi-

cients summed to one within each batch, assuming an uninformative

prior by setting the concentration parameter to a vector of ones.

We estimate model parameters using Hamiltonian Monte Carlo

Markov chain (MCMC) samplingwithTwarm-up iterations followedby

T samples drawn from the posterior. The harmonized measurement at

the tth posterior draw is given by

ỹik =
yik −

(
𝛼
(t)
zik
+
∑

l 𝛽
(t)
zikl

xil + 𝛾
(t)
bik

)
𝛿
(t)
bik

+ 𝛼
(t)
zik
+
∑
l

𝛽
(t)
zikl

xil, (17)



4 of 10 BILGEL

where 𝛼(t), 𝛽(t) , 𝛾(t), and 𝛿(t) are the estimated parameters at the tth

iteration. However, because the cluster that this subject belongs

to is unknown, we cannot compute this quantity (unless 𝛿
(t)
bik

= 1).

Instead, we compute the expected harmonizedmeasurement given the

observed data and the current parameter estimates by marginalizing

over the clusters:

E
[
ỹik ∣ yi , 𝜽

(t)
]
=

Z∑
zi=1

p
(
zi ∣ yi , 𝜽

(t)
)

×

⎡⎢⎢⎢⎣
yik −

(
𝛼
(t)
zik
+
∑

l 𝛽
(t)
zikl

xil + 𝛾
(t)
bik

)
𝛿
(t)
bik

+ 𝛼
(t)
zik
+
∑
l

𝛽
(t)
zikl

xil

⎤⎥⎥⎥⎦
,

(18)

where

p
(
zi ∣ yi , 𝜽

(t)
)
=

𝜙
(t)
bizi

∏
k p

(
yik ∣ zi, 𝜽

(t)
)

∑Z
zi=1

𝜙
(t)
bizi

∏
k p

(
yik ∣ zi, 𝜽

(t)
) (19)

is the posterior probability that subject i belongs to cluster zi, yi is the

vector of biomarker observations for subject i, and 𝜽(t) is the collection

of estimates 𝛼(t), 𝛽(t) ,𝜎(t), 𝛾(t), 𝛿(t), and 𝜙(t). E[ỹik ∣ yi , 𝜽
(t)] is invariant to

cluster ordering,meaning that it canbeanalyzedacross iterationswith-

out having to ensure the compatibility of the cluster labels.We refer to

E[ỹik ∣ yi , 𝜽
(t)] averaged over T iterations as yPEACEik .

2.3 Simulation experiments

We conducted two sets of simulation experiments. The first set eval-

uated the recovery of harmonized measurements as a function of

the number of individuals I and the number of clusters Z. The sec-

ond set investigated the robustness of harmonization to the relative

proportion of clusters.

We fitted ComBat and PEACE to the simulated data. For ComBat,

we used the neuroCombat R package10 with the first batch set as the

reference batch. We investigated ComBat with empirical Bayes (EB

ComBat) and ComBat without priors (Non-EB ComBat). For PEACE,

we set the number of clusters to the true value of Z and used Stan21

to perform Hamiltonian MCMC sampling. We compared the harmo-

nized values estimated with ComBat and PEACE to their true values.

We computed the root mean square error (RMSE) between the esti-

mated harmonizedmeasurements and the truemeasurementswithout

batch effects for observations that are not in the reference batch:

RMSE(Method) =

√√√√ 1

K
∑

i|bi≠1 1
∑
i|bi≠1

∑
k

(
yTrueik − yMethodik

)2
, (20)

where Method is EB ComBat, Non-EB ComBat, or PEACE.

2.3.1 Recovery of harmonized measurements as a
function of I and Z

For the first set of experiments, we simulated datasets with I =

75,150,300,600 individuals distributed equally across B = 3 batches.

We used Equations (6)–(15), where we set �̄�k = 0, s̄yk = 5, s̄xl = 5, and

s̄b = 5 ∀k, l, b to simulate the data. These values were arbitrarily cho-

sen and do not reflect the properties of any imaging modality. We

set L = 1 and sampled xi from a normal distribution with zero mean

and unit standard deviation. We simulated two separate datasets with

one (Z = 1) or two (Z = 2) clusters. For Z = 2, instead of sampling 𝝓b
from a Dirichlet distribution, we manually picked 𝜙1 = [0.2,0.8], 𝜙2 =

[0.3,0.7], and 𝜙3 = [0.4,0.6] for the purpose of simulating data.

2.3.2 Robustness of harmonization to relative
proportion of clusters

To investigate the robustness of PEACE to the relative proportion

of clusters, we simulated data for I = 150 individuals split between

B = 2 batches and Z = 2 clusters. The mixing coefficient for the first

batch was fixed at 50%, and the mixing coefficient for the second

batch (𝜙b=2,z=1) was one of the following: 10%, 30%, 50%, 70%, or

90%. Data were simulated for K = 36 regions to reflect the statis-

tical characteristics of regional amyloid PET data: the values of 𝛼,

𝛽, and 𝜎 were fixed at the intercept, regression coefficient for the

age term, and residual noise standard deviation, respectively, esti-

mated from linear regressions conducted amongPittsburgh compound

B (PiB)− (for z = 1) and among PiB+ (for z = 2). We randomly sam-

pled ‚ from  (0,0.52) and ‹ from Half-Cauchy(1,0.03) to generate

batch effects that were consistent with the batch effects observed

in our real dataset. In these experiments, the first cluster is analo-

gous to the PiB− group, with a smaller noise variance, and the second

cluster is analogous to the PiB+ group, with a greater noise vari-

ance. The mixing coefficient corresponds to the frequency of the first

cluster.

2.4 Real data experiment

We demonstrate the application of PEACE to amyloid PET data

acquired using the 11C-PiB radiotracer in the Baltimore Longitudinal

Study of Aging. We scanned 79 participants on a General Electric (GE)

Advance scanner and then on a Siemens High Resolution Research

Tomograph (HRRT) at their next visit, which took place approximately

2.2 years later on average (range 0.7–6.6). Dynamic PiB data acquired

over 70 min were analyzed using a simplified reference tissue model

with spatial constraint22 with cerebellar gray matter as the reference

to calculate distribution volume ratio (DVR) images.23 The average

DVR value in each cortical gray matter region was calculated using

anatomical labels calculatedwithMUlti-atlas region Segmentation uti-

lizing Ensembles of registration algorithms and parameters (MUSE)24

on the corresponding structural MRI images.
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TABLE 1 RMSE for EB ComBat, Non-EB ComBat, and PEACE as a function of sample size is shown for the simulation experiment with Z = 1
(left) and Z = 2 (right). PEACE achieves the lowest RMSE.

Z = 1 Z = 2

I = 75 I = 150 I = 300 I = 600 I = 75 I = 150 I = 300 I = 600

Unharmonized 15.07 16.69 17.37 19.35 33.58 28.6 29.88 32.92

EBComBat 1.51 1.69 1.62 1.40 2.88 6.30 3.14 3.05

Non-EB ComBat 0.76 1.32 1.00 0.61 2.57 6.22 3.06 2.99

PEACE 0.48 0.63 0.39 0.18 1.83 1.17 0.25 1.25

Abbreviations: EB ComBat, ComBat with empirical Bayes; Non-EB ComBat, ComBat without empirical Bayes; PEACE, Probabilistic Estimation for Across-

batch Compatibility Enhancement; RMSE, root mean square error.

We split the participants into two groups and assigned the first 40

participants to the GE Advance batch and the remaining 39 to the

HRRT batch, using only the data for the corresponding scanner in the

PEACE harmonization procedure. We then fitted the bimodal PEACE

model with GE Advance as the reference batch using the mean DVR in

72 cortical regions of interest (ROIs) that are used to calculate global

PiB DVR.We used age as a covariate in harmonization.

To verify that harmonization reduced scanner differences, we com-

pared the PEACE result with the result of an affine transformation-

based harmonization for the 39 individuals in the second batch. This

affine transformation-based harmonization leveraged additional lon-

gitudinal data collected on each scanner (Appendix C). These affine

transformation-based harmonized values, which take into account

expected changes in the PET measurements over the time interval

between GE Advance and Siemens HRRT scans, were used as true

values to compute the RMSE for PEACE results.

To verify that harmonization did not alter known biological associa-

tions, we examined the associations of age and APOE 𝜀4 positivity with

harmonized regional DVR using a separate linear regressionmodel per

ROI. We expected harmonization to not affect these associations. For

this analysis, we focus on the results for two of the 72 ROIs: left and

right precuneus, which are early amyloid accumulating regions.25

We also harmonized the same regional amyloid PET data using the

spatial smoothing approach described by Joshi et al.2 (which involved

smoothing the reconstructed GE Advance and Siemens HRRT PET

scans with Gaussian kernels with different full width at half maximums

calculated using scans of the Hoffman brain phantom to bring them

to a common 8-mm isotropic resolution prior to image analysis), EB

ComBat, and Non-EB ComBat. We computed RMSE using the affine

transformation-based harmonized values as true values, as described

earlier. We also calculated the absolute error for each scan as the

absolute difference from the affine transformation-based harmonized

value. Percent relative absolute error was computed by dividing the

absolute error by the affine transformation-based harmonized value

andmultiplying by 100.

2.5 Code availability

Weprovide the Stan code for the PEACEmodel in Appendices A and B.

3 RESULTS

3.1 Simulation experiments

3.1.1 Recovery of harmonized measurements as a
function of I and Z

RMSEs for EB ComBat, non-EB ComBat, and PEACE are shown

in Table 1. In both the unimodal and bimodal simulations, PEACE

outperformed ComBat.

As an example, we present harmonized values for the first two

biomarkers in the simulation experiment with Z = 2 clusters and I =

600 samples in Figure 1. ComBat underestimates the variance in the

harmonized data, whereas bimodal PEACE yields a result closer to the

true distribution.

3.1.2 Robustness of harmonization to the relative
proportion of clusters

In simulation experiments investigating the robustness of harmoniza-

tion to relative frequencies of the clusters, PEACE outperformed

ComBat (Figure 2). RMSE was at its minimum for both ComBat and

PEACE when the two batches had similar cluster frequencies. The

increase in RMSE with mixing coefficient decreasing from 50% to 10%

was similar for ComBat and PEACE. However, the increase in RMSE

with mixing coefficient increasing from 50% to 90% was lower for

PEACE than for ComBat.

3.2 Real data experiment

Participant characteristics are presented in Table 2. Therewere no sta-

tistically significant differences between batches in age, sex, race, or

APOE 𝜀4 positivity as assessed with Wilcoxon rank-sum test for age

and Fisher’s exact test for the remaining variables. One participant in

Batch 1 and two participants in Batch 2 were cognitively normal at the

time of the GE Advance scan but developed mild cognitive impairment

by the time of the Siemens HRRT scan. There were two participants in

Batch 2 whose PiB group assignment based on the GE Advance scan
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F IGURE 1 Simulation experiments investigating recovery of harmonizedmeasurements. To illustrate the performance of ComBat and PEACE,
we show the results for the simulation experiment with Z = 2 clusters and I = 600 samples.We present scatter plots of Biomarker 2 versus
Biomarker 1. Color indicates batch and shape indicates cluster. Batch 1 is the reference batch, and therefore, measurements for subjects in this
batch are not affected by harmonization by ComBat or PEACE. ComBat underestimates the variance in the harmonized data, whereas PEACE
yields a result closer to the true distribution. PEACE, Probabilistic Estimation for Across-batch Compatibility Enhancement.

TABLE 2 Participant characteristics. Age, PiB group, and diagnosis
are reported at the time of the scan on the corresponding scanner.
APOE genotyping wasmissing for one participant in each batch.

Batch 1 Batch 2

GEAdvance Siemens HRRT

N = 40 N = 39

Age, median (IQR) 76 (71, 83) 79 (72, 84)

Female, n (%) 24 (60%) 24 (62%)

Race, n (%)

Asian or Pacific Islander 2 (5%) 2 (5%)

Black 5 (12%) 8 (21%)

White 33 (82%) 29 (74%)

APOE 𝜀4+, n (%) 9 (23%) 13 (34%)

PiB+, n(%) 13 (32%) 12 (31%)

Diagnosis, n(%)

Cognitively normal 35 (88%) 36 (92%)

Mild cognitive impairment 4 (10%) 3 (7.7%)

Other impairment 1 (2.5%) 0

Abbreviations: GE, General Electric; HRRT, High Resolution Research

Tomograph; IQR, interquartile range; PiB, 11C-Pittsburgh compound B.

was different from the PiB group assignment based on the Siemens

HRRT scan (one converter and one reverter).

Figure S1 illustrates the longitudinal data used for the

affine transformation-based harmonization, which leverages

within-individual longitudinal trends to yield longitudinally

consistent trajectories.

The overall RMSE across all 72 ROIs excluding the reference batch

was 0.1736 for spatial smoothing, 0.0282 for EB ComBat, 0.0313

for non-EB ComBat, and 0.0230 for PEACE. We calculated mean

cortical DVR as the average of the 72 ROIs (Figure 3). Percent rel-

ative absolute error in mean cortical DVR was as high as 4.22% for

ComBat (with absolute errors up to 0.055), while PEACE yielded per-

cent relative absolute errors below 1.51% (with absolute errors up

to 0.016).

In linear regression analyses, both age and APOE 𝜀4 positivity were

associated with PEACE-harmonized left (𝛽 = 0.0091, SE= 0.0030, p =

0.0030 for age; 𝛽 = 0.13, SE= 0.052, p = 0.015 for APOE 𝜀4) and right

(𝛽 = 0.0080, SE= 0.0031, p = 0.012 for age; 𝛽 = 0.11, SE= 0.054, p =

0.045 for APOE 𝜀4) precuneus DVR.

4 DISCUSSION

We introduced PEACE, a fully Bayesian multimodal extension of Com-

Bat, to account for differences across sites (or batches) in the means

and noise variances of observations. Like ComBat, PEACE is also

applicable to unimodal data, but unlike ComBat, PEACE can also be

used for multimodal data such as amyloid PET measurements. As we

showed in simulation experiments with unimodal outcomes, our fully

Bayesian approach yields more accurate harmonized values compared

to the EB and the non-EB approaches employed in ComBat. Harmo-

nization of bimodal data using ComBat, which assumes a unimodal

distribution conditional on covariates, results in an underestimation

of the variance in the harmonized estimates. We applied our method

to regional amyloid PET imaging data acquired on two scanners and

demonstrated that PEACE yielded harmonized values that agreed
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F IGURE 2 Simulation experiments investigating harmonization performance as a function of themixing coefficient in the second batch.
PEACE attains lower RMSE than ComBat and is robust to differences in cluster frequency between batches. Top: Histograms of simulated data.
Data simulations were based on statistics observed in our PiB DVR dataset, with the two clusters being analogous to PiB– and PiB+ groups. The
mixing coefficient was fixed at 50% in the first batch andwas varied from 10% to 90% in 20 percentage point increments in the second batch. A low
mixing coefficient corresponds to a lower frequency of the first cluster, which is analogous to the PiB– group. Bottom: RMSE of the harmonized
values as a function of themixing coefficient in the second batch (𝜙b=2,z=1). PEACE, Probabilistic Estimation for Across-batch Compatibility
Enhancement; PiB, 11C-Pittsburgh compound B; RMSE, Root mean square error.

better with values expected based on previous longitudinal trends for

each participant compared to ComBat. We also showed that PEACE

harmonization did not remove the known effects of age or APOE 𝜀4

positivity on amyloid levels, suggesting that PEACE can appropri-

ately minimize scanner differences without altering true biological

differences.

In simulation experiments, PEACE was robust to differences in the

relative proportion of clusters between batches, since it was able to

handle cases where cluster frequency was as low as 10%. The greater

performance difference between PEACE and ComBat at high mixing

coefficients compared to at low mixing coefficients likely stems from

the fact that the noise variance was lower in the first cluster simulated

in our experiments: with less noisy observationsmaking up the greater

proportion of the dataset, the PEACE model was able to estimate

parameters more accurately.

In real data experiments, PEACE achieved a relative absolute error

≤ 1.51% for mean cortical PiB DVR for all scans. This is below the

approximately 2% relative longitudinal change in global amyloid bur-

den among amyloid accumulating individuals.26 On the other hand, the

relative absolute error was as high as 4.22% for ComBat, exceeding

the expected relative longitudinal change. These results suggest that

PEACE harmonizationmay allow for better quantification of longitudi-

nal change thanComBat, while longitudinal changemight bewiped out

with ComBat harmonization since the expected longitudinal change in

amyloid burden is within themargin of error of ComBat.

There are several important advantages to using a fully Bayesian

approach versus an EB approach. First, uncertainty in the harmonized

values canbequantifiedby credible intervals,which are easily obtained

by computing statistics across the MCMC samples. A bootstrapping-

based approach to accounting for parameter uncertainty in



8 of 10 BILGEL

F IGURE 3 Harmonization results on PiB DVR data. 72 ROIs were used in ComBat and PEACE harmonization; for ease of presentation, we
show the results for mean cortical DVR, which is calculated as the average of the 72 ROIs. Reference batch is excluded from the plots. PEACE
yields the best agreement with affine-transformed values, which are the expected values based onwithin-individual longitudinal trends. Top:
Agreement between harmonized values and affine-transformed values. The dashed line is the identity line. Bottom: Absolute (left) and percent
relative absolute error (right) between harmonized values and affine-transformed values for each scan. log2 scale is used for the y-axes. Percent
relative absolute error inmean cortical DVRwas up to 4.22% for ComBat (with absolute errors up to 0.055), while PEACE yielded percent absolute
errors below 1.51% (with absolute errors up to 0.016). DVR, distribution volume ratio; PEACE, Probabilistic Estimation for Across-batch
Compatibility Enhancement; PiB, 11C-Pittsburgh compound B; ROIs, regions of interest.

harmonization within the context of EB ComBat was proposed by

Da-ano et al.,27 but this approach does not yield estimates of uncer-

tainty in the harmonized values. Second, the search for an analytically

tractable solution to minimize computation requirements in Com-

Bat restricts the choice of priors to those that are conjugate to the

assumeddata distributions, and such conjugate priorsmay not be ideal.

The inverse gamma prior, used in ComBat for the batch/site variance

parameter, has been shown to exhibit irregularities,20 and recent

Bayesian research has opted for other priors, such as exponential or

Cauchy, that do not yield analytically tractable solutions but perform

well underMCMC sampling.

Our proposed model and analyses have several limitations. PEACE

incorporates a GMM, and as a result, its parameter estimation is sus-

ceptible to factors such as the relative frequency and separability of

clusters. A fine-tuned initialization might be necessary to obtain con-

vergence and accurate results for challenging datasets. PEACE is based

on several assumptions, including the independence of the batch effect

from cluster assignment and the normality of residuals within each

cluster and batch, which may not always be appropriate. We com-

pared PEACE to ComBat, but further and more detailed comparison

against other methods used in harmonization is necessary (a compre-

hensive review of harmonization methods applied to neuroimaging

data is presented in literature28). In our amyloid PET dataset, scans

were conducted on GE Advance and Siemens HRRT scanners at dif-

ferent visits separated on average by a couple of years, making it

difficult to define a ground truth-harmonized value against which we
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could compare ourmodel results. The investigation of the performance

of PEACE was limited to scanner differences in this analysis; further

investigation is needed to determine whether PEACE can adequately

harmonize across different amyloid radiotracers and acquisition pro-

tocols as well. Our study also has important strengths. We were able

to leverage the available longitudinal PET data to define ground-truth

values against which to compare the harmonized Siemens HRRT val-

ues. We described a fully Bayesian method that can be fitted using

existing MCMC sampling software. Our model can be applied to other

neuroimaging data collected in studies of aging and AD, and the fully

Bayesian approach provides a natural and easy way of quantifying the

uncertainty in harmonization.

In conclusion, a fully Bayesian implementation of ComBat is within

the computational power available tomany researchers today, and our

results suggest that such an approach is preferable over EB or non-

EB versions of ComBat. PEACE expands the class of biomarkers and

measurements that can be satisfactorily harmonized beyond what is

reasonable with ComBat.
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