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for additive effects on brain damage by multiple patholo-
gies occurring in different functionally important neurons. 
Based upon this information, we hypothesize a cascade of 
events that may explain general mechanisms in the devel-
opment of neurodegenerative disorders: (1) distinct lesions 
are a prerequisite for the development of a distinct disease 
(e.g., primary age-related tauopathy for AD), (2) disease-
specific pathogenic events further trigger the development 
of a specific disease (e.g., Aβ aggregation in AD that exag-
gerate further Aβ and AD-related τ pathology), (3) the 
symptomatic disease manifests, and (4) neurodegenerative 
co-pathologies may be either purely coincidental or (more 
likely) have influence on the disease development and/or its 
clinical presentation.

Keywords  Alzheimer’s disease · Amyotrophic lateral 
sclerosis · Frontotemporal lobar degeneration · Lewy 
body · Amyloid beta · Tau · Synuclein · TDP-43

Introduction

Neurodegenerative disorders are characterized by protein 
aggregates, the importance of which in inducing neuronal 
toxicity has been hotly debated. Pathological forms of 
proteins also appear to spread through the brain in charac-
teristic patterns in most neurodegenerative diseases, with 
particularly robust evidence for the spread of amyloid beta 
(Aβ), tau (τ), and α-synuclein (α-syn) [43, 73]. Although 
each neurodegenerative disorder exhibits accumulation of 
specific characteristic protein aggregates, there are also 
many cases that exhibit aggregation of multiple pathologi-
cal proteins. Studies in model systems including transgenic 
animals and cell culture support several potential types 
of interactions between different pathological proteins 
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involved in neurodegeneration including cross-seeding of 
aggregates and pathological changes in one protein initi-
ating mislocalization and post-translational modifications 
of another. Here, we will examine the neuropathological 
co-occurrence of pathologies in human autopsy cases and 
discuss potential mechanistic links between these diverse 
proteins in disease pathogenesis. We will focus on the path-
ological proteins for which there is the clearest evidence of 
both co-existence in human cases and biological evidence 
for potential mechanistic interactions. Table 1 summarizes 
the neurodegenerative diseases we will cover and the pro-
tein aggregates most commonly observed in the brains of 
people with those diagnoses. The co-occurrence of cerebro-
vascular pathology and protein aggregates is discussed in 
the other article of this cluster [77]. Here, our aim is to pro-
vide an updated view about the co-occurrence of different 
protein aggregates in neurodegeneration and their possible 
mutual interactions which should further our understanding 
of the biology of neurodegenerative disorders.

Aβ and τ—interactions of the classic hallmarks 
of Alzheimer’s disease (AD)

AD is the most common dementing disorder seen in 
50–60% of dementia cases. Neuropathologically, AD is 
characterized by dramatic atrophy of the gray matter and 
accumulation of amyloid plaques and neurofibrillary tan-
gles (NFTs) [60]. Amyloid plaques consist of extracellular 
aggregates of Aβ [93], which is a cleavage product derived 
from the amyloid precursor protein (APP) by β- and 
γ-secretase cleavage [53]. The same Aβ peptide also occurs 
in AD-related vascular deposits known as cerebral amyloid 
angiopathy (CAA) [7]. Aβ-plaques as well as vascular Aβ 
deposits first occur in neocortical areas and then expand 
into further brain regions in a distinct hierarchical sequence 
[141, 143].

Age‑related accumulation of Aβ and τ

Age is the most important risk factor for Alzheimer’s dis-
ease, and for most sporadic, non-inherited neurodegenera-
tive disorders. However, the question of why age is asso-
ciated with increased risk for neurodegeneration remains 
unclear. We have examined pathological cohorts at different 
ages to characterize pathological accumulations. Aβ depos-
its are observed as early as 11–20 years of age, and their 
frequency and phase of distribution increases with increas-
ing age. At 80  years of age, approx. 80% of all autopsy 
cases show Aβ plaques (see also Fig. 1b), whereas approx. 
20% do not develop any amyloid plaques up to the age of 
100 years [15]. Symptomatic AD seen in the old age groups 
exhibits a prevalence ranging from 11% in the age group 

over 64 years to 32% in the age group over 84 years [3]. 
In parallel with the τ and Aβ pathology, neuritic plaques 
also become more prevalent with aging. In the cohort 
of cases covered in Fig.  1c, they were first seen between 
41–60 years of age and reached approximately 55% preva-
lence in the age group of 81–100 years. Amyloid pathology 
alone is not sufficient to cause symptomatic Alzheimer’s 
disease, and many non-demented people show early phases 
of plaque pathology with aging.

NFTs represent neuronal cytoplasmic aggregates of 
abnormal τ-protein that form paired helical filaments [48]. 
The first step in the formation of these aggregates is the 
abnormal phosphorylation of the τ-protein, the dissociation 
of τ from axonal microtubules, and its aberrant accumula-
tion in the somatic cytoplasm and dendrites. Somatoden-
dritic accumulations of phosphorylated τ before fibrils are 
formed and are called “pretangles” [2, 9]. NFTs consisting 
of paired helical filaments of τ develop after (and presum-
ably directly from) pretangles and correlate with neuronal 
degeneration. NFTs remain as ghost tangles even after 
the death of neurons, but the amount of neuronal death 
in AD exceeds the amount of NFT formation, indicating 
that NFTs are not necessary for cell death [9, 11, 45]. In 
the human brain, silver-stainable NFTs start to develop in 
the transentorhinal cortex and in a few subcortical brain 
stem nuclei (locus coeruleus, raphe nuclei, basal nucleus 
of Meynert) [13, 15]. From the transentorhinal cortex, 
NFT pathology spreads into the entorhinal region and then 
further into other brain regions in a distinct hierarchical 
sequence that is different from that for Aβ-plaques [12]. 
The τ-protein occurs in the human brain in six isoforms, 
which have a characteristic microtubule-binding repeat 
region [44]. Three τ isoforms have 3 repeats in the repeat 
region, whereas the other three isoforms have 4 repeats. 
In AD, both 3- and 4-repeat isoforms are detected in the 
τ-aggregates [44].

As with Aβ, the prevalence of τ pathology increases with 
age but can be detected in surprisingly young people. The 
earliest signs of an abnormal accumulation/aggregation 
have been found in a 6-year-old boy [13] in the locus coer-
uleus (the brainstem nucleus that represents the noradren-
ergic center of the brain) exhibiting non-fibrillar abnormal 
phosphorylated τ-protein. These first τ-accumulations were 
pretangles. Pretangles were seen in other brainstem and 
subcortical nuclei, namely the raphe nuclei (serotonergic 
brain stem nuclei), and the basal nucleus of Meynert (cho-
linergic nuclei of the brain) at later ages. At 40 years of age, 
most human individuals showed brainstem τ pathology [8, 
15]. The first NFTs consisting of paired helical filaments 
were seen in individuals between 10 and 20 years of age, 
but the question of whether these NFTs are already associ-
ated with AD or if they are unrelated to AD remains con-
troversial [15, 28]. However, with advancing age, NFT-τ 
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pathology becomes more prevalent and higher Braak-NFT 
stages also become more prevalent. In people over 91 years 
of age, nearly every individual shows at least Braak-NFT 
stage 1 [15] (see also Fig. 1a).

Neurofibrillary tangle pathology is not exclusively 
found in association with Aβ deposition as evidenced 
by the disease primary age-related tauopathy (PART). 
PART is characterized by the presence of neuronal 
τ-protein pathology in the form of neurofibrillary tan-
gles (NFT) and neuropil threads (NT) without (definite 
PART) or with only limited (possible PART) parenchy-
mal amyloid-β (Aβ) depositions (up to phase 2 according 
to Thal et al. [143]) [28]. In addition, any other primary 

tauopathy (such as PSP, CBD, and AGD, etc.) has to be 
excluded. PART is frequent in old age (up to 40%) and 
is likely to represent the neuropathological correlate of 
a condition termed “suspected non-AD pathophysiol-
ogy” (SNAP), which refers to individuals with temporal 
lobe atrophy on MRI and high CSF τ but no evidence 
for cerebral Aβ depositions [64]. SNAP is usually seen 
in cognitively normal elderly but may also be present in 
mildly impaired individuals. While the neuroanatomical 
progression of NFT/NT in PART follows AD-associated 
NFT-Braak stages [28], the latter do not exceed stage 
IV in PART and NFT-Braak stages V/VI are indeed only 
seen in the presence of Aβ pathology.

Fig. 1   Pathological proteins accumulate with increasing age as meas-
ured in large post-mortem studies. Age-related prevalence of NFTs 
(a, n = 1310), Aβ plaques (b, n = 849), neuritic plaques (c, n = 662), 
AD pathology as defined by NIA-AA (d, n = 662), TDP-43 pathol-
ogy (e, n = 147), and Lewy body pathology (f, n = 582) (reevalua-
tion of previously published cases by the authors (JA, DRT) [95, 139, 
146, 147]). The prevalence for NFTs is provided separately for each 
Braak-NFT stage (I–VI) [12] (a) and that for Aβ plaques separately 
for each phase of Aβ-plaque deposition as determined in medial tem-
poral lobe sections (1–4) [144] corresponding with the plaques exten-
sion all over the entire brain [143]. The frequency of neuritic plaques 
(c) is shown separately for each CERAD score (1–3) [98]. The neu-
ritic plaques were detected in these cases by Gallyas silver staining 

or immunohistochemistry against abnormal phosphorylated τ-protein 
(AT-8) [142, 146]. The degree of AD pathology has been assessed in 
accordance with the current neuropathological criteria for the descrip-
tion of AD pathology as published by the National Institute of Aging 
and the Alzheimer Association [low (1)—high (3)] [60] (d). The 
prevalence of TDP-43 aggregates was assessed dichotomously on 
the basis of an immunostaining with an antibody against phosphoryl-
ated TDP-43 (presence = 1) (e). The prevalence of LB pathology was 
assessed by classifying the LB pathology according to Braak et  al. 
(1–6) [14]. Prevalences were provided separately for each stage (f). 
In contrast, to τ, Aβ, and TDP-43 pathology, the prevalence of LB 
pathology decreases after a peek in the age group 61–80 years prob-
ably indicating a life expectancy limiting effect of LB pathology
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As PART is a rather novel entity, little is known about 
the co-occurrence of PART and other neurodegenerative 
diseases. However, in the Newcastle Brain Tissue Resource 
(NBTR), 12% of LBD cases show additional PART and in 
45% of PART cases, pathological lesions typically associ-
ated with other diseases were present (e.g., ALS, stroke, 
multiple system atrophy), while 55% of all PART cases 
showed no signs of neurological disease during life and no 
or only very mild age-associated pathologies at post-mor-
tem examination in addition to PART.

Mechanistic links between Aβ and τ

Despite the existence of “pure” or “primary” tauopathies, 
it is clear that Aβ and τ pathologies are related, at least 
in AD. The link between Aβ and τ pathologies is clearly 
evidenced in their convergence in the AD brain as neuritic 
plaques, in which Aβ aggregates are associated with dys-
trophic neurites, which most frequently exhibit neurofibril-
lary lesions consisting of aggregates of abnormal phospho-
rylated τ-protein [32]. Here, intracellular τ in dystrophic 
neurites together with extracellular Aβ constitute one single 
pathological lesion, i.e., the neuritic plaque, which is a con-
ditio sine qua non for the neuropathological diagnosis of 
symptomatic AD. Although plaque and tangle pathologies 
begin in different brain regions and show different progres-
sion  pattern (Table 1; Fig. 1), a recent PET imaging study 
found some convergence zones of Aβ and τ pathologies, 
particularly in the inferior-lateral temporal lobe, which 
hints at physical, perhaps network-distributed interactions 
of these pathologies in disease progression [123].

Further evidence strongly implicating a mechanis-
tic link between Aβ and τ is the genetics of familial AD 
(fAD), which clearly implicates changes in Aβ processing 
not only in plaque formation but also in causing τ pathol-
ogy. fAD mutations have been found in the APP gene, 
which codes for the amyloid precursor protein (APP) that is 
cleaved to form Aβ, and also in the presenilin 1 and 2 genes 
(PSEN1, PSEN2) [42, 120, 130, 131], which form parts of 
the γ-secretase enzyme responsible for one of the essential 
proteolytic cleavages of APP to form Aβ [161]. Pathogenic 
mutations in these genes lead to an increased production 
of Aβ and to the development of AD. Neuropathologi-
cally, these cases show Aβ and τ aggregates similar to 
those observed in sporadic AD cases. In further support of 
Aβ generation being key to initiating AD, other mutations 
in the APP gene that preclude Aβ production have been 
shown to be protective [69]. Conversely, mutations in the 
MAPT gene encoding τ do not cause fAD, but can lead to 
neurodegenerative tauopathies which often include Parkin-
sonian symptoms [59]. Here, τ pathology occurs in neu-
rons, astrocytes, and oligodendrocytes in a FTLD-tau-like 
pattern, sometimes producing Pick bodies. Co-occurrence 

of other neurodegenerative features except for age-related 
amounts are uncommon. The pattern in FTLD-tau cases 
with τ-mutations is very variable [40]. The MAPT gene 
occurs on a part of chromosome 17 that has two major hap-
lotypes called H1 and H2 due to an ancient inversion of a 
900 kb region [132], and these haplotypes have been linked 
to the risk of several diseases. H1 haplotype is associated 
with increased risk of the tauopathies progressive supra-
nuclear palsy (PSP) and corticobasal degeneration (CBD) 
and more recently to the risk of developing late-onset AD 
(LOAD) in people who do not carry the well-established 
LOAD risk gene APOE4 [110]. A relatively recently dis-
covered mutation in MAPT, A152T, was discovered in a 
PSP patient and was subsequently found to be associated 
with increased risk of FTD, PSP, CBD, and AD [27].

Along with the co-occurrence of Aβ and τ pathologies 
in AD brain, and the human genetic data strongly suggest-
ing that increased production of Aβ may trigger τ pathol-
ogy, data in model systems also support a series of complex 
interactions between Aβ and τ. Mouse models have been 
developed, which exhibit plaques due to overexpression 
of fAD-associated mutant proteins and τ pathology due 
to overexpression of FTD-associated mutant τ. Generally, 
the results of these studies support the role of Aβ in exac-
erbating τ pathology. For example, crossing Tg2576 mice 
which develop Aβ pathology and JNPL3 tauopathy mice 
exacerbated the τ pathology [87]. In the 3xTg mice, which 
similarly have both Aβ and τ pathology, lowering Aβ levels 
causes a reduction in τ pathology, but conversely lowering 
τ levels does not reduce Aβ pathology [108, 157], again 
arguing that Aβ is upstream of τ pathology. In further sup-
port of this idea, mice that expresses human oligomeric Aβ 
and human τ eventually develop NFT pathology even in the 
absence of tauopathy-associated mutations in the MAPT 
gene [152]. Moreover, in cell culture experiments, apply-
ing exogenous Aβ to mouse primary neurons instigates τ 
phosphorylation and mislocalization to dendrites [163], and 
in human stem cell-derived neuronal cultures, overexpress-
ing fAD mutations in APP and PS1 causes both plaque and 
tangle pathology [21]. Most of the evidence from genetics, 
mouse models, and cells indicates that Aβ drives τ pathol-
ogy, but there are examples of surprising reciprocal interac-
tions. For example, in the APP/PS1 mouse model, plaques 
are significantly larger in mice expressing either human 
P301L mutant [114] or wild-type human τ [65]. Not only 
does Aβ appear to somehow instigate τ pathology, it may 
also gate the spread of τ pathology through the brain. A 
recent cross-sectional PET study examining both Aβ and τ 
indicates this potential effect with hints that Aβ pathology 
is necessary to start the spread of τ pathology out of the 
medial temporal lobe [123]. These imaging data accurately 
reflect neuropathological findings as τ pathology in the 
absences of Aβ (i.e., PART) does not exceed NFT-Braak 
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stage IV, while NFT-Braak stages V/VI are only seen in the 
presence of Aβ further indicating an aggravating effect of 
Aβ on τ pathology. Similar to findings in the human brain, 
in rTgTauEC mice expressing FTD mutant τ restricted to 
the entorhinal cortex, the presence of plaques (generated by 
crossing the rTgTauEC line with APP/PS1 mice) acceler-
ates the spread of τ through neural circuits [114]. However, 
while Aβ may aggravate τ pathology, it is not a prerequi-
site for the mere development of τ pathology and hence 
Aβ must not be regarded as a mandatory upstream event in 
the development of τ pathology. The existence of non-AD 
tauopathies such as PSP, Pick’s disease, and CBD strongly 
support the point of view that Aβ is not required to develop 
a tauopathy that cases neurological/psychiatric symptoms.

While pathological lesions of Aβ are mainly extracellular 
and τ lesions are intracellular, there are places in the brain 
where the soluble forms of these proteins, which are now 
thought to be the more toxic, bioactive species, may inter-
act. One such important point of convergence is the syn-
apse. Several factors indicate that synapses are key players 
in AD pathogenesis: (1) synapse dysfunction and loss occur 
early in the disease process (2) synapse loss is the strongest 
pathological correlate of cognitive decline, and (3) synaptic 
connections appear to be the point of spread of pathological 
proteins through neural circuits. A large body of literature 
shows that pathological soluble forms of Aβ and τ can sep-
arately induce synaptic dysfunction and synapse loss, and 
more recently, evidence has begun to accumulate linking 
Aβ and τ in synapse degeneration [128]. Removing endog-
enous mouse τ protects mice against some Aβ-mediated 

synaptic phenotypes such as seizure activity, synaptotoxic-
ity, and long-term potentiation deficits [63, 119, 124], and 
the synapse loss observed with exogenous Aβ application 
to cultured neurons is associated with local accumulations 
of phosphorylated τ in dendrites [163]. Aβ and τ were also 
shown with immuno-electron microscopy to co-accumulate 
in postsynaptic terminals in 3xTg AD mice [136], although 
due to the limitations of electron microscopy, this was in 
a limited number of animals and was not quantified. We 
are using the array tomography technique to allow higher 
throughput quantitative imaging of synapses than EM and 
to overcome the z-resolution limit of light microscopy and 
accurately study the colocalization of pathological proteins 
of synapses in mouse and human brain with immunofluo-
rescence [78, 97]. These studies indicate that these proteins 
do co-occur in a subset of synapses in both mouse and 
human brain (Fig.  2). Our recent work in a novel mouse 
model indicates that there is not a strict dose–response 
relationship in the interactions of Aβ and τ in synapse loss 
as addition of wild-type human τ in APP/PS1 mice with 
plaque-associated synapse loss does not exacerbate synapse 
loss [65]. Future work with temporal control over τ reduc-
tion in these plaque-bearing mice will determine whether τ 
is necessary for Aβ-mediated synaptic phenotypes. Another 
potential mechanistic interaction at the synapse between 
proteins involved in different diseases is the role of cellular 
prion protein (PrPc) in Aβ-mediated synapse degeneration. 
PrPc becomes misfolded, aggregated, and toxic in Prion 
diseases such as variant Creutzfeldt–Jakob disease. In addi-
tion, PrPc has been proposed as a co-receptor with mGluR5 

Fig. 2   Co-aggregation of pathological proteins in synapses may con-
tribute to neurodegeneration. Synaptic toxicity of pathological pro-
teins is thought to be one of the driving forces in several neurodegen-
erative diseases. In both a mouse model expressing fAD mutations in 

APP and PS1 and human wild-type τ ([65], top) and human AD brain 
(bottom), we observe colocalization of Aβ and τ at some synapses 
using the array tomography technique (arrows). Scale bars represent 
5 µm in large panel and 2 µm in inset
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for oligomeric Aβ at synapses where it activates Fyn kinase 
and causes impaired synaptic plasticity [57, 85, 151]. This 
is a potentially very interesting cascade in light of the role 
of Fyn kinase in mediating τ toxicity at synapses, thus link-
ing three pathological proteins in the same synaptotoxic 
cascade, at least in mouse models.

Overlap of α‑syn with other pathologies

Synucleinopathies encompass Lewy body diseases (LBD) 
and multiple system atrophy (MSA). The latter are charac-
terized by glial α-syn aggregations in the form of glial cyto-
plasmic inclusions (Papp-Lantos bodies) while the neuro-
pathological hallmark lesions of LBD are α-syn aggregates 
in neuronal cell somata and neuronal cell processes termed 
Lewy bodies (LB) and Lewy neurites (LN), respectively. 
LBD encompass Parkinson’s disease (PD), Parkinson’s dis-
ease dementia (PDD), and dementia with LB (DLB). While 
PD is primarily a movement disorder clinically character-
ized by the presence of extrapyramidal symptoms (EPS), 
clinical core features of PDD and DLB include fluctuat-
ing cognition and visual hallucinations [96]. There are no 
neuropathological criteria that allow to distinguish between 
PDD and DLB as this distinction can only be made based 
on clinical grounds; in PDD, EPS precede the onset of 
dementia by at least 12 months, whereas in DLB dementia 
is concomitant with or precedes EPS [96].

There are several neuropathological staging systems for 
LBD, the most frequently used are the Braak LBD stages 
and the Newcastle/McKeith criteria for LBD. Briefly, 
Braak LBD stages [14] postulate that nuclei in the medulla 
oblongata become initially affected (stage 1) and pathol-
ogy spreads gradually to pons (stage 2), midbrain (stage 3), 
entorhinal cortex, and hippocampus (stage 4) and finally 
reaches the neocortex (stages 5 and 6). This topographical 
progression is not proposed in the Newcastle/McKeith cri-
teria [96], which distinguish between brainstem predomi-
nant (PD), limbic (transitional; DLB), and diffuse neocorti-
cal (DLB) types of LBD. α-Syn aggregates in the form of 
LB do not show a continuous increase with increasing age. 
Instead, the degree and prevalence of Lewy body pathol-
ogy started in the 41- to 60-year-old age group and then 
increased up 61–80 years of age. In older individuals, the 
prevalence of the lesions at the different stages decreased 
(Fig. 1f). This decrease of Lewy body pathology is unex-
pected and could be explained by a reduced life expectancy 
of Lewy body pathology patients compared with that of AD 
patients. However, confirmation in independent samples 
and further, more detailed studies are required to clarify 
these findings.

While the neuropathological hallmark lesions of LBDs 
are LB/LN other pathologies are highly prevalent in LBDs; 

Aβ depositions are present in up to 85% of LBD cases with 
dementia [61, 66, 76] and it has been suggested that stri-
atal Aβ pathology is less frequent in PDD as compared to 
DLB (e.g., 18 vs. 100% in [76]), while in PD, Aβ pathol-
ogy is in general less frequent (e.g., 55% in [66]) than in 
LBD with dementia. Similarly, τ pathology is frequently 
present in LBD [26, 66, 76] and a recently published study 
on 213 LBD cases with dementia found that 30% showed 
high Braak NFT stages V/VI [61]. Such cases which show 
neocortical LBD (i.e., DLB) and full-blown AD (i.e., Braak 
NFT stages V/VI) can be neuropathologically diagnosed as 
having mixed dementia (mixed AD/DLB), since the sever-
ity of either AD or LB pathology alone would be sufficient 
to represent a robust neuropathological correlate for clini-
cal dementia. This raises the question as to why those cases 
clinically either present as DLB or AD. Using quantitative 
assessment of Aβ, τ-protein, and α-syn in such mixed AD/
DLB we found that those who clinically presented with 
AD had higher τ loads than those with clinical LBD [156]. 
Moreover, the hierarchical distribution of τ-protein loads 
in clinical AD cases was similar to neuropathologically 
pure AD cases, while clinical DLB cases showed compara-
tively less hippocampal and temporal τ loads. These find-
ings suggest that in clinical AD cases neuropathologically 
diagnosed as mixed AD/DLB neurodegeneration may be 
primarily driven by AD while LB pathology occurs later in 
the disease, possibly aggravated or even triggered by AD 
pathology. Conversely, in clinically diagnosed DLB cases, 
which show mixed AD/DLB at post-mortem examination, 
classical LB pathology (i.e., α-syn) may be the primary 
driver of the neurodegenerative process. While these data 
somehow suggest that in mixed cases the quantitatively 
predominant pathology determines the characteristic clini-
cal pictures, a large clinico-pathological correlative study 
using conventional semi-quantitative methodology found 
in a subset of clinically diagnosed DLB cases only severe 
neocortical τ pathology and a complete lack of LB pathol-
ogy [105]. Recently, Irwin and colleagues demonstrated 
that τ pathology in LBD with dementia independently 
predicted a shorter time interval between motor symp-
tom and dementia onset as well as shorter overall survival 
[61], clearly indicating that—if present—τ plays a central 
role in the disease process of LBD and that the co-occur-
rence of both AD and DLB pathology is likely to have an 
aggravating effect on disease progression. Respective data 
from neuropathological post-mortem studies are corrobo-
rated by in  vivo imaging studies showing higher amyloid 
and τ levels in LBD compared to controls [46, 47]. While 
AD pathology is the most important co-morbidity in LBD 
cases, they may also show other pathologies such as cer-
ebrovascular disease to varying degrees of severity in up 
to 75% [67] and TDP-43 pathology in over 30% of cases 
[95]. More quantitative data on the amount of pathological 
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burden in large clinico-pathological cohorts are needed to 
clarify the relative influence of Aβ, τ, α-syn, and TDP-43 
on the clinical picture. This would pave the way for novel 
and more subtle clinico-pathological phenotypes, which, 
together with biomarkers, would allow to diagnose patients 
based on the actual underlying pathology.

Genetic data provide a tenuous link between synucle-
inopathies and tauopathies. H1 τ haplotype is associated 
with increased risk of PD [155], and has recently been 
associated with increased α-syn aggregation in DLB in a 
small post-mortem study [25]. There is also cross-talk 
between α-syn and τ in terms of disease-associated muta-
tions. Mutations in or replications of the SCNA gene encod-
ing α-syn that cause familial PD can also cause cognitive 
symptoms including dementia [104, 113, 126]. A recent 
genetic study indicates that the p.A152T variant of MAPT 
is likely associated with a higher risk of DLB [84]. Another 
potential genetic link between τ and α-syn is LRRK2. 
LRRK2 mutations usually give rise to α-syn pathology 
[52], but sometimes, they also cause tangle pathology. τ 
and α-syn pathology can also occur hand in hand without 
amyloid plaque pathology in rare cases, e.g., with heredi-
tary spastic paraplegia due to SPG 7 mutations [148].

In addition to genetic data implying causative links 
between tauopathies and synucleinopathies, there are 
also multiple indications that pathological forms of τ and 
α-syn physically co-aggregate within neuronal cytoplasm 
[104]. Using double immunofluorescence labeling and 
mass-spectrometry, τ and α-syn have been observed in 
several studies to aggregate together in the same tangles, 
LB, and Lewy Neurites in PD and DLB brain [5, 24, 62]. 
Importantly, one recent study using novel conformation-
specific antibodies demonstrated that toxic oligomeric 
forms of τ and α-syn accumulate together in PD and DLB 
[122]. In vitro, α-syn binds directly to τ via the microtu-
bule-binding region of the τ protein and the C-terminus 
of α-syn [68]. This interaction is affected in a complex 
and as yet not completely understood manner by both 
phosphorylation and disease-associated mutations in the 
proteins [36, 104]. It is possible that τ and α-syn through 
their binding can cross-seed aggregation. Amyloidogenic 
proteins share some common characteristics in terms of 
their aggregation with a typically slow initial aggregation 
that becomes much faster after the process begins due to 
the new aggregates templating or seeding further aggre-
gation [81]. This seeding process is not only relevant to 
the formation of large fibrils but also to the formation of 
oligomeric forms of proteins, which are likely the toxic 
species in the brain [81]. The seeding process is not 
necessarily limited to seeds made from the aggregating 
protein. Indeed, cross-seeding, in which “seeds”—some 
type of small aggregate—from one protein can induce 
aggregation of another protein—has been demonstrated 

across many different proteins. There is a small amount 
of evidence suggesting that τ and Aβ may cross-seed the 
formation of toxic aggregates in  vitro [49]. Much more 
evidence implicates cross-seeding between α-syn and τ. 
In vitro, co-incubation of α-syn and τ synergistically pro-
motes aggregation of both proteins [41], and in cultured 
neurons expressing FTDP-17 mutant τ, synthetic aggre-
gates of α-syn seeded τ [50]. However, the cross-seeding 
of these proteins is not always reproduced, for example, 
using a sensitive FRET-based detection method, τ and 
α-syn did not cross-seed [55]. These conflicting results 
may be due to the ability of specific “strains” or confir-
mations of aggregates of the proteins, which induce the 
seeding, which has been observed for τ [22, 37], α-syn 
[111], and cross-seeding between them [50]. Similarly, 
distinct strains of Aβ have been observed, which induce 
different types of aggregates in  vivo [133, 159]. Cross-
seeding between Aβ and α-syn has been observed in vitro 
[109], along with hybrid oligomer formation [149]. Fur-
ther work is warranted on understanding the cross-seed-
ing process, and particularly on whether this causes the 
formation of toxic oligomeric species of the proteins.

Transgenic mouse models of tauopathies and synucle-
inopathies also support the idea of synergistic interac-
tions of τ and α-syn in exacerbating neurodegenerative 
phenotypes. Overexpressing α-syn in transgenic mice 
causes τ phosphorylation [51, 160]. Combining patholo-
gies in mice overexpressing fAD mutations in APP and 
PSEN1, FTDP-17 mutant MAPT, and PD associated 
SCNA, there is a synergistic effect of the pathological 
proteins resulting in exacerbated pathological and behav-
ioral phenotypes [23]. Knocking out τ, however, does 
not prevent α-syn-related motor deficits in two models of 
PD, indicating that these proteins in addition to having 
synergistic effects can act independently to confer toxic-
ity [103]. In wild-type mice injected with α-syn fibrils, 
both τ and TDP-43 aggregate in addition to α-syn [94]. 
There is also a substantial amount of evidence for cross-
talk between Aβ and α-syn pathologies. NMR evidence 
shows molecular interactions between these proteins 
[91], and in a double transgenic mouse model, Aβ exacer-
bates α-syn accumulation and neuronal deficits [92]. Aβ 
induces phosphorylation of α-syn at Ser129 in vitro and 
pSer129 α-syn in brain tissue homogenates is related to 
the level of Aβ and Braak NFT stage [135]. Similar to 
Alzheimer’s disease, there is also evidence that synap-
tic degeneration is important in synucleinopathies with 
pathology associated with synaptic toxicity in  vitro and 
in vivo [127, 154]. Less is known about molecular inter-
actions of pathological proteins in synapse degeneration 
in synucleinopathies. τ reduction did not prevent motor 
deficits in α-syn overexpressing mice, indicating that τ is 
not necessary for synaptic deficits in this line [103].
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The frontotemporal lobar degeneration: 
amyotrophic lateral sclerosis (FTLD‑ALS) 
spectrum and beyond

Both FTLD and ALS are heterogeneous diseases that can 
be sub-divided by their pathological lesions. Over the 
past few years, a substantial overlap has been observed 
in the pathologies, genetics, and clinical phenotypes of 
these complex diseases. FTLD can be subclassified in 
disorders that accumulate (1) τ, i.e., FTLD-tau, (2) TDP-
43, i.e., FTLD-TDP, and (3) other FTLD-forms that accu-
mulate other proteins (e.g., fused in sarcoma (FUS) etc.) 
[90]. FTLD-TDP and ALS share neuronal TDP-43 aggre-
gates and a certain number of ALS cases also develop 
FTLD-TDP and vice versa [107].

FTLD-tau comprises several morphologically different 
tauopathies: Pick’s disease (PiD), corticobasal degenera-
tion (CBD), progressive supranuclear palsy (PSP), argy-
rophilic grain disease (AGD), and neurofibrillary tangle-
predominant dementia (NFTD) [90]. All these diseases 
have in common that τ is the sole protein that aggregates 
in these disorders. These diseases usually affect individu-
als below 70 years of age and concomitant AD-associated 
Aβ and τ as well as TDP-43 and LBD-associated α-syn 
may potentially be present but are only rarely seen [147] 
and hence not assumed to influence the disease pro-
cess. Moreover, τ pathology in FTLD-tau is, except for 
NFTD, not restricted to neurons and neuronal processes. 
It also develops in astrocytes (astrocytic plaques in CBD, 
tufted astrocytes in PSP, τ-positive astrocytes in AGD) 
and oligodendrocytes (coiled bodies in AGD, CBD, PSP, 
PiD) [33]. Except for AGD, FTLD-tau disorders cause 
dementia and in most cases do not show co-pathologies 
[147]. AGD is usually present with low-level AD-related 
pathology and such cases do not show clinical dementia 
[72, 145]. Demented AGD cases, however, showed sig-
nificantly more severe AD-related pathology (Aβ-plaques 
and NFTs) than non-demented AGD cases but less than 
in demented cases that had pure AD pathology, suggest-
ing additive effects of AGD and AD pathology [72, 145]. 
τ pathology is also observed in some ALS cases, where 
it has been reported to correlate with cognitive decline 
[162].

FTLD-TDP is characterized by intracellular aggregates 
of phosphorylated TDP-43 in the neuronal cytoplasm, 
dendrites [107] as well as in oligodendroglial cells [106]. 
In FTLD-TDP and ALS cases, not only full length TDP-
43 aggregates are found, but also truncated fragments, 
mainly C-terminal fragments of TDP-43, are also found 
[107]. In a subset of FTLD-TDP and ALS cases, hexa-
nucleotide repeat expansions in the chromosome 9 open 
reading frame 72 (C9ORF72) have been seen. In these 

mutation carriers, dipeptide aggregates corresponding to 
abnormal translation of the pathological hexanucleotide 
repeats can be seen in the cytoplasm of neurons [101]. 
However, these aggregates do not correlate with disease 
severity or the coexisting TDP-43 pathology in the studies 
reported so far. The amount of TDP-43 pathology corre-
lates more closely with the clinical severity of the disease 
in the studies conducted to date [89]. TDP-43 pathology 
in patients with the behavioral variant of FTLD-TDP 
(FTLD-TDP cases that show characteristic behavioral 
changes as key feature of the disease =  bvFTLD-TDP) 
and with sporadic ALS show a characteristic pattern that 
suggests anatomical stages of TDP-43 pathology spread-
ing that differed among bvFTLD-TDP and ALS [16, 18].

TDP-43 pathology is also found in AD cases [4, 153]. 
Recently, Josephs and colleagues reported that TDP-
43 pathology in AD is seen in over 50% of cases where 
it spreads in a distinct pattern [70, 71], which was also 
observed in LBD and aged controls by others [95]. 
Moreover, colocalization of phosphorylated TDP-43 and 
τ-containing NFTs has been reported but it is not yet clear 
whether this finding is due to unspecific co-staining of 
NFTs with the pTDP-43 antibody or whether indeed phos-
phorylated TDP-43 accumulates in NFTs. A similar ques-
tionable colocalization of τ and TDP-43 is speculated in 
granulovacuolar degeneration (GVD) [75]. GVD has been 
shown to represent an AD-related lesion [139] exhibiting 
phosphorylated TDP-43 as well as numerous other pro-
teins in neuronal cytoplasmic vacuoles including τ [34] and 
phosphorylated Aβ [83].

There is substantial overlap in the genetics of FTD and 
ALS [115]. Mutations in C9ORF72, TARDBP, FUS, VCP, 
UBQLN2, SQSTM1, and CHMP2B have all been associ-
ated with both ALS and FTD [46, 84], and mutations in 
hgRNPA2B1 and can cause multisystem proteinopathy and 
ALS [80]. TARDBP mutations (TDP-43 gene) can lead to 
FTLD-TDP and/or rare ALS cases. Usually, no other pro-
teins are aggregated in non-age-related amounts in these 
cases [74]. However, a case report shows a TARDBP muta-
tion in a fAD case indicating a potential link from TDP-
43 directly to AD [100]. C9ORF72 mutations go in most 
instances along with TDP-43 pathology either with a 
FTLD-TDP or an ALS-related pattern [31, 116]. In sin-
gle cases, AD-related pathology also occurred as relevant 
pathological lesion in C9ORF72 mutation carriers, but the 
interpretation of this finding is controversial [19, 30, 54]. 
One of the most interesting aspects of C9ORF72 muta-
tions is that in families with a distinct C9ORF72 muta-
tion, the same mutation in some family members causes 
FTLD, whereas other family members with the same muta-
tion developed ALS [20]. As such, other factors than the 
mutations appear to act as disease modifiers with impact 
on the primary vulnerability of distinct neurons. Since the 



196	 Acta Neuropathol (2017) 134:187–205

1 3

C9orf72-related dipeptide aggregates do not correlate with 
the clinical symptomatology but with the TDP-43 pathol-
ogy [107, 121], it is tempting to speculate that TDP-43-spe-
cific properties play a role in the primary targeting of the 
disease. In rare cases, mutations in the valosin-containing 
protein lead to FTLD-TDP or ALS [158]. Here, nuclear 
TDP-43-valosin-containing protein aggregates are the pre-
dominant lesion although cytoplasmic TDP-43 aggregates 
can also in different amounts [107, 121]. In this disorder, 
similar aggregates were found in skeletal muscle and in the 
myocardium [58, 158].

Pathological proteins typically associated with ALS and 
FTLD also show multiple mutual interactions including 
co-aggregation [10]. An interesting phenomenon emerging 
in the ALS protein aggregation literature is the role of low 
complexity domains in the RNA-binding proteins impli-
cated in disease pathogenesis contributing to pathological 
protein aggregation. Low complexity domains mediate liq-
uid–liquid phase separation which in healthy cells contrib-
utes to the assembly of membrane-less organelles such as 
RNA transport granules and stress granules; but in disease, 
the liquid phase transition initiates fibrillization of aggre-
gates [99]. This may explain the co-aggregation of different 
low complexity domain-containing proteins such as TDP-
43 and FUS [79]. Interestingly, dipeptide repeat proteins 
produced from unconventional non-ATG dependent trans-
lation of C9ORF72 expansions, the most common cause 
of ALS and FTLD, have recently been found to interact 
with RNA-binding proteins with low complexity sequence 
domains in Drosophila [86]. This finding provides a poten-
tially unifying mechanism for the disparate causes of 
ALS/FTLD converging on disrupted phase transitions that 
impair the assembly, dynamics, and function of membrane-
less organelles that cause widespread cellular abnormalities 
including impairments in nucleolar function, nucleocyto-
plasmic transport, RNA splicing, translation, and abnormal 
protein aggregation.

Discussion

Here, we have reviewed neuropathological and experi-
mental findings, which together point to pathogenic links 
between the aggregation of Aβ, τ, TDP-43, and α-syn. 
These links are most evident in fAD cases with mutations 
in the APP, PSEN1, or PSEN2 genes because these cases 
often show aggregates of all four proteins in the brain due 
to mutation-driven production of high amounts of Aβ. 
Even a larger number of sporadic AD cases exhibit Aβ, τ, 
and TDP-43 aggregates [4, 70, 153]. Given the fact that 
τ-aggregates develop in restricted areas of the brain before 
Aβ, TDP-43, and α-syn lesions occur, one could specu-
late that τ pathology initiates AD and the aggregation of 

other proteins is just a secondary phenomenon. However, 
most people will accumulate brainstem τ pathology (usu-
ally between 40 and 50  years of age) [15] but only 32% 
will develop symptomatic AD in their lifetimes [3], and 
genetic evidence strongly implicates changes in Aβ as cru-
cial for initiating the disease process. Thus, τ pathology 
alone appears not to be sufficient to develop AD as defined 
according to the recommended criteria [60], Aβ pathology 
must also be involved. In other words, one can hypothesize 
that accumulation and aggregation of abnormal τ-protein 
aggregates is an age-related phenomenon, which becomes 
overtly pathogenic and allowed to spread throughout the 
brain in the presence of Aβ aggregates. Post-translationally 
modified forms of Aβ, such as AβN3pE and pSer8Aβ, may 
play an important role in the maturation of these aggregates 
[117]. Thus, maturation of protein aggregates, especially 
Aβ aggregates, appears to play a major role in the develop-
ment of the disease [117]. In animal models for Aβ pathol-
ogy, Aβ pathology alone is not sufficient to develop the full 
spectrum of AD pathology [39, 56, 134], although it is pos-
sible that this is in part due to the lifespan of rodents and 
in part due to differences in rodent and human τ. Notwith-
standing these caveats, the Aβ-expressing animal model 
findings do support our hypothesis that τ pathology is an 
essential prerequisite for the development of AD but only 
in combination with Aβ. τ-mutations in the absence of Aβ 
(in man and in transgenic mice) lead mainly to a non-AD 
tauopathy and only very rarely are associated with AD [27, 
59]. Moreover, the AD pathology in APP mutation car-
riers develops in adulthood after a normal childhood, i.e., 
when τ pathology becomes more and more prevalent in the 
published autopsy cohorts meaning that once abnormal τ 
occurs, the disease starts to develop, implying that τ is a 
prerequisite for disease.

Interactions between Aβ and TDP-43 or α-syn may fol-
low similar principles as that with τ. The AD-specific pro-
gression pattern of AD-related TDP-43 aggregates [70] is 
different from that in FTLD-TDP and ALS cases [16, 18], 
which argues in favor of the idea that Aβ also exaggerates 
AD-related TDP-43 pathology. An argument for the inter-
action between Aβ and α-syn aggregates may be the fre-
quent coincidence of full-blown AD and LBD pathology in 
demented patients that were clinically diagnosed as LBD 
patients (PDD and/or DLB), as well as the detection of 
LBDs in fAD cases [88, 125]. Moreover, in the absence of 
Aβ, TARDBP and SCNA mutations do not cause AD but 
ALS or PD [74, 100, 113].

Other proteins (in addition to Aβ) may also have trig-
gering effects for neurodegeneration. The most attractive 
candidates are dipeptide aggregates in C9ORF72 hexa-
nucleotide repeat mutation carriers developing ALS or 
FTLD-TDP with TDP-43 aggregates [101]. Moreover, 
a case report also suggests that mutant paraplegin (SPG7 
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mutation) triggers both brainstem τ and α-syn pathology in 
the absence of Aβ [148]. That one MAPT mutation causes 
α-syn changes in addition to τ pathology and that a muta-
tion in LRRK2 can induce both, α-syn—and in a few cases 
τ—pathology [52, 84] further argues for a link between 
α-syn and τ.

Thus, several proteins can lead to neurodegeneration 
alone or in concert with one another. Intraneuronal and 
intracellular protein aggregates appear to be most relevant 
for the neurodegenerative process because they occur in all 
of the discussed neurodegenerative disorders and correlate 
well with cognitive decline and neuron loss [6, 45, 138]. 
It appears that the neuropathological type of neurodegen-
erative disorder simply reflects the circumstances of pro-
tein aggregation and that the pathogenic process of protein 
aggregation behind the phenotype has common principles 
in several neurodegenerative disorders, such as spread-
ing of disease-related pathology [12, 14, 17, 143] and the 
involvement of post-translationally modified proteins in the 
disease-specific aggregates [38, 107, 140].

An argument for the hypothesis that the “phenotype of 
neurodegeneration” is the result of a critical accumulation 
of soluble and/or insoluble protein aggregates in neurons—
regardless of the protein that aggregates—is provided by 
an artificial mouse model that produces intraneuronal Aβ 
aggregates after cleavage from an enkephalin-signal-pep-
tide Aβ42 construct, which shows significant neuron loss 
and an ALS-like phenotype with serious motor dysfunc-
tion (APP48 mice) [1]. Under this artificial paradigm, Aβ 
and/or its soluble and/or insoluble aggregates show dif-
ferent neurodegenerative effects than under the more AD-
related paradigm of APP overexpression [118]. However, 
post-translational modification of Aβ similar to that seen 
in AD cases also occurred in the intracellular Aβ42 aggre-
gates in this artificial mouse model [118] indicating that 
post-translational modifications may play an important role 
for the neurodegeneration process in general. Thus, artifi-
cial expression of an aggregation-prone protein in neurons 
causes neurodegeneration similar to other intraneuronal 
proteins that develop aggregates such as τ or TDP-43, 
whereas mainly extracellular deposition of the same pro-
tein had only limited effects supporting the idea that the 
intracellular protein accumulation may be a prerequisite 
for neurodegeneration, whereas extracellular Aβ aggregates 
may catalyze spreading of intracellular aggregates while 
interacting and aggregating with the respective proteins.

The above-mentioned considerations argue against the 
classical view of the amyloid cascade hypothesis insofar as 
Aβ does not seem to the one and only player that causes all 
the rest of AD pathology. Amyloid as a key factor in AD 
pathogenesis is strongly supported, particularly by genetics 
of fAD, but it is also clear that alone, amyloid pathology is 
insufficient to drive neurodegeneration. The weight of the 

evidence on mechanisms of neuron loss in AD sides with 
τ being the driving toxic force. The data we have summa-
rized here on co-occurrence of amyloid and τ-pathologies 
in human brain and their mechanistic interactions in model 
systems support the intriguing possibility that in sporadic 
AD, age-related τ-accumulation as observed in PART 
occurs earlier and independently from Aβ, thus represent-
ing a prerequisite for Aβ to kick off the pathogenesis of 
AD. In the event that both proteins in an aggregated form 
co-occur in the brain, they appear to become particularly 
toxic and presumably interact to lead to the devastating 
neurodegeneration in AD. Lesions typical for other neu-
rodegenerative disorders or vascular lesions may co-exist 
and either interact with the AD-related protein aggregates 
or producing brain lesions that are added to the AD-related 
neurodegeneration. Other tauopathies, TDP-43 proteinopa-
thies, and synucleinopathies may follow a similar cascade 
of prerequisite lesion plus secondary disease-specific path-
ogenic event as depicted in Fig. 3.

One critical point in this cascade hypothesis is the point 
that mutation-driven disease might need a prerequisite 
lesion. One can argue that the mutations will drive even the 
initial lesions. However, if this would be the case, muta-
tion-driven neurodegenerative disorders should manifest 
earlier in life during childhood because the mutant genes 
are expressed even at that age. However, most frequently, 
these disorders manifest usually in the 4th–6th decade of 
life or later [29, 42, 59, 129, 130, 137]. Accordingly, an 
age-related event seems to be required before the mutant 
protein can set a disease-specific pathogenic event. This 
concept is to some degree in line with the two-hit concept 
for TDP-43-proteinopathies [112].

The accumulation of misfolded proteins in the human 
brain is clearly associated with advanced age. However, the 
underlying mechanisms of this age-associated phenomenon 
are still unclear and the respective role of, e.g., DNA dam-
age, autophagy impairment, cellular senescence, oxidative 
stress, and mitochondrial dysfunction are yet to be eluci-
dated. Such elucidation may also provide further insights 
into cerebral multimorbidity as the age-associated impair-
ment of underlying mechanisms to maintain cellular home-
ostasis may vary between individuals, possibly based on 
their respective genetic background. For example, GWAS 
studies point toward a role of disturbed autophagic/lysoso-
mal function in DLB but not in PDD, while the opposite 
was suggested for mitochondrial dysfunction. Therefore, 
the pathomechanisms of cerebral multimorbidity may not 
only be explained by protein–protein interactions but also 
by age-associated failure of basic cellular mechanisms, 
which may show individual variations.

The presence of multiple protein aggregates in patients 
with neurodegenerative symptoms indicates that in many 
cases not only one disease, such as AD is responsible for 
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the clinical symptoms but that secondary components 
such as TDP-43 inclusions or even vascular lesions con-
tribute to the development of the symptoms of a given 
patient as well. Thus, diagnostic and therapeutic regimes 
must not only focus on the most evident pathology such 

as AD but also need to take into account other neurode-
generative and vascular lesions. Thus, for the clinical 
diagnostic procedure, it appears to be essential to screen 
not only for AD lesions, but also for α-syn, TDP-43, and 
for vascular lesions.

Fig. 3   Cascade hypothesis for neurodegenerative disorders: Patho-
logical protein interactions contribute to neurodegeneration. Sche-
matic representation of the interplay between the different neurode-
generative protein aggregates and their related diseases. As a result 
of the current knowledge about disease progression and experimen-
tal evidence about protein-aggregate interactions in vivo an in vitro, 
we hypothesize that abnormal τ-protein accumulation is an event 
that happens during aging in the brain stem of nearly everyone 
above 40 years of age [15] (1 prerequisite for disease). AD appears 
to develop when Aβ aggregates occur and initiate more pathological 
accumulation of τ and its spread through the brain (2 disease-specific 
pathogenic event and 3 disease). Maturation of plaque-associated and 
soluble/dispersible Aβ-aggregates thereby appear to be a critical event 
in the progression of the disease. Abnormal τ-protein aggregates, 
TDP-43 aggregates, and α-syn aggregates occur in smaller subset of 

individuals during age as shown in Fig. 1 (it is not clear whether it 
is a result of aging or the early stages of neurodegeneration). Once 
Aβ aggregates prevail in a certain amount or biochemical matura-
tion stage, it is tempting to speculate that these Aβ aggregates may 
also exaggerate/catalyze TDP-43 or possibly also α-syn pathology in 
pattern similar to that seen in AD or AD-LBD (4 α-syn pathology is 
typical for PD/DLB and can be interpreted as pure coincidence or as 
influenced by/influencing AD pathology or its clinical picture). In the 
absence of Aβ and/or after exposure to other triggers (e.g., disease-
specific mutations, excitotoxicity in Guam disease [35]) τ, α-syn, and 
TDP-43 aggregates develop other neurodegenerative disorders such 
as FTLD-tau, FTLD-TDP, ALS, or PD/DLB. AD Alzheimer’s dis-
ease, FTLD frontotemporal lobar degeneration, ALS amyotrophic lat-
eral sclerosis (synonymous with MND—motor neuron disease), LBD 
Lewy body disease [including Parkinson’s disease (PD) and DLB]
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Conclusion

τ, TDP-43, and α-syn alone lead to specific neurodegen-
erative disorders that do not necessarily show multiple 
proteins aggregating in the respective disorders such as 
in FTLD-tau, FTLD-TDP, ALS, and PD, whereas AD 
appears to have at least a two-step pathogenesis with alter-
ations in Aβ likely initiating the actual disease process, but 
with τ accumulation and spread through the brain being 
the essential step to cause disease symptoms. It is possi-
ble that pathological accumulations of τ independent of 
Aβ are a prerequisite for AD with extracellular Aβ being 
the second step that exaggerates or catalyzes the patho-
logical process leading to clinical dementia. Similarly, 
TDP-43 and α-syn pathologies probably develop indepen-
dently (and can cause clinical disease) but extracellular Aβ 
may aggravate or catalyze the spread of these pathologies 
throughout the brain. Accumulating evidence suggests 
that the fibrillar aggregates of all of these proteins are not 
likely directly toxic to neurons but reflect—and in some 
cases exacerbate—the accumulation of toxic soluble forms 
of the proteins.

Data from human autopsy material and experimental 
model systems indicate multiple interactions of patholog-
ical proteins both directly in terms of co-aggregation and 
indirectly, for example, involvement in the same molec-
ular pathways to neurodegeneration. Recent data also 
make it tempting to speculate that pathological proteins 
interact in the process of spread of the disease through 
the brain. However, our knowledge on cerebral multi-
morbidity is still limited as this multimorbidity shows 
considerable qualitative and quantitative heterogeneity 
between cases, and hence large-scale studies on human 
post-mortem brains, which combine both detailed clini-
cal data and quantitative data on the amount of protein-
aggregate burden, are needed to further our understand-
ing of protein–protein interactions in the multimorbid old 
brain. Understanding these interactions will be important 
to develop effective therapeutic targets to reduce toxicity 
and possibly to stop these diseases in their tracks (Fig. 3).
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