
SNP Discovery from Transcriptome of the Swimbladder
of Takifugu rubripes
Jun Cui1, Hongdi Wang1, Shikai Liu2, Lifu Zhu3, Xuemei Qiu1, Zhiqiang Jiang1*, Xiuli Wang1*,

Zhanjiang Liu2*

1 Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China, 2 The Fish Molecular Genetics

and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn

University, Auburn, Alabama, United States of America, 3 School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, China

Abstract

Single nucleotide polymorphisms (SNPs) have become the marker of choice for genome-wide association studies in many
species. High-throughput sequencing of RNA was developed primarily to analyze global gene expression, while it is an
efficient way to discover SNPs from the expressed genes. In this study, we conducted transcriptome sequencing of the
swimbladder of Takifugu rubripes using Illumina HiSeq2000 platform to identify gene-associated SNPs in the swimbladder. A
total of 30,312,181 unique-mapped-reads were obtained from 44,736,850 raw reads. A total of 62,270 putative SNPs were
discovered, which were located in 11,306 expressed genes and 2,246 scaffolds. The average minor allele frequency (MAF) of
the SNPs was 0.26. GO and KEGG pathway analysis were conducted to analyze the genes containing SNPs. Validation of
selected SNPs revealed that 54% of SNPs (26/48) were true SNPs. The results suggest that RNA-Seq is an efficient and cost-
effective approach to discover gene-associated SNPs. In this study, a large number of SNPs were identified and these data
will be useful resources for population genetic study, evolution analysis, resource assessment, genetic linkage analysis and
genome-wide association studies.
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Introduction

Next-generation sequencing-based RNA-Seq analyses have

dramatically changed the way to investigate the functional

complexity of transcriptome in many organisms [1,2]. RNA-Seq

approach is powerful for unraveling transcriptome complexity,

identification of genes, gene-associated markers, regulatory non-

coding RNAs and for alternative splicing analysis and expression

profiling [3–5]. Transcriptome analysis using the next generation

sequencing technologies have been widely reported in many

species, including several aquaculture species such as catfish [6–8],

Atlantic cod [9], silver carp [10], pearl oyster [11], carp [12], and

Amur ide [13].

Recently, RNA-Seq has also been used as an efficient and cost-

effective method to comprehensively identify SNPs from tran-

scribed regions in the genomes of several fish species. By

sequencing of the pooled RNA samples from multiple individuals

of channel catfish and blue catfish, a set of quality SNPs were

identified including 342,104 intra-specific SNPs for channel

catfish, 366,269 intra-specific SNPs for blue catfish, and 420,727

inter-specific SNPs between channel catfish and blue catfish [6].

Similarly in carp, a total of 712,042 intra-stain SNPs were

discovered in four strains, including mirror carp (483,276 SNPs),

purse red carp (486, 629SNPs), Xingguo red carp (478,028 SNPs),

and Yellow River carp (488,281 SNPs) [14]. Large sets of SNPs

have also been reported in some other aquaculture species, such as

the Eastern oyster [15], Atlantic salmon [16], Atlantic cod [9] and

rainbow trout [17].

Takifugu rubripes, widely distributed in the Asia, is one of the most

important aquaculture species in China. In our laboratory, some

SNPs makers associated with growth traits have been identified

from the growth-related genes including Leptin, Melanocortin 4

Receptor (MC4R), Insulin-like growth factor (IGF), Myogenic factor 5

(Myf5), Growth hormone releasing hormone (GHRH), Myogenic factor 6

(Myf6) [18]. Other genetic and genomic studies were also

conducted with the focus on identification and characterization

of microsatellite markers [19,20], construction of bacterial artificial

chromosome (BAC) and expressed sequence tag (EST) library

[21]. In addition to its importance in aquaculture, T. rubripes is also

widely used as a model system in many scientific fields, especially

in the evolutionary studies. The fugu genome has been completed,

which is among the smallest vertebrate genomes. It has proven to

be a useful ‘reference’ genome for identifying genes and other

functional elements in human and other vertebrate genomes, and

for understanding the structure and evolution of vertebrate

genomes [22–24].

The swimbladder in teleost fish is a specialized organ that

regulates buoyancy. The homology of the fish swimbladder and

mammalian lung has been well recognized based on morpholog-

ical and embryological evidence. However, the molecular evidence

of homology of swimbladder and the mammalian lung was not

sufficient [25–27]. A large set of SNPs from the swimbladder
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transcriptome of T. rubripes should provide valuable resources for

swimbladder research, lung research and evolution studies of fish

swimbladder and mammalian lung.

In this study, we sequenced the transcriptome of the

swimbladder of T. rubripes using Illumina HisSeq2000 platform

to identify gene-associated SNPs. A total of 62,270 putative SNPs

were discovered, which were located in 11,430 genes and 1,612

scaffolds, and the average minor allele frequency (MAF) was 0.26.

These SNPs should provide useful resources for evolution,

population genetic study, resource assessment, genetic linkage

analysis and genome-wide association studies.

Results and Discussion

Transcriptome sequencing
Illumina sequencing was conducted to generate short sequence

reads from the swimbladder of T. rubripes. A total of 30,312,181

unique-mapped-reads were obtained from 44,736,850 raw reads

after being mapped to the fugu T. rubripes fifth genome assembly

from Ensembl database. The genome distribution of the uniquely

mapped reads was assessed based on the RefSeq-defined gene

models. As expected, the majority of reads (60%) were mapped

onto exonic regions, while a large propotion of reads were mapped

onto intergenic regions (Table 1). Similar observations have been

reported in the studies of mouse and Caenorhabditis elegans [28,29].

The RNA-Seq data in this study has been deposited in the NCBI

SRA database with the accession number of SRR1022677.

SNP identification
Compared with the fugu genome, a total of 62,270 putative

SNPs were identified. The detailed SNP information was provided

in Table S1. Of which, the number of homozygotes was 9,518 and

the number of heterozygotes was 52,752. In these heterozygotes,

the C/T and A/G were the most common types. In contrast, G/

T, A/C, G/C and A/T were the lease common types (Table 2).

The SNPs were classified into several categories based on their

locations in the genome, including inter-genic, down_stream (+1k),

exon, intron, and up_stream (21 k). As shown in Table 3, of the

62,270 putative SNPs, 24,525 SNPs (39.38%) were identified in

exons, which were highly represented, while 4,210 SNPs (6.76%)

were identified in the introns, which were lowly represented.

Minor allele frequency distribution
Minor allele frequency (MAF) is an important factor for SNP

locus evaluation. MAFs of SNPs were calculated from the

sequence data. As shown in Figure 1, the majority of SNPs have

sequence derived minor allele frequencies ranging from 21% to

25%, and the average MAF was 26% in putative SNPs identified

from the swimbladder of T. rubripes.

Table 1. The genome distribution of the mapped reads.

Read distribution Number of reads Percentage

Exonic region 18,120,867 59.78%

Intergenic region 9,776,865 32.25%

Intronic region 1,435,258 4.73%

Exon-intron junction 176,167 0.58%

doi:10.1371/journal.pone.0092502.t001

Table 2. Summary of SNP types identified from the T. rubirpes
swimbladder.

SNP type Number

Homozygote

A 1,887

C 2,914

G 2,887

T 1,830

Heterozygote

G/T 4,730

A/C 4,725

A/G 16,972

G/C 4,665

A/T 4,586

C/T 17,074

Total 62,270

doi:10.1371/journal.pone.0092502.t002

Table 3. Classification of putative SNPs.

SNP classification Number of putative SNPs

Inter-genic 12,903

Down_stream(+1 k) 12,303

Exon 24,525

Intron 4,210

Up_stream(21 k) 8,329

Total 62,270

Inter-genic SNPs were identified from regions between genes, while
Down_stream(+1 k) and Up_stream(21 k) represents SNPs identified from
regions of 1 kb downstream and upstream of the genes.
doi:10.1371/journal.pone.0092502.t003

Figure 1. Distribution of minor allele frequencies (MAFs) of
SNPs identified from the T. rubirpes swimbladder. The X-axis
represents the SNP minor allele frequency in percentage, while the Y-
axis represents the number of SNPs with given minor allele frequency
doi:10.1371/journal.pone.0092502.g001
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SNP distribution among genes and scaffolds
SNPs distribution is important for consideration of coverage

when using SNP makers. The distribution of SNPs in the genes

was analyzed. Expressed short reads were mapped to a total of

17,249 genes based on the fifth fugu T. rubripes genome assembly

from Ensembl database. On average, 3.6 SNPs per gene were

identified. A total of 11,306 expressed genes containing SNPs were

identified in the swimbladder with the cutoff values of PRKM

setting as 0.08. As shown in Figure 2, of these genes, 56.73% had

fewer than 5 SNPs per gene. The number of genes with 26–30

SNPs per gene is 40 and there are 30 genes harboring more than

30 SNPs per gene. For instance, the dystonin (ENSTRUG

00000015507) and annexin A5 (ENSTRUG00000015464) have

relatively large numbers of SNPs per gene, 73 and 63 SNPs,

respectively. The fugu genome assembly (version 5.0) is composed

of 7,119 scaffolds. The SNPs identified in the present study were

found on the 2,246 scaffolds, about 27.7 SNPs per scaffold. As

shown in Figure 3, a large number of scaffolds had fewer than 10

SNPs per scaffold. The scaffold_1 and scaffold_6 had the largest

number of SNPs, 1,631 and 1,293 SNPs, respectively.

Gene Ontology and KEGG pathway analysis
Gene Ontology (GO) annotation was further performed for the

annotated genes in terms of biological process, molecular function

and cellular component. Distribution of the genes in different GO

categories at level 2 is shown in Figure 4. In the swimbladder,

8,922 expressed genes containing SNPs were assigned with one or

more GO terms for biological process, molecular function and

cellular component. For biological process, genes involved in the

metabolic process and cellular process were highly represented.

For molecular function, binding was the most represented GO

term, followed by catalytic activity. Regarding to the cellular

component, the major categories were cell and cell part. The GO

categories of expressed genes containing SNPs were in the same

proportion to the GO categories of all the expressed genes

(Figure 4).

Besides GO analysis, KEGG pathway analysis was also carried

out for the annotated genes, which is an alternative approach to

categorize gene functions with the focus on biochemical pathways.

A total of 3,808 expressed genes were assigned with one or more

KEGG annotation and were mapped to KEGG pathways

(Table 4). Of these annotated genes, 28.06% were classified into

the Organismal Systems with the majority of which involved in

immune system. Metabolism pathways including carbohydrate

metabolism, amino acid metabolism and lipid metabolism

represented 25.66%. Environmental information processing rep-

resented 19.41%. The signal transduction was one of the well-

represented sub-pathways. In addition, 9.15% and 17.72% were

classified into the Genetic information processing and Cellular

Processes, respectively.

Homologous genes containing SNPs between fugu
swimbladder and human lung

In this study, our KEGG pathway analysis indicated the tight

junction existed, including 141 expressed genes containing SNPs.

Tight junction is essential for epithelial morphology and

function of swimbladder. Tight junctions serve to form seals

among epithelial cells, creating a selectively permeable barrier to

intercellular diffusion [27]. Claudins are transmembrane proteins

which act in concert with other transmembrane and peripheral

proteins to form the physical basis for tight junction [27,30]. In

previous studies, claudin 4/5/6/7/9 genes were identified in the

swimbladder of zebrafish [27] and 46 claudin genes in the fugu

genome were identified and their phylogenetic relationships to

those counterparts in mammals was determined [31]. In this study,

16 members of claudin family were identified (Table 5). Three of

the 16 claudin genes were highly expressed, including claudin 5a,

5b and 7d. In the human airway, claudin 1, 3, 4, 5 and 7 are

expressed in both bronchi and bronchioles. Claudin 5 is localized

exclusively in the apical-most region of the tight junctions. Altered

Claudin expression pattern can change the paracellular permeabil-

ity characteristics of the epithelium. Claudin 5 overexpression

increases the solute permeability [32,33]. Genome wide associa-

tion studies showed the polymorphisms rs9290927, rs893051 and

rs17501010 from clandin 1 were associated with nickel contact

sensitization in individuals without ear piercings, contact sensiti-

zation to fragrances, and with both organic compounds and nickel

contact dermatitis in human, respectively [34]. The genetic

variants in regulatory regions of clandin 1 can alter susceptibility

to HCV infection [35].

In this study, 8 Wnt genes containing SNPs were identified and

the expression levels of wnt 7b, wnt 5a and wnt 11 are higher

(Table 6). Wnt signaling pathway has been reported to play

important roles in mammalian lung development [36–38]. In

previous studies, the down-regulation of Wnt signaling leading to

Figure 2. SNP distribution among genes. The X-axis represents
gene size (number of SNPs per gene)
doi:10.1371/journal.pone.0092502.g002

Figure 3. SNP distribution among scaffolds. The X-axis represents
scaffold size (number of SNPs per scaffold)
doi:10.1371/journal.pone.0092502.g003
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defective swimbladder development in zebrafish was observed

[39]. Wnt7b is expressed in the distal airway epithelium of lungs

and plays critical roles in lung development such as distal epithelial

cell fate decision, lung mesenchymal proliferation and smooth

muscle differentiation [38,40–43]. It was found that wnt5a is

expressed in lung epithelium [38,44]. Wnt11 plays important roles

in mouse lung development [38,45,46]. In chicken, 124 SNPs

from 31 genes of Wnt signaling pathway were selected to genotype

in 764 individuals resulted in 102 polymorphic SNPs [47]. In

human, 14 SNPs from six Wnt pathway-related genes were

genotyped in 210 individuals (145 men and 65 women), including

Dickkopf 2 (DKK2) (rs17037102, rs419558, and rs447372), DKK3

(rs3206824, rs11022095, rs1472189, rs7396187, and rs2291599),

DKK4 (rs2073664), sFRP4 (rs1802073 and rs1802074), SMAD7

(rs12953717), and DAAM2 (rs6937133 and rs2504106) [48]. Six

common SNPs of Wnt10b were identified in a sample of 1,029

Korean female subjects, which were in almost complete linkage

disequilibrium [49].

We observed the expression of two homologues of Ihh

(ENSTRUG00000012233 and ENSTRUG00000013525) and

Ptc1 (ENSTRUG00000014514) containing SNPs from the swim-

bladder transcriptome. The role of Hh (Hedgehog) signaling

pathway in lung development is very crucial in human, mouse,

chicken and Xenopus laevis [38,50–53]. Some development-related

genes in lung had been identified in zebrafish, such as Sonic

Hedgehog (Shh)-related gene, Indian Hedgehog (Ihh)-related gene

and their receptors, Patched 1(Ptc 1) and Ptc2 [54-61]. The human

sonic hedgehog (SHH) gene is located in the 7q36 region, which is

known to play an important role in embryo patterning, lung

development and connection with sexual orientation. A SNP site

(rs9333613) was found to be associated with male sexual

orientation [62]. Ihh is a good candidate gene for association

study of developmental disorders mainly affecting skeleton

development. The previous study showed that the SNP sites of

Ihh were associated with equine bone developmental disorders

[63].

SNP validation
As the SNPs reported in the present study were identified

through bioinformatic analysis, the results were needed to evaluate

for the validation rate. A total of 48 SNPs were randomly selected

for validation by PCR amplification and Sanger sequencing [64].

Of the 48 SNPs, 26 SNPs (54%) were validated and 22 SNPs

were not found by PCR amplification and direct sequencing

(Table 7).

Materials and Methods

Ethics statement
This study was approved by the Animal Care and Use

committee of Key Laboratory of Mariculture & Stock Enhance-

ment in North China’s Sea at Dalian Ocean University. All

surgery was performed under sodium pentobarbital anesthesia,

and all efforts were made to minimize suffering.

Sample collection and RNA isolation
A total of 45 Takifugu rubripes (length 20cm) were sampled from

Dalian Tianzheng Industrial Co., Ltd (Dalian China). The

swimbladders of these fish were collected and pooled. Tissues

were placed into RNAlater (Ambion), stored at room temperature

for 24 h, and then moved to 280uC for storage until RNA

isolation. Total RNA was extracted from the pooled swim-

bladder using the TRIzol R Reagent (Invitrogen, CA, USA)

by following the manufacturer’s protocol. The quantity and

quality of total RNA was measured using an Agilent 2100

Bioanalyzer.

Figure 4. Gene Ontology of genes containing putative SNPs.
doi:10.1371/journal.pone.0092502.g004
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cDNA library construction and sequencing
Total RNA was sent out for next generation sequencing

provided by Beijing Institute of Genomics, Chinese Academy of

Sciences. cDNA libraries were constructed from mRNA from

swimbladder. cDNA libraries were prepared using the Illumina

TruSeq RNA Sample Preparetion Kit (Illumina) according to the

TruSeq protocol. After KAPA quantitation and dilution, the

libraries were clustered 3 per lane and sequenced on an Illumina

HiSeq 2000 instrument with 100 bp paired-end reads.

Reads mapping
The reads were mapping to the fugu T. rubripes fifth genome

assembly by BWA program. During the mapping phase, up to five

mismatches were allowed. The expression levels (RPKM, Reads

Per Kilobase of exon model per Million mapped reads) for each

gene were calculated using uniquely mapped reads by in-house

Perl script according to the equation:

RPKM~
exonreads|109

uniquereads|genelength

The cutoff value of gene expression was calculated for each

sequencing sample, genes with RPKM greater than cutoff value

were defined as expressed genes [65].

SNP identification
BWA and SAMtools (Tools for alignments in the SAM format)

software were used to align reads to the fugu genome assembly

(version 5.0) for detecting SNPs [66,67]. Filtering thresholds were

Table 4. KEGG biochemical mappings for genes containing
SNPs.

KEGG categories
Number of
genes

Metabolism

Amino Acid Metabolism 344

Biosynthesis of Polyketides and Nonribosomal Peptides 4

Biosynthesis of Secondary Metabolites 69

Carbohydrate Metabolism 422

Energy Metabolism 162

Glycan Biosynthesis and Metabolism 150

Lipid Metabolism 331

Metabolism of Cofactors and Vitamins 130

Metabolism of Other Amino Acids 103

Nucleotide Metabolism 239

Xenobiotics Biodegradation and Metabolism 118

Genetic Information Processing

Folding, Sorting and Degradation 266

Replication and Repair 161

Transcription 196

Translation 116

Environmental Information Processing

Membrane Transport 39

Signal Transduction 1142

Signaling Molecules and Interaction 386

Cellular Processes

Behavior 28

Cell Communication 522

Cell Growth and Death 365

Cell Motility 200

Transport and Catabolism 316

Organismal System

Circulatory System 138

Development 187

Endocrine System 544

Immune System 1116

Nervous System 246

Sensory System 35

doi:10.1371/journal.pone.0092502.t004

Table 5. Identification of expressed Claudin genes containing
SNPs.

Ensembl Gene ID Gene name RPKM value Number of SNPs

ENSTRUG00000018609 Claudin 5b 234.65 5

ENSTRUG00000016497 Claudin 5a 75.65 5

ENSTRUG00000007521 Claudin 7a 43.24 6

ENSTRUG00000010140 Claudin 30c 14.33 3

ENSTRUG00000004991 Claudin 12 8.98 6

ENSTRUG00000011829 Claudin 11a 6.15 4

ENSTRUG00000015308 Claudin 15a 3.81 1

ENSTRUG00000003031 Claudin 25 2.89 2

ENSTRUG00000010901 Claudin 23 1.83 4

ENSTRUG00000001287 Claudin 19 1.63 4

ENSTRUG00000013204 Claudin 18 1.21 2

ENSTRUG00000007366 Claudin 32a 0.78 3

ENSTRUG00000011741 Claudin 31 0.76 2

ENSTRUG00000009832 Claudin 28b 0.31 1

ENSTRUG00000016459 Claudin 15b 0.21 2

ENSTRUG00000010378 Claudin 23b 0.14 1

doi:10.1371/journal.pone.0092502.t005

Table 6. Identification of expressed Wnt genes containing
SNPs.

Ensembl Gene ID Gene name RPKM value Number of SNPs

ENSTRUG00000016453 Wnt 7b 48.59 1

ENSTRUG00000001530 Wnt 11 29.03 8

ENSTRUG00000008614 Wnt 5a 28.52 7

ENSTRUG00000000172 Wnt 4 16.51 4

ENSTRUG00000003640 Wnt 6 11.5 14

ENSTRUG00000016522 Wnt 5b 1.71 2

ENSTRUG00000014284 Wnt 9b 1.38 3

ENSTRUG00000012568 Wnt 2b 0.33 1

doi:10.1371/journal.pone.0092502.t006
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set as: consensus quality is no less than 20 and coverage is no less

than 10.

Gene Ontology and KEGG pathway analysis
Gene Ontology (GO) and KEGG pathway analyses were

conducted to the genes containing SNPs. GO annotation analysis

was performed using Blast2GO, an automated tool for the

assignment of GO terms. The annotation result was categorized

with respect to Biological Process, Molecular Function, and

Cellular Component at level 2. In order to gain an overview of

gene pathway networks, KEGG analysis was performed using the

online KEGG Automatic Annotation Server (KAAS) (http://

www.genome.jp/kegg/kass/). The bi-directional best hit (BBH)

method was used to obtain KEGG orthology assignments.

SNP validation
To evaluate the validation rate of the SNPs identified by

bioinformatic analysis, we randomly selected 48 SNPs and

validated by PCR amplification and direct sequencing. PCR

primers were designed according to the assembled transcript

sequences and were listed in the Table S2. Ten individuals were

used for the SNP validation.

Conclusions

In this study, a large number of SNPs were identified by the

transcriptome sequencing of the T. rubirpes swimbladder using

Illumina HiSeq2000 platform. A large proportion of randomly

selected SNPs were verified using the Sanger sequencing,

suggesting the high validation rate. The SNPs should provide

valuable resources for genomic studies, evolution analysis,

population genetic study, resource assessment, genetic linkage

analysis and genome-wide association studies.

Supporting Information

Table S1 The SNPs identified from the transcriptome of
the swimbladder of Takifugu rubripes.
(TXT)

Table S2 Primers used for SNP validation in the study.
(DOC)
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