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countries across the globe.

However, it remains a major challenge
to use genomic information to make
accurate predictions for individual can-
cer patients.

Multiple genomic studies substantiated
the notion of cancer as an evolutionary
process that can readily adapt within
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Cancer as an Evolutionary Process
The ability to precisely predict the future clinical course of an individual patient's cancer would be
highly beneficial for oncological care. For example, patients whose cancers will never progress to
the point of affecting their health may not require any treatment and those who need systemic
therapy should only be treated with drugs that have a realistic chance of being effective.

Genomic aberrations differ between cancers of the same histological type, to the extent that no
two tumors are thought to show an identical somatic genetic aberration profile [1]. The specific
combination of somatic genetic and epigenetic aberrations within a tumor, in the context of the
germline variants present in the same patient, is thought to be a major determinant of the biology
and hence of the clinical course of a cancer. Recognition of this intertumor heterogeneity led to
the concept of personalized cancer medicine: deciphering individual cancer genomic profiles
should provide precise insights into disease biology and allow the targeting of genetically
encoded susceptibilities for therapeutic benefit. Next-generation sequencing technologies
enable the routine interrogation of these (epi)genomic landscapes [2,3]. In parallel, an increasing
number of cancer drugs expand the therapeutic options to target specific genetic alterations.
Yet, despite noticeable advances of personalized therapy approaches in some tumor types, the
ability to predict whether and for how long an individual cancer will respond to therapy and what
genotype will eventually evolve to drive resistance remain suboptimal [4]. Precisely forecasting
whether a cancer will recur after potentially curative therapy remains even more elusive, resulting
in dramatic overtreatment in oncology [5].

Forty years ago, Peter Nowell first formally described cancer as an evolutionary process [6]. This
hypothesis has since been substantiated by the discovery of intratumor subclonal heterogeneity
and ongoing clonal selection in multiple cancer types [7–13]. Recognition of this fundamental
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Glossary
Deterministic process: a process
whose outcome is determined by its
initial state.
Stochastic process: a process that
can have different outcomes even if
the initial state is identical.
evolutionary nature of cancer and the notion of tumors as dynamically adapting ‘organisms’
requires a reassessment of the opportunities and limitations this bestows on precision cancer
medicine.

‘Nothing in biology makes sense except in the light of evolution’ – Theodosius Dobzhansky

Cancer evolution is conceptually similar to the evolution of asexual microorganisms [14]
and should be governed by the dynamic interplay of the same three basic processes [15]: (i)
the generation of heritable variation; (ii) the influence of random birth and death events on the
fate of new genotypes, referred to as genetic drift; and (iii) Darwinian selection, which changes
the frequency of genotypes in the population based on their relative fitness advantage
(Figure 1, Key Figure).

The acquisition of heritable alterations and genetic drift are both random processes, while
Darwinian selection is deterministic in nature (deterministic process; see Glossary) [16,17].
This questions to what extent cancer evolution and hence the future clinical course of a patient
can be predicted with precision. This review integrates results from recent cancer genomics
studies with fundamental evolutionary biology concepts to assess how stochasticity (stochastic
process) and spatial structures limit cancer predictability. Based on this evolutionary perspective
of cancer, we subsequently assemble novel approaches such as genetic micro- and macro-
heterogeneity profiling and the application of empirical cancer fitness landscapes, which should
expand the predictability horizon for precision cancer medicine efforts.

Mutation Generation
Heritable somatic variation encompasses genetic alterations such as point mutations, insertions,
deletions, and chromosomal aberrations, as well as random epigenetic changes that are
heritable over cell generations. For simplicity, the term ‘mutation’ is used for all heritable somatic
alterations throughout this review.

A baseline mutation rate can be detected in any mitotic tissue, but mutation rates are often
elevated in cancer [18]. Mutations can result from cell extrinsic (e.g., tobacco smoke exposure)
or intrinsic processes (e.g., oxidative damage or defects in DNA repair). Many mutational
processes preferentially strike in specific DNA sequence contexts, biasing mutations towards
genomic regions in which these are overrepresented. Distinct mechanisms can hence leave
specific footprints or mutational signatures in the genome, as shown by a pan-cancer analysis
that revealed 20 different mutational signatures, nine of which could be linked to known
molecular mutational mechanisms [19]. The preferential deamination of cytosine in 50-TC-30

dinucleotides and regional hypermutation clusters caused by the aberrant activity of the
apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) RNA-editing
enzymes is one example [20]. Late-replicating genomic regions are more prone to acquire
mutations than early replicating regions [21], and chromatin organization further influences
regional mutation rates [22], contributing to variable mutation rates in different genomic regions.

Structural aberrations also result from diverse molecular mechanisms. Fusion of two chromo-
some ends fostering cycles of chromosome breakage and fusion during mitosis [23] or
catastrophic ‘chromothripsis’ events leading to massive genomic rearrangements within a
single cell division [24] are two examples. DNA fragments can even be detached from chromo-
somal DNA and propagated as so-called ‘double minute chromosomes’ whose abundance can
change rapidly, for example, to maintain optimal epidermal growth factor receptor (EGFR)
signaling levels during cancer drug therapy [25].

Different mutational processes can predominate at different times. Clear cell renal cell carcino-
mas (ccRCC) and non-small cell lung cancers (NSCLCs) both exhibited distinct mutational
50 Trends in Cancer, January 2016, Vol. 2, No. 1



Key Figure

Mutation, Selection, and Drift are the Three Basic Processes Shaping
Cancer Evolution
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Figure 1. Interdependencies and spatial and temporal variability of mutation, selection, and drift establish additional levels
of complexity (middle section), which together influence cancer evolution (center).
signatures during early carcinogenesis compared with cancer progression and between differ-
ent tumor subclones [9,26]. Ongoing tobacco exposure had a minor influence on mutation
generation during NSCLC progression where mutations were predominantly induced by APO-
BEC enzymes [26]. Single cell sequencing of two breast cancers showed that point mutations
were generated continuously during cancer progression, whereas copy number aberrations had
been acquired early [27]. Whole genome doubling events can lead to tetraploidy, which is
permissive for further chromosome gains and losses [28]. Genome doubling can occur early in
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carcinogenesis [26] but also late during cancer progression [9]. Extra gene copies acquired
through genome doubling may buffer potentially deleterious effects of new mutations [9].
Genome doubling might therefore not only catalyze mutation generation but also increase
mutation tolerance.

Cancer originates from a single cell with a diploid genome. This encodes the blueprint for
embryological development and adult homoeostasis of a complex multicellular organism and is
also structurally optimized to undergo meiosis and recombination during sexual reproduction
[15]. Such constraints on genome structure and many genes regulating tissue-specific functions
are likely to be irrelevant for cancer cells, which permits their survival despite highly aberrant
genomes. This mutational robustness allows cancers to probe a vast genomic space for novel
phenotypes [29,30].

Taken together, mutations are the prerequisite for cancer evolution. Mutation rates, the genomic
regions that are prone to mutagenesis, and the timing when particular mutagenic processes
operate during cancer progression can vary significantly between but also within individual
cancers. This influences the accessibility of novel genotypes and phenotypes and hence the
opportunities for evolution, as shown for APOBEC-driven mutagenesis, which generates acti-
vating phosphoinositide (PI)3-kinase mutations in many cancers where it is active [31]. Yet, even
if the mutational mechanisms operating in a cancer cell could be measured exactly, mutations
still occur randomly with regard to their timing and exact genomic location.

Drift
Genetic drift refers to changes of the frequency of an allele in a population due to random birth
and death events: each cell in a newly generated cancer subclone has a certain probability of
dying as a result of random factors and occasionally all cells of a small subclone die, even if this
clone harbors a highly beneficial mutation. Drift has a bigger impact in smaller populations [15]
and is more likely to eradicate a single cell or a small clone that has not yet expanded significantly.
Drift is more pronounced after population bottlenecks, for example, when a few or single cells
colonize a new metastatic niche or after a massive reduction in population size through cytotoxic
treatment. As a consequence of drift, the expansion of a clone with a beneficial mutation may not
be predictable with certainty until this clone exceeds a certain abundance at which it escapes
potential extinction through drift [32].

Drift influences cancer initiation [33,34] but experimental data demonstrating the strength of this
effect in cancer progression is lacking. New technologies assessing clonal composition at the
single cell level [27] or clonal dynamics through lineage tracing in model systems [33,35] may
provide such insights.

Selection
A new mutation that increases the ability of the cell to survive and reproduce under particular
environmental conditions and that has escaped drift will gradually increase in its abundance
within the population. This clonal selection is arguably the only deterministic force in evolution
[16,36].

Next-generation sequencing technologies revealed these clonal selection processes for the first
time in detail and drafted the first chapters of cancer evolution rulebooks. Multiple intratumoral
subclones harboring different driver mutations, displaying distinct phenotypes, and evolving with
branched phylogenies were identified in many cancer types [7,9,11,13,37–41].

The presence of multiple subclones within a tumor can lead to clonal competition. The fitness of
an individual subclone is then defined in relation to the fitness of other competing clones [42].
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Hence, beneficial mutations that escape the potentially deleterious effects of drift can still be
eradicated by competing clones, complicating the prediction of evolutionary outcomes.

The identification of spatially separated subclones in many solid tumors suggests that their 3D
structure hinders intermixing of subclones [9,11,26,40,43]. Such spatial constraints most likely
limit clonal competition to the immediately neighboring subclones and even highly fit subclones
may never be able to rise to 100% abundance, an event referred to as ‘fixation’ or ‘selective
sweep’ in evolutionary biology. Solid tumor spatial structures may therefore augment the
generation and maintenance of subclonal heterogeneity and drive the system towards a more
stochastic behavior. This notion is supported by microbial experiments that found higher
intrapopulation genetic heterogeneity in spatially structured environments [44]. Thus, solid
tumors may be ecological microcosms composed of myriads of small and localized populations,
each competing only at its edges with neighboring populations.

The Selection of Drug Resistant Clones
Resistance almost invariably develops during drug therapy in metastatic tumors and studies
into the origins of acquired resistance impressively illustrated the evolutionary plasticity of
cancer.

For example, the majority of NSCLCs treated with first generation EGFR inhibitors such as
gefitinib or erlotinib acquire resistance through the evolution of EGFR T790M mutations [45].
Alternative EGFR mutations, MET proto-oncogene or erb-b2 receptor tyrosine kinase 2
(ERBB2) amplification or non-pathway-dependent resistance through transformation into
small-cell lung cancers were observed less frequently in biopsies from resistant tumors
[46]. The high prevalence of T790M-driven resistance led to the development of third
generation EGFR inhibitors such as rociletinib, which are active against this oncoprotein
and achieved response rates of 59% in T790M NSCLCs [47]. Rebiopsies after rociletinib
failure found that 6/13 resistant tumors were T790 wild-type (wt) again. These resistant
clones were already present before rociletinib therapy initiation and probably harbored
alternative resistance drivers to first generation inhibitors [48]. Thus, subclonal heterogeneity
was a key driver of treatment failure. C797S EGFR mutations are an alternative resistance
mechanism to third generation EGFR inhibitors [49]. Importantly, EGFR signaling could still
be inhibited with a combination of first and third generation inhibitors if the C797S mutation
was located in trans with T790M but this combination was ineffective if these were located in
cis on the same EGFR allele. As C797S mutations occur randomly on one of the two EGFR
alleles, the optimal further therapy cannot be predicted until the mutational event has occurred
and has been detected. This compellingly demonstrates how stochastic events can limit
predictability.

Somatic mutation detection in circulating tumor DNA (ctDNA) is likely to provide a more
comprehensive overview over the subclonal heterogeneity of solid tumors than single biopsies.
ctDNA analysis indeed detected up to 12 distinct subclones, each harboring a different mutation
in RAS-type family GTPases (RAS) or v-Raf murine sarcoma viral oncogene homolog B1 (BRAF)
genes, in individual patients with colorectal cancer (CRC) after they had developed anti-EGFR
therapy resistance [12]. Polyclonal resistance has also been identified in other tumor types after
the failure of targeted drugs, hormones, or chemotherapy [13,50–53]. Polyclonal resistance may
thus be a common phenomenon in solid tumors, demonstrating the enormous evolutionary
adaptability of cancer. Clonal dynamics analyses in the ctDNA from CRC patients further
suggested that Kirsten rat sarcoma viral oncogene homolog (KRAS) resistance mutations
had been present in small subclones before anti-EGFR therapy initiation [8]. Thus, the standing
genetic variation in cancers has been recurrently found to provide a reservoir of phenotypes
permitting evolutionary rescue from extinction in changing environments.
Trends in Cancer, January 2016, Vol. 2, No. 1 53



Overexpression of the BRAF V600E oncoprotein caused resistance but also dependency on
BRAF inhibitor therapy in melanoma xenografts [54]. Whether such drug resistant cells were
present before BRAF inhibitor therapy is unclear but it is conceivable that their fitness disad-
vantage would drive them to extinction in the absence of selection pressure. This illustrates how
fitness differences in the presence or absence of drug may influence the probability of pre-
existence of specific resistance drivers. Negative fitness effects may also explain the decline
of drug resistant CRC subclones after withdrawal of anti-EGFR therapy [55].

Taken together, pervasive drug resistance evolution demonstrates that neither the acquisition of
resistance driver mutations nor the potential elimination by drift are limiting factors for evolu-
tionary adaptation in these tumor types. Despite the occurrence of therapeutically challenging
polyclonal resistance, only a small fraction of possible resistance genotypes appears to be
frequently accessed, implying a degree of evolutionary predictability. This questions which
cancer characteristics favor the predictability of resistance genotypes, which may permit more
effective pre-emptive interventions.

Cancer from a Population Genetics Perspective
Studies in microbes extensively investigated how key population genetics parameters – muta-
tion rate, population size, and the strength of selection – alter predictability and chance in
evolution [56]. Understanding how the same three parameters influence cancer evolution is
crucial to further outline the limits of cancer evolution predictability.

‘Nothing in evolution makes sense except in the light of population genetics’ – Michael Lynch
[15]

The Impact of Mutation Rate and Population Size
The supply of new mutations is a limiting factor for adaptation in small cancers with no or minimal
genomic instability. As the generation of advantageous mutations and escape from drift are
stochastic events, the time to the emergence of a new characteristic and its exact genotype
cannot be predicted accurately. It is unlikely that multiple clones with increased fitness are
present at the same time in such a cancer. A new beneficial mutation that has sufficiently
expanded to escape drift is therefore likely to deterministically steer the evolutionary track of the
population. Once this subclone becomes detectable in a patient, the further clonal expansion
process may be highly predictable.

Chronic myeloid leukemia (CML) in the chronic phase is a cancer type in which the mutation
supply is usually limited. It is genetically stable and has a small effective population size as it is
maintained by a small pool of cancer stem cells [57]. Only mutations generated in a cancer stem
cell can be of relevance for evolution; all others will invariably go extinct as a consequence of the
limited replicative potential of non-stem cells [58]. The time from treatment initiation with imatinib,
an inhibitor of breakpoint cluster region and ABL proto-oncogene 1 (BCR-ABL) fusion protein,
until a resistance mutation becomes detectable varies highly between patients, probably as a
consequence of the stochasticity of mutation generation and drift. But once such a mutation is
detectable, most cancers will progress, suggesting that these clones entered a deterministic
and predictable trajectory. Distinct resistance mutations in the BCR-ABL gene have different
fitness effects in the presence of imatinib and the time from detection of a resistance mutation
to progression can be estimated with higher precision when the exact mutation is taken into
account [59,60].

All else being equal, the supply of new mutations increases with the cancer cell population size
and the probability that a specific advantageous mutation will occur converges towards 100%
in advanced cancers, which can harbor hundreds of billions of malignant cells (Figure 2). The
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Figure 2. Probability of Occurrence of a Specific Point Mutation in the Cancer Genome. The probability that a
specific point mutation occurs at least once during the growth of a tumor to the indicated population size is shown.
Calculations were performed for three different mutation rates covering mutation rate ranges observed in non-hypermutator
human cancers [27]. The probability for such a mutation converges to 100% for cancer sizes that are typical for patients
requiring systemic therapy, regardless of the mutation rate. Thus, any specific resistance driver mutation has most likely
been generated at least once in an advanced solid tumor. For simplicity, this model only assesses the probability of mutation
generation and does not take into account that these can be eradicated by drift. Absence of cell death and constant
mutation rates across the genome and for all possible single base substitutions were simplifying assumptions. The
probability was calculated as 1 – (1 – k)N. N is the number of total cell divisions (which is equal to population size – 1).
k is the probability of occurrence of a specific mutation during a cell division, calculated as m/G � 1/3, where m is the
mutation rate per cell division and G is the size of the haploid human genome (3.3 � 109 bp). Approximate tumor diameters
were calculated based on [107].
likelihood of resistance development should hence increase and time to resistance decrease
with the cancer population size, which is supported by clinical observations [61,62]. Large
population sizes further favor the simultaneous emergence of multiple beneficial mutations in
different cancer cells, leading, for example, to polyclonal resistance. Yet, the increasing spatial
segregation of tumor subpopulations is likely to hinder competition and to foster genetic
heterogeneity as outlined. Segregation into many small populations may further increase the
influence of stochastic drift. Cancer cell motility [63] or reseeding between metastases [10,13,64]
may mitigate the impact of spatial tumor structures, but further studies are necessary to assess
the prevalence of these processes.

The Role of Detrimental Mutations
Genomic instability can increase the supply of beneficial mutations in small cancers to levels
equal to or exceeding those of large but genomically stable tumors. A distinct difference is that
multiple mutations are likely to arise and accumulate within individual cells in the former scenario.
Thus, additive and epistatic effects increasingly influence overall subclonal fitness in genomically
unstable tumors. Mutations can impair fitness through multiple mechanisms including loss-of-
function, detrimental neo-functions, cellular stress induced by misfolded or aberrantly expressed
proteins, fatal structural aberrations in the genome, or by increasing cancer immunogenicity [65].
Thus, it is likely that many mutations have at least mildly disadvantageous effects, despite the
high mutational robustness of cancer genomes. Such mutations accumulate in the cancer cell
population and the evolutionary success of a new advantageous mutation that randomly
originates in a single cancer cell becomes increasingly influenced by the net fitness effect of
Trends in Cancer, January 2016, Vol. 2, No. 1 55
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Figure 3. Fitness Effects of New Mutations Arising in Cancers with Different Population Sizes and Mutation
Rates. (A) The accumulation of disadvantageous mutations causes negative fitness shifts in affected cells and their
progeny. Stepwise acquisition of multiple disadvantageous mutations pushes cells towards the left side of the graph. The
fitness distribution can be approximated by a Poisson distribution in large populations with a relatively low mutation rate [66].
(B) A high mutation rate leads to a large genetic load that increases the variance of the fitness distribution and decreases
overall population fitness [66]. (C) The impact of a new beneficial mutation depends on the initial fitness of the cell in which it
occurs. A slightly advantageous mutation (purple) can be more likely to be successful in evolution than a mutation with a
large beneficial effect (pink) if it occurs in a fitter cell. (D) High mutation rates increase the supply of beneficial mutations but
also cell-to-cell variation in fitness, thus hindering selection of the most advantageous mutations. (E) In large populations the
same mutation is likely to arise independently in different cells, leading to parallel evolution. These clones may still differ in
overall fitness owing to variable loads of disadvantageous mutations. (F) A rare combination of mutations can produce large
and unpredictable fitness leaps. This most likely occurs in large and genetically unstable tumors.
all somatic mutations within that cell [66] (Figure 3). This has been shown in microbial evolution
experiments, where the most successful mutations were often those that were fortunate and
occurred in the best genetic backgrounds [67]. Cell-to-cell differences in the mutation load
hence diminish the ability to accurately predict the impact of a given driver mutation before it has
actually occurred in a random cell of a heterogeneous tumor cell population.

Mathematical models [16] and yeast evolution experiments [32,67] suggest that determinism
becomes further disrupted in very large populations through the rare occurrence of highly fit
clones that acquired fortuitous combinations of several mutations. Such mutations may even be
disadvantageous individually; success in evolution then requires epistatic cooperation through
56 Trends in Cancer, January 2016, Vol. 2, No. 1



co-occurrence within the same genome. Catastrophic events such as chromothripsis that
generate multiple genetic aberrations [20] or chromosomal instability, which alters the gene dosage
of multiple genes colocalizing on a DNA segment [68], are possible one-step mechanisms to
acquire beneficial driver combinations. The limited clonal competition in solid tumors coupled
with the mutational robustness of cancer genomes may permit the survival of large numbers
of subclones with high mutation loads that occasionally facilitate such unpredictable trajectories.

The irreversible accumulation of detrimental mutations in asexually reproducing organisms may
eventually lead to their extinction, a phenomenon referred to as Muller's ratchet in evolutionary
biology. Sequencing of ultra-hypermutator cancers in children with germline mutations in the
proofreading DNA polymerase epsilon (POLE) indeed found a maximum of �20 000 exonic
mutations [30]. This may indicate a ‘mutational ceiling’ beyond which the detrimental effects of
such large mutation loads cannot be tolerated. Despite this, the tumors had not regressed
spontaneously and were removed surgically. Moreover, mutation loads are magnitudes lower in
most other hypermutator cancers [18] and the rarity of spontaneous cancer regression events
questions the relevance of extinction driven by high mutational loads. Nevertheless, the prog-
nosis of tumors with hypermutator phenotypes [69] or high levels of chromosomal instability [70]
can be better than in those with intermediate genomic instability levels, suggesting that negative
fitness effects of large mutational loads may be relevant for precision cancer medicine.

Overall, the relationships between population size, mutation rate, and predictability are complex
(Figure 4) and non-monotonic [16]. Time-to-event predictability may be particularly difficult in
tumors with a limited mutation supply due to the influence of stochastic mutation generation
and drift events. Predictability may be higher in intermediate size tumors with low instability
where the supply of advantageous mutations is relatively large and may decline in large tumors
with spatial structures and in those with high instability where unexpected mutation combina-
tions arise. It is conceivable that therapeutic strategies that aim to minimize the size of the cancer
cell population throughout the patient history may restrain evolvability and polyclonal resistance
development. Reducing mutation rates, for example, by inhibiting enzymes such as APOBEC
that drive genomic instability processes [71] could be further tractable approaches to control
evolvability. Mathematical models further suggested that rationally selected and administered
combination therapies could thwart the evolution of drug resistance [72,73]. Yet, this strategy
is often limited in practice as a result of the overlapping toxicity profiles of many cancer drugs
and can lead to untoward drug interactions [74].
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Figure 4. Cancer Evolution Features
by Population Size and Mutation
Rate. Evolvability is low in cancers where
the mutation supply is a limiting factor but
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Impact of the Strength of Selection
A challenge for the quantification of the fitness of cancer subclones is that it depends on the
selection pressures operating in an individual cancer. Selection can, for example, vary between
tumor types as shown by the detection of star-shaped phylogenies in primary CRCs, which
suggested the absence of strong selection [75], whereas ccRCCs showed evidence for
ongoing evolution in primary tumors [11]. It is conceivable that tumors in which selection
appears absent may be those that already harbor strong driver genes and proliferate rapidly.
Thus, the acquisition of additional drivers may have only minimal impact on their growth
dynamics and selection may be too weak to shift clonal compositions detectably [76,77]. Yet,
selection pressures may change dramatically when cancers increase in size. For example,
hypoxia is likely to increase in a growing tumor and can select for tumor protein p53 (TP53)
mutant clones that evade apoptosis under these hostile conditions [78]. Assessing tumor
microenvironmental features, such as blood vessel densities or immune cell infiltrates [79], can
reveal some of the selection pressures that are relevant in an individual tumor. Cancer cells
colonizing metastatic sites are also likely to encounter altered selective landscapes. This
most likely explains why small subclones rather than the dominant clone in the primary tumor
seeded multiple metastases in breast, prostate, renal, and pancreatic primary cancers
[10,13,39,64,80,81] and why genomic landscapes of metastases differed between colonized
organs [80,82]. Approaches to predict metastatic progression may need to consider which
genotypes are most likely to be viable in candidate metastatic organs, rather than at the
primary tumor site. Genetic analyses of tissues from metastases and primary tumors are
necessary to reveal recurrently selected genetic alterations that permit colonization of distinct
organs.

In summary, cancer evolution is influenced by various selective pressures that can act simulta-
neously and vary in space and time [83], challenging the simplified perception of evolutionary
adaptation as movement on a static fitness landscape [84,85]. Drug therapy may largely be an
exception as conventional dose regimens based on maximum tolerated doses probably apply a
uniform selection pressure. Predicting drug resistance may therefore be an easier task than
predictions of tumor progression and recurrence.

Expanding the Predictability Horizon
Cancer evolution is a complex and dynamic process governed by simple principles (Figure 1).
The spatial structure of solid tumors likely increases the genetic diversity that can be maintained
in the cancer cell population, augments the influence of stochastic factors, and reduces the
efficacy of selection, which is the only deterministic force in cancer evolution. Yet, there are
opportunities to improve cancer precision medicine predictability by applying evolutionary
principles.

Macroheterogeneity Profiling
Once a subclone has expanded and escaped drift, its fate is increasingly determined by its
fitness advantage. Methods that can identify such evolving macroscale subclones and estimate
their fitness advantage may permit the accurate prediction of short-term dynamics of hetero-
geneous tumors. For example, detection of pre-existing drug resistant subclones before anti-
EGFR therapy in NSCLCs [86] or in CRCs [87] allows more accurate estimates of progression
free survival times and the presence and evolution of subclonal driver mutations correlated with
worse outcomes in chronic lymphocytic leukemia [88].

Current genetic prediction approaches are largely based on the analysis of recurrent driver
aberrations. This overlooks negative fitness effects of so-called passenger mutations, which
most likely diminishes predictive accuracy. Efforts to identify non-synonymous mutations that
generate neo-epitopes [65], which impair cellular fitness due to resulting immune recognition, are
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important steps to improve clonal fitness analysis. Further methods to predict the selective
advantage or disadvantage of non-recurrent alteration are clearly necessary.

Mathematical models suggest that at the time of treatment, each metastatic lesion may contain
several drug resistant subclones that differ in their population sizes by orders of magnitude
[89]. Rational targeting of the most abundant resistant clone is likely to foster the outgrowth
of smaller clones, which may be driven by distinct and untargeted resistance mechanisms,
as shown for T790M NSCLC treated with third generation EGFR inhibitors [48]. These
complexities of cancer clonal compositions require tracking systems that update forecasts
regularly. This may be achievable through ctDNA analysis technologies that permit increasingly
sophisticated subclonal detection and tracking [12,55,90,91]. The development of evolution-
ary forecasting methods that are applicable to such data should be a priority in precision
medicine.

Taken together, detecting macroscale clones that are expanding almost deterministically and
precise quantification of the fitness effects of somatic mutations within such clones may
significantly expand the predictability horizon. Tracking of subclonal composition through ctDNA
could also inform pre-emptive therapeutic switch strategies as soon as evolving resistant
subclones become detectable. By keeping the cancer cell population size small, such adaptive
therapy approaches could help to restrain evolvability and the development of polyclonal
resistance.

Microheterogeneity Profiling
Genetic analyses at the macroscale predominantly reveal mutations present in large subclones
that have already been successful in evolution and provide an ‘archaeological’ record of past
mutational processes. Yet, this overlooks the mutation generation ongoing at the single cell level
and the heterogeneity confined to small subclones of up to a few thousand cancer cells [77]. This
unselected standing genetic variation at the microheterogeneity scale arguably confers the
majority of the mutational load of a cancer cell population. This may indeed be the most critical
determinant of cancer evolvability, akin to the engine of cancer evolution that generates the
heritable phenotypic diversity that selection can act upon. Novel approaches to sequence small
cancer cell subpopulations, such as CRC crypts [92,93] or single cells [27], are starting to
provide detailed insights into microscale heterogeneity.

The combined measurement of standing genetic variation and mutational processes through
microscale sequencing, together with cancer cell population size estimates obtained through
routine imaging, may categorize individual tumors into subgroups differing in their overall
evolvability and predictability. Quantifying the size and restricting sequencing to the cancer
stem cell pool will be critical in cancers maintained by stem cells to avoid population size
overestimates and the erroneous interpretation of mutations confined to non-stem cells that are
destined for extinction [58]. Single cell sequencing from tumor biopsies that are subject to
sampling biases [11,13,26] clearly underestimates the overall complexity of many tumors.
However, combining microheterogeneity analyses with macroscale assessments of determin-
istically expanding tumor subclones and their dynamics through ctDNA techniques may mitigate
individual disadvantages and allow the most precise forecasting.

Cancer Evolution as Movements on a Fitness Landscape
The relative fitness of genetic alterations can be illustrated as a multidimensional fitness
landscape, which is a simplified graphic representation of fitness as a function of genotype
[94] (Figure 5). The topology of the fitness landscape influences the probability that evolution
takes a specific path among competing possibilities. For example, if two advantageous muta-
tions are equally likely to be generated by the operating mutational processes, the one that
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displays a higher fitness increment on the fitness landscape is less likely to be eradicated by drift.
Thus, it will evolve more frequently and it will also proliferate and emerge faster.

The ability to observe cancer evolution repeatedly in thousands of patients with a given cancer
type provides the opportunity to empirically delineate these fitness landscapes. The systematic
interrogation of drug resistance genotypes already started to probe the complexity of these
landscapes [45,95] and identified a limited but nevertheless challenging number of distinct
resistance driver genes and mutations. Although phenotypic convergence with pervasive
restoration of signaling through a particular resistance pathway has been identified in many
cancer types [13,45,51,95,96], genotype predictability remains poor for individual patients, most
likely owing to the influence of stochastic processes.
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Figure 5. Shape and Accessibility
of Peaks on a Fitness Landscape
Influence the Probability of Distinct
Evolutionary Outcomes. The fitness
of all possible genotypes in a cancer is
displayed on the vertical axis. Highly fit
genotypes appear as peaks on this
hypothetical fitness landscape. Red
arrows indicate the movement on the fit-
ness landscape through the acquisition of
a single mutation. (A) Peaks A and B are
equally likely to be accessed through a
single new mutation (thick arrows). Peak
A can alternatively be accessed by a com-
bination of two mutations that is less likely
to occur (thin arrows). (B) Changes of the
mutational processes operating in a can-
cer [19,26] can alter the accessibility of
the fitness peaks but not the topology of
the fitness landscape. Peak C can now be
accessed, whereas mutations required to
climb peak A can no longer be generated.
(C) A change in selection pressures
changes the topology of the fitness land-
scape. Mutations allowing access to peak
E are now the most likely to occur but they
have a lower fitness increment than peaks
A or D.
The number of patient samples that will need to be sequenced to map complex fitness
landscapes in tumors with many infrequently occurring drug resistance drivers may not be
achievable in practice. Large-scale mutagenesis, RNAi, and CRISPR/CAS screens of cancer cell
lines [97–100], and of more realistic laboratory tumor models, such as patient-derived xeno-
grafts [101], or 3D primary cultures [102] are additional powerful tools to achieve this. Recon-
structing fitness landscapes for each cancer type and linking them with information about
current mutation processes and the cancer cell population size in an individual patient should
allow estimation of the probability of distinct fitness solutions and increasing genotype predict-
ability for precision cancer medicine. Epistatic interactions between mutations influenced the
availability of adaptive trajectories in microbial evolution experiments [103] and the order in which
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Outstanding Questions
Can we develop realistic cancer evolu-
tion models incorporating 3D structures
and empirical fitness landscapes to
make predictions?

What macroscale and microscale
parameters need to be measured to
feed these cancer evolution forecasting
models?

How does the strength of selection
pressures influence cancer evolution
trajectories?

Which clinically relevant outcomes
such as resistance genotype, time to
resistance, probability of recurrence,
or metastasis development can be
forecasted most accurately?

What are the most sensitive methods
to detect subclones growing
deterministically?

How can ctDNA-based clonal dynam-
ics analysis and rebiopsies best be
combined to reconstruct empirical fit-
ness landscapes of drug resistance
evolution?

How do measurement errors of the
clonal composition influence predic-
tions? Cancer is a non-linear system
as a result of the ability of cancer cells
to proliferate exponentially. Small mea-
surement errors of the starting condi-
tions may lead to major deviations in
predictions from real outcomes, similar
to other systems showing chaotic
Janus kinase 2 (JAK2) and tet methylcytosine dioxygenase 2 (TET2) driver mutations were
acquired in myeloproliferative neoplasms altered their biology, clinical features, and future
evolutionary paths [104]. Incorporating such epistasis interactions into cancer fitness landscape
models will also be crucial.

Prediction approaches based on fitness landscapes could prioritize an individual cancer for pre-
emptive targeting with drugs that are effective against the anticipated resistance genotypes.
Similar approaches are being pursued for the prediction of antibiotics resistance and evolution in
other contexts and many methods are translatable [94,105,106].

Concluding Remarks
The development of a coherent cancer evolutionary framework that is amenable to theoretical
and computational modeling is critically important to realize more accurate predictions. This
model needs to incorporate the spatial constraints in solid tumors and optimal sampling
approaches and parameter sets that need to be measured in a tumor to inform such predictive
models need to be defined. Input parameters will most likely be tumor type-specific to take
variability in growth, migration, metastasis, and driver landscapes into account. These and other
questions need to be addressed to expand the predictability horizon (see Outstanding Ques-
tions). However, evolution remains centrally influenced by stochastic effects and exact measure-
ments of the entire clonal composition of a cancer will not be possible in relevant clinical
scenarios. These fundamental characteristics will continue to limit predictability in precision
cancer medicine.
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