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Integrated photonic metasystem for image
classifications at telecommunication wavelength
Zi Wang 1, Lorry Chang1, Feifan Wang1, Tiantian Li1 & Tingyi Gu 1✉

Miniaturized image classifiers are potential for revolutionizing their applications in optical

communication, autonomous vehicles, and healthcare. With subwavelength structure

enabled directional diffraction and dispersion engineering, the light propagation through

multi-layer metasurfaces achieves wavelength-selective image recognitions on a silicon

photonic platform at telecommunication wavelength. The metasystems implement high-

throughput vector-by-matrix multiplications, enabled by near 103 nanoscale phase shifters as

weight elements within 0.135 mm2 footprints. The diffraction manifested computing cap-

ability incorporates the fabrication and measurement related phase fluctuations, and thus the

pre-trained metasystem can handle uncertainties in inputs without post-tuning. Here we

demonstrate three functional metasystems: a 15-pixel spatial pattern classifier that reaches

near 90% accuracy with femtosecond inputs, a multi-channel wavelength demultiplexer, and

a hyperspectral image classifier. The diffractive metasystem provides an alternative machine

learning architecture for photonic integrated circuits, with densely integrated phase shifters,

spatially multiplexed throughput, and data processing capabilities.
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Enabled by the subwavelength structures, metasurfaces are
capable of high spatial resolution phase control, photon
momentum steering, and high-efficiency diffraction1–3.

Designed dispersion and diffraction enable multi-layer metasys-
tems for powerful optical analog signal processing4–15. The
metasystems can perform mathematical operations of the
impinging electromagnetic wave with subwavelength
resolution16–20. Fourier transform method designed passive
metasurface systems demonstrate real-time spatial differentiation
and edge detection21–29. Beyond the deterministic functions,
spatial information classifications are also demonstrated in free-
space optical systems. Designed by deep neural networks, multi-
layer free-space diffractive optic elements perform high-accuracy
image classification and logic computing in millimeter and
micrometer wavelength ranges30–34. With only one layer of phase
or amplitude coded mask, the light flow in the free-space 4F
system mimics the matrix calculation in convolutional neural
networks, achieving high accuracy image classifications with
computer-aid postprocessing35,36. A diffractive processing unit
based on paired spatial light modulator-CMOS sensor arrays
implements powerful deep learning tasks, with intermediate
optoelectronic signal conversions for signal flow between the
optical units37. In those optical systems, the pixel or cell size in
the coded plane is well beyond wavelength, which sets funda-
mental limitations on the diffraction efficiency and spectral
engineering capability.

Metasurface-based multi-layer systems, named metasystem,
expand the functionality of metasurface in the out-of-plane
dimension38–40. Lithographically assisted alignment and bonding
between metasurface layers are required for providing sufficient
precision and robustness in functional metasystems39,40. The
integrated photonics platform provides such alignment with one-
step lithographically defined multiple metasurface layers. Com-
pared to the waveguide-based integrated photonic
processors41–43, the metasystem architecture offers higher
throughput vector-by-matrix multiplication, which can be further
expanded by wavelength-division multiplexing (Supplementary
Note 1)44,45. The metamaterial manifested weight element den-
sity, combined with diffraction strengthened inter-layer con-
nectivity, enables the passive system to accomplish machine
learning tasks of spatial pattern classification (Fig. 1a). The dif-
fraction manifested data processing capacity allows the training
process to incorporate the random phase offsets caused by
nanofabrication and measurement. Unlike the other integrated
photonic processors41–43, the passive photonic metasystems are
fully functional without active layers for phase correction. The
passive integrated metasystem can grasp the key information with
a femtosecond single-shot exposure, and thus save the time and
energy consumption for subsequent electronic processing for on-
the-fly data compression.

As the depth of a machine learning system outweighs the
number of elements per layer, here we demonstrate high accuracy
image classifications at telecommunication wavelengths in the
multi-layer one-dimensional metasurface systems. Arrays of
rectangular slots are defined in the silicon layer. The slot lengths
in those phase-only transmissive arrays are pre-trained by deep
diffractive neuron networks. Beyond conventional classification
functions, the metasystems also demonstrate unique functions of
wavelength demultiplexing and multi-wavelength pattern classi-
fications, with potential applications in spatial division multi-
plexing based optical interconnects and machine vision34,46.

Results
Design of the metasystem. The metasystems are defined on a
silicon on insulator (SOI) substrate with single-step lithography

and dry etch (Method). As individual cells in metasurface, the
geometry of the rectangular slots are learnable parameters. Each
pair of the slots represents a weight element and connects to the
following layers through diffraction and interference of the in-
plane waves (Fig. 1a, b). Both amplitude modulation and the
phase shift of the transmitted wave can be programmed by
adjusting the width and length of the subwavelength slots,
respectively47,48 (Supplementary Fig. S2). With a fixed slot width
of 100 nm and lattice constant of 500 nm, the phase shift of the
transmission coefficient can be continuously tuned from 0 to 2π
with the slot length, while the amplitude stays more than 95%
(Fig. 1c). Figure 1d shows the angle-dependent complex trans-
mission coefficient. The amplitude of the transmission reduces to
half as the incident angle increases from 0˚ to 28˚, with phase
distortion less than 0.1 (in the unit of 2π rad). The results in
Fig. 1d are insensitive to the slot length (Supplementary Fig. S3).
Distinguished from our prior demonstration of gradient
metasurface-based mathematical operators, large phase contrasts
between neighboring cells are required in the metasurfaces for
machine learning tasks. As the transmission coefficient of each
metasurface design is numerically calculated from a periodic
array, single-slot implementation of each phase shifter in gradient
metasurface design results in unexpected discrepancies, and thus
two subwavelength slots are employed here for representing one
phase shifter in the designed network48 (Inset of Fig. 1d).

The diffractive metasystem is firstly designed in Python and
then verified by finite-difference time-domain (FDTD) simula-
tions and experiments. During the training stage, the phase shifts
in each metasurface layer are iteratively updated by following the
gradient descent algorithm (Supplementary Note 2)49. In the
forward propagation step, we calculate outputs of the metasystem
with input data from the training dataset. The difference to target
outputs (the loss) is then derived for the next step. In the
backpropagation step, we calculate the gradient of the phase for
every cell and then update the phase value to decrease the loss.
The random phase offset with uniform distribution within the
interval [0,0.5π) are introduced to each cell during the training
stage, to improve the system’s robustness against nanofabrication
variations and free-space phase fluctuations in measurement
(Supplementary Fig. S1a). The photon propagation from layer l
with k neurons to the next layer with n neurons resemble the
vector-matrix multiplication:

mlþ1 1ð Þ; ¼ ; mlþ1 nð Þ
� � ¼ ml 1ð Þ � tl 1ð Þ; ¼ ; ml kð Þ � tl kð Þ

� � �W
ð1Þ

where tlðpÞ ¼ a � exp½jϕl p
� �� represents the transmission coeffi-

cient of the p-th neuron in l-th layer. The amplitude a is near 1 for
the slot width of 100 nm. The phase shift ϕlðpÞ is proportional to the
slot length. mlðpÞ and mlþ1ðqÞ are the amplitude of input photons
towards the p-th neuron in the l-th layer and the q-th neuron in the
(l+ 1)-th layer, respectively. The inter-layer connectivity W is a
k × n transfer matrix derived by the Rayleigh–Sommerfeld diffrac-
tion equation, representing the wave propagation in the SOI slab
waveguide (Fig. 1b). The p; q

� �
-th element of the W is:50

w p; q
� � ¼ 4y

r2
1
2πr

þ 1
jλ

� �
exp

j2πr
λ

� �
ð2Þ

where r is the distance between the p-th neuron in layer l and the q-
th neuron in layer l+ 1. λ is the effective wavelength in the planar
waveguide. Considering the angle-dependent transmission ampli-

tude (Fig. 1d), an additional factor of UðΔyÞ / e�½πΔyσλa �2 is
superimposed onto the outputs of each layer, where Δy is the
relative distance along the y-direction, a is the spacing along the x-
direction. σ is 0.45 μm for the first layer and 0.08 μm for the
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subsequent layers, obtained by fitting the model to the numerical
simulation results.

Metasystem for spatial pattern classification. As an example, we
implement an integrated two-layer metasystem for letter classi-
fications. Each metasurface layer contains 450 phase shifters. The
inter-layer distances are selected to be 100 μm, balancing the
insertion loss and classification accuracy (Discussion section).
The metasystems and grating couplers are defined on the SOI
substrate with single-step lithography and etching process
(Methods). The setup for characterizing the metasystem is illu-
strated in Fig. 2a. The input patterns are reshaped from a two-
dimensional (2D) matrix to a one-dimensional (1D) vector and
then projected onto the 1D grating coupler array through a digital
micromirror device (DMD). The input patterns are the binary
letter images with 15 pixels (bottom insets in Fig. 2a). The outputs
are collected by a single-mode fiber through a grating coupler and
delivered to a broadband infrared (IR) photodiode. A digital IR
camera monitors the alignment between the reflected patterns
from DMD and the grating coupler array. The optical image (left
in Fig. 2a) shows the perspective view of one device under test
(DUT). A single mode fiber picks up the signal from output
grating couplers on DUT (Fig. 2b). The scanning electron
microscope (SEM) images show the detailed nanostructures of
the grating coupler array (Fig. 2c) and the pre-trained metasur-
face (Fig. 2d) on DUT.

The testing dataset is the binary letter images with amplitude
flipping in random pixels (Supplementary Fig. S1b). The two-
layer metasystem is pre-trained by 10,000 such matrices.
Numerical testing by the other 1000 datasets predicts 98%

accuracy in letter classifications. Figure 3a shows an example
optical field intensity distribution of the optical diffractive
network. Three waveguides are placed 100 µm apart on the
output plane, representing three channels of classification results.
Channels 1,2 and 3 are correspondent to the input letter patterns
of ‘X’, ‘Y’, and ‘Z’ respectively. With an input image of the letter
‘X’, the light intensity is significantly higher near the spatial
position of channel 1 (Ch1) on the output plane. The detailed
light intensity distribution along the output plane is plotted as
gray lines in Fig. 3b. The experimentally measured data (squares
with error bars) are consistent with FDTD simulations (Fig. 3b).
The blue, red, and yellow squares are the light intensity from the
grating couplers connected to Ch1, 2, and 3, respectively. At
1550 nm continuous wave (CW) input, numerically simulated
(Fig. 3c) and measured confusion matrix (Fig. 3d) show the
classification accuracy of 96% and 92%, respectively. The
metasystem’s response is consistent for the CW inputs across
the C and L bands (Supplementary Note 3). The broadband
operation is critical for ensuring high classification accuracy of
single-shot ultrafast pulsed inputs. Under 90 femtosecond pulsed
light (centered at 1551.6 nm with a bandwidth of 30 nm), the
measured confusion matrix shows 89% classification accuracy in
this metasystem (Fig. 3e). Numerical simulation shows the
insertion loss in the metasystem classifier is 9.3 dB.

The dispersion engineering of the metasystem. The dispersion
of the metasurface system can be tailored for expanding device
applications to machine vision and hyperspectral imaging. To
show the spectral engineering capability, we implement a three-
layer metasystem that can effectively separate input signals
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Fig. 1 Integrated metasurface system for spatial pattern classification. a Schematics of the system architecture. As an example, a pattern ‘Y’ with less
than 90 femtosecond pulse duration is coupled to the integrated metasystem through the input grating coupler array (green gratings). Through the
diffractions through the metasystem, the light is converged onto the position on the output plan where the correspondent waveguide channel locates.
b Subwavelength structure manifested diffraction between metasurface layers. The numerically simulated light intensity is superimposed onto the optical
microscope image of a fabricated metasystem. c Amplitude and phase of the complex transmission coefficient versus the slot length L (indicated in the
inset of d) with the fixed slot width of 100 nm. d Amplitude and phase of the complex transmission coefficient versus the incident angle (θ indicated in b)
with the slot width of 100 nm and L of 2.5 μm. Inset: Scanning electron microscope (SEM) image for the zoom-in view of the metasurface cell in b.
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centered at 1490, 1530, and 1570 nm (Fig. 4). The distances
between the input plane, metasurfaces and output plane are fixed
at 100 µm. Three parallel output waveguides are spaced 30 µm
apart along the x-direction. Under CW tunable laser excitation at
1490 nm, light merges at the destinated x-position on the output
plane, where channel 1 waveguide locates (Fig. 1a). The
numerically predicted spectra along the output plane (Fig. 1b and
dashed curves in Fig. 4c) align with experiments collected from
the three output channels (solid curves in Fig. 4c). The blue, red,
and orange curves represent the outputs for channels 1, 2, and 3
respectively. The measured insertion losses for such a three-layer
system are 13.1 dB, 16.8 dB, and 18.9 dB for the wavelength at
1490 nm, 1530 nm, and 1570 nm, respectively. The spectral
resolution of such a metasystem is limited by the number of
output ports. The spectral resolution of 7 nm can be achieved
with 11 output ports.

The complicated diffraction and interference allow one-to-one
correspondence between the spatial distributions of the light and
the laser wavelength51. Combining both features, we design and
experimentally demonstrate a two-wavelength pattern classifica-
tion system (Fig. 5). An optical image of the designed metasystem
is shown in Fig. 5a. The input grating couplers design is same as
the one in Fig. 3. The metasystem is composed of 2-layer
metasurfaces with 600 phase shifters per layer. The 6 output ports
are correspondent to pattern “X”, “Y”, and “Z” at 2 input
wavelengths of 1530 nm and 1570 nm. For the input pattern of
“Y” at 1570 nm, the simulated light distributions on the output
plane (gray curves in Fig. 5b) are consistent with measured data
points (solid squares in Fig. 5b). The measured confusion matrix

(Fig. 5c) indicates the hyperspectral pattern classification
accuracy of 70%, with an insertion loss of 14.2 dB.

Discussion
Compared to the 2D metasystem in free space, the metasurface
on the integrated platform is limited to a smaller number of cells
and out of plane-in plane couplers, with the advantages of lower
insertion loss and feasible fabrications for multi-layer structures.
With the same total cell number, classification accuracy is more
sensitive to the depth of metasystems than the size of each layer
(Supplementary Fig. S7a). Currently, the fabrication limited
metasurface cell number is 104, which is sufficient for the stan-
dard testing databases with propagation matrix compression
(Supplementary Note 2.2). We numerically explored the 1D
metasystem’s computing capability by designing one for a Mod-
ified National Institute of Standards and Technology (MNIST)
handwritten digit database with 784-pixel inputs (Supplementary
Note 4). 3 Epochs bring a metasystem’s accuracy to be 96%
(Supplementary Fig. S6). Currently, the main technical challenge
is the layout design of a large number of I/O ports on an inte-
grated photonic platform with tolerable phase distortions from
nanofabrication. Theoretically, a 2D metasurface with the sub-
wavelength cell owns significant computing capabilities. However,
experimental implementation of such a system for machine
learning has never been reported in telecommunication wave-
length or infrared, but feasible if the fabrication or alignment
errors are considered in the training process (Supplementary
Note 2.1, 2.5). Commercially available components (DMD or
diffractive optical elements) have a typical cell number of 104-106.
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Single layer component has been utilized for high-accuracy image
classifications35,36. The integrated photonic platform can elim-
inate out-of-plane light diffraction, and thus result in orders of
magnitude lower insertion loss compared to free-space optical
systems.

Based on the Toeplitz matrix, the training algorithm of the 1D
metasystem requires less memory and time during the training
process (Supplementary Note 2). The time and computational
cost-efficient design algorithm facilities systematic design studies
of the MNIST classifiers (Supplementary Note 4). Given sufficient
weight matrix size, a one-layer metasystem can only achieve 88%
accuracy. 5–10% accuracy boost is observed with increased layer
number (Supplementary Fig. S7a). The diffraction distance is
proportional to inter-layer distance, which results higher classi-
fication accuracy and insertion loss (Supplementary Fig. S7b).

The reconfigurability and nonlinear activation functions can be
introduced into the metasystem platform via hybrid integration of
active materials. For example, phase change materials with high
refractive index contrast can fill those slots and provide sufficient
phase tunability52 for a fully reprogrammable metasystem. Cer-
tain active materials exhibit exceptionally high nonlinear
responses (such as two-photon absorption-related free carrier
absorption or absorption saturation) and are transparent at tel-
ecommunication wavelength ranges, which can be integrated into
the diffractive networks as nano-scale activation functions with
solution processing53,54.

Designed by diffractive optical networks, we experimentally
demonstrate cascaded metasurface systems for wavelength-
selective pattern classifications in telecommunication wave-
length. The miniaturized metasystem is fabricated on SOI sub-
strate with one-step lithography and etching. Compared to
conventional integrated photonic circuits, the manifested
throughput and computing capability in the metasystem is

attributed to dense phase shifters and efficient diffractions. With
proper training, the integrated metasystem can be robust against
input noise and random nanofabrication offsets. As a spatial
pattern classifier, 92% and 89% accuracy are achieved in a two-
layer metasystem, under narrow-band CW excitation and
broadband femtosecond pulse excitation, respectively. The
broadband operation of the pattern classifier allows single-shot
image classification with boosted parallelism for optical signal
processing. The wavelength selectivity of such a metasystem can
be co-designed with the pattern classification function for
hyperspectral imaging, machine vision, and hardware
accelerators.

Methods
Device fabrication. The integrated metasystem is fabricated on an SOI substrate
from Soitec, with a 250 nm silicon layer and a 3μm thermal dioxide layer. The
designed patterns of the metasurface, waveguides, and grating couplers are firstly
defined in CSAR 6200.09 positive resist layer by using a Vistec EBPG5200 electron
beam lithography system with 100 kV acceleration voltage, followed by optimized
resist development and single-step dry etch procedures. A 300-nm thick silicon
dioxide protection layer is finally deposited on the sample by plasma-enhanced
chemical vapor deposition (PECVD). The loss of grating couplers and channel
waveguides used in the devices are less than 6 dB and 1 dB respectively.

Optical measurements. Tunable lasers (ANDO AQ4321A and AQ4321D) gen-
erate coherent and linearly polarized light with 1 pm spectral resolution. For the
pulsed signal measurement, a femtosecond laser centered at 1551.6 nm with a
duration less than 90 fs and spectral bandwidth around 30 nm (Calmar laser CFL-
10CFF) is used to replace the continuous wave light source. The infrared light
travels through a polarization controller, a beam expander, DMD (Texas Instru-
ments DLP650LNIR), a lens, a long working distance objective (a Mitutoyo Plan
Apo 20× infinity-corrected objective), and incident onto the input grating couplers.
A single-mode fiber probe collects optical outputs and sends them to an InGaAs
photodiode and optical power meter (Newport 818-IG-L-FC/DB and 1830-R-
GPIB). A 640 × 512-pixel format and 25 µm pitch size digital IR camera (Goodrich
SU640KTSX) monitors the input pattern alignment with the substrate.
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Numerical simulations. The integrated optical diffractive network is constructed
in the PyTorch framework (Supplementary Note 2)55 and verified by the 2D FDTD
method.

Data availability
The datasets generated during the current study are available in the Zenodo repository,
https://doi.org/10.5281/zenodo.6345622.

Code availability
The python script used in this paper have been deposited in the Zenodo repository,
https://doi.org/10.5281/zenodo.6339743.
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