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On the weekly cycle of atmospheric 
ammonia over European 
agricultural hotspots
Martin Van Damme1,2*, Lieven Clarisse1, Trissevgeni Stavrakou2, Roy Wichink Kruit3, 
Louise Sellekaerts1, Camille Viatte4, Cathy Clerbaux1,4 & Pierre‑François Coheur1

The presence of a weekly cycle in the abundance of an atmospheric constituent is a typical fingerprint 
for the anthropogenic nature of its emission sources. However, while ammonia is mainly emitted 
as a consequence of human activities, a weekly cycle has never been detected in its abundances 
at large scale. We expose here for the first time the presence of a weekend effect in the  NH3 total 
columns measured by the IASI satellite sounder over the main agricultural source regions in Europe: 
northwestern Europe (Belgium‑the Netherlands‑northwest Germany), the Po Valley, Brittany, and, 
to a lesser extent, the Ebro Valley. A decrease of 15% relative to the weekly mean is seen on Sunday–
Monday observations in northwestern Europe, as a result of reduced  NH3 emissions over the weekend. 
This is confirmed by in situ  NH3 concentration data from the National Air Quality Monitoring Network 
in the Netherlands, where an average reduction of 10% is found around midnight on Sunday. The 
identified weekend effect presents a strong seasonal variability, with two peaks, one in spring and 
one in summer, coinciding with the two main (manure) fertilization periods. In spring, a reduction on 
Sunday–Monday up to 53 and 26% is found in the  NH3 satellite columns and in situ concentrations, 
respectively, as fertilization largely drives atmospheric  NH3 abundances at this time of the year.

Weekly recurring patterns in measured data can usually be traced back to human activities, as natural processes 
do not occur at this temporal  scale1. Strong weekly cycles are expected in parameters related to air quality, due 
to differences in intensity of emission sources between week and weekend days related to work legislation and/
or religious practices. A “Sunday effect” was first observed in photochemical air pollution in the seventies, 
resulting from reduced industrial activities and traffic during this rest day in the United  States2. More recently, 
the availability of satellite measurements allowed the detection of weekly cycles and the influence of anthropo-
genic activities on the environment at regional and global scales. As an example, using MODIS data, religious 
affiliation has been identified as a driver of the weekly cycle detected in the fire activity in sub-saharian  Africa3.

Perhaps the best documented weekly cycle is the one of nitrogen dioxide (NO2 ). Ground-based, aircraft and 
satellite measurements have shown that NO2 abundances exhibit a strong weekly cycle in industrialized regions 
and large  cities4–6. This is expected, as the main NOx emission source is fossil fuel combustion related to traffic 
and industrial activities. In Europe, a reduction of 25–50% has been reported on Sunday over several cities based 
on GOME satellite NO2 column observations (1996–2001)7. The amplitude of this reduction even reached 60% 
in Milan, Italy. A weakening of the NO2 weekly cycle magnitude was identified in the long term time-series 
(2005–2017) offered by the OMI instrument, over regions presenting a reduction in anthropogenic emissions, 
implying an increased importance of background  emissions8.

Here we investigate for the first time the daily variability over Europe of ammonia  (NH3), another important 
nitrogen species. As agricultural sources (from stables, feedlots, fields) dominate its emission fluxes, the pres-
ence of a significant weekly cycle is not necessarily expected. A few ground-based studies however have already 
identified a reduction of  NH3 abundances during weekends in large cities where traffic is a significant contributor 
to the emissions (e.g.,9–12). By contrast, Wang et al.13 report the absence of an  NH3 weekly cycle at an urban site 
near Shanghai, while nearby rural and industrial sites exhibit a reduction of in situ concentrations on Saturday 
and Sunday. To assess the potential presence of weekly cycles in  NH3 abundances over Europe, we have used 
here satellite and ground-based observations.

OPEN

1Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing 
(SQUARES), Brussels, Belgium. 2Royal Belgian Institute for Space Aeronomy, Brussels, Belgium. 3National Institute 
for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. 4LATMOS/IPSL, Sorbonne Université, 
UVSQ, CNRS, Paris, France. *email: martin.van.damme@ulb.be

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-15836-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12327  | https://doi.org/10.1038/s41598-022-15836-w

www.nature.com/scientificreports/

Dataset and statistical method
IASI satellite measurements. For over a decade, satellite instruments operating in the infrared provide 
daily distributions of  NH3 at the global  scale14–17. This work is based on 13 years (2008–2020) of observations 
from the Infrared Atmospheric Sounding Interferometer (IASI) mission, which is composed of three identi-
cal instruments on-board the Metop-A, -B, -C platforms launched in 2006, 2012 and 2018, respectively. Each 
instrument samples the Earth globally two times per day, with a footprint of 12 km at nadir and a morning 
overpass time at 9:30 am when crossing the equator and an evening one at 9:30 pm. In total we use twelve years 
(2008–2019) of IASI-A, eight years (2013–2020) of IASI-B and one year (2020) of IASI-C from the Artificial 
Neural Network for IASI (ANNI) NH3 version 3.2 reanalyzed dataset  (see18–21 for more details on the ANNI-
NH3 retrieval, the near-real time and reanalyzed datasets and validation work). Only the morning overpasses 
have been considered as infrared measurements are more sensitive to the lowest layers of the atmosphere at this 
time of the  day22.

The average  NH3 distribution over Europe for the period of interest is shown in Fig. 1a and highlights the Po 
Valley (Italy), the Ebro Valley (Spain) and the northwestern Europe (including north of Belgium, the Netherlands 
and northwestern Germany) as main source regions (coloured rectangles in Fig. 1a). Localised maxima over 
industrial point sources are also seen over Pulawy (Poland), Targu Mures (Romania) and Kutina (Croatia)23,24. 
In Europe, 94% of the reported  NH3 emissions are from agricultural  sources25. In Lombardy, where the highest 
 NH3 columns are reported by IASI over the Po Valley, about 90% of the  NH3 emissions originate from manure 
 management26. The Ebro Valley is characterized by intensive agricultural  activities27,28 and the Aragon and 
Catalonia regions together account for more than half of the pig herd in the  country29. Finally, northwestern 
Europe is a well-known region of intensive agriculture, characterized by the highest dairy cow, beef cattle, pig 
and chicken densities in  Europe30,31.

LML ground‑based network. The Netherlands is one of the first countries with a national monitoring 
network for  NH3 enabling the assessment of the efficiency of implemented emission abatement  policies32,33. 
The hourly temporal sampling of the  NH3 measurements performed by the National Air Quality Monitoring 
Network (or LML standing for “Landelijk Meetnet Luchtkwaliteit”) allows us to investigate the weekly cycle of 
 NH3 from the ground perspective. Observations from 2008 to 2018 have been considered from the eight LML 
stations shown in Fig. 3a. These are located in high (Vredepeel-131 (2008–2018), Wekerom-738 (2008–2018)), 
moderate (Valthermond-929 (2008–2017), Zegveld-633 (2008–2018), Eibergen-722 (2008–2014)) and low 
emission regions (De Zilk-444 (2008–2018), Huijbergen-235 (2008–2014), Wieringerwerf-538) (2008–2018))33. 
Additional information on the monitoring sites and the instrumentation used can be found in Berkhout et al.34.

Mann‑Whitney test. Daniel et  al.35 detail the importance of an appropriate statistical analysis to avoid 
erroneous conclusions on the presence or absence of a weekly cycle due to human influence. The common 
procedure, widely applied to the identification of weekly cycles in meteorological variables, is to test the null 
hypothesis and reject it based on a threshold on the significance  level36. Two-tailed t-test, which require a nor-
mally distributed dataset, have been used to  confirm37 or  infirm38 the detection of a weekly cycle. In this work, 
the Mann-Whitney test, or Wilcoxon rank sum test, is used. It is a nonparametric test to evaluate whether two 
independent samples come from the same distributions with equal medians, and returns the associated p-value. 
The p-value expresses the probability to encounter the null hypothesis, when the medians of the two samples are 
equal. Here, we consider a weekly cycle to be significant if the p-value is lower than 0.01.
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Figure 1.  (a) Average  NH3 total column distribution (molec cm−2 ) over Europe based on IASI-A (2008–2019), 
IASI-B (2013–2020) and IASI-C (2020) morning observations. (b) Normalized  NH3 day of the week time-series 
over the three main source regions in Europe (indicated by coloured rectangles in panel (a)); only continental 
data are considered.
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Results
The IASI satellite view of the  NH3 weekly cycle. To investigate the possible presence of a weekly cycle, 
we first look at the three main  NH3 hotspots in Europe. The  NH3 weekly cycles based on 2008–2020 IASI morn-
ing data over land are shown in Fig. 1b and represents a first identification of a weekly cycle over the Po Valley, 
the Ebro Valley and the northwestern Europe. Here we normalize the time-series by dividing by the mean of all 
data. The weekly cycles present minima on Monday for the three hotspots. The Ebro Valley and the northwestern 
Europe are characterized by a similar intra-weekly variability, with  NH3 column maxima on Thursday-Friday 
and values starting to decrease on Saturday. The Po Valley presents a distinct maximum on Saturday and the 
decrease in  NH3 abundances only starts on Sunday. The weekly cycle in  NH3 total columns over northwestern 
Europe is characterized by the largest amplitude, with Monday observations being 14% lower than the observa-
tions over the entire week. The weekend effect therefore consists here in the  NH3 abundances starting to decrease 
on Saturday and decreasing further on Sunday and Monday. While the fact that the minimum is reached on 
Sunday–Monday instead of Saturday–Sunday could be interpreted as the result of the morning overpass time of 
the IASI satellite, this hypothesis will be rejected in the next section.

Given these first results, we focus in Fig. 2 on the distribution of the identified weekend effect, defined as the 
average difference in  NH3 total column over Europe between the Sunday–Monday observations and the rest of 
the  week35. A strong weekly cycle is unambiguously identified in several parts of Europe. In the Netherlands, a 
drop close to 2 × 1015 molec cm−2 is seen for these days, which represents an average decrease of 15% over the 
northwestern Europe (50◦N–55◦ N; 2 ◦E–15◦E). In addition to the latter and the Po Valley, Brittany (France) is 
also characterized by a strong decrease in  NH3 total columns on Sunday–Monday. To assess the significance 
of the observed weekly cycle, the Mann-Whitney test has been applied to the data included in each cell of this 
distribution, considering the Sunday–Monday observations as one set of data and the Tuesday to Saturday obser-
vations as the other set. The resulting distribution of the p-values (Fig. 2b) confirms the presence of a marked 
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Figure 2.  (a) Distribution over Europe of the difference in  NH3 columns (molec cm−2 ) between the average of 
the Sunday–Monday IASI morning observations (2008–2020) and the average for the rest of the week (weekend 
effect). (b) Distribution of the associated p-value calculated with the Mann-Whitney test to assess whether the 
magnitude of the weekend effect observed is significant (0.5◦ × 0.5◦ grid). (c–d)  NH3 emissions (kg m −2 s −1 ) 
from manure management and agricultural soil in 2015 from the Emissions Database for Global Atmospheric 
Research (EDGAR)39(0.1◦ × 0.1◦ grid).
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(p < 0.001) weekend effect in the northwestern Europe, Brittany and to lesser extent in the Ebro and Po Valleys. 
It also shows that the moderate weekly cycle reported over the United Kingdom and Ireland is not significant.

The distribution of the weekly cycle revealed by IASI spatially correlates well with the livestock distribution in 
 Europe30,31. The Emissions Database for Global Atmospheric Research (EDGAR) v5.039 consistently reports the 
largest  NH3 emissions due to manure management over northwestern Europe, the Po Valley and the Brittany-Pays 
de la Loire regions (Fig. 2c). The latter accommodate 70 and 60% of the respective pig and poultry population 
in  France40. Pig farming is responsible for the largest proportion of manure production in the  region40. Panels 
c–d of Fig. 2 also strongly suggest that the reduction in IASI  NH3 total columns reported on Sunday–Monday 
is due to a weekly cycle in the emissions captured by the manure management rather than by the agricultural 
soil emission sector of EDGAR. From this we conclude that fertilization preferentially occurs during week days. 
This is consistent with Sunday being the traditional rest day in Europe but also with regulations on manure 
spreading which is prohibited on Sunday (and public holidays) in several regions such as Flanders (Belgium)41 
and Brittany (France)42.

Ground‑based verification. To independently confirm the results obtained using the satellite data, we 
investigate measurements performed from ground. The LML network reports hourly observations of  NH3 sur-
face concentrations. Figure 3a shows the location of the LML sites used in this study, which are superimposed 
on the IASI oversampled distribution. The normalized daily variations over the week reveal a marked weekly 
cycle for each individual site (coloured lines of Fig. 3b) as well as for the network taken as a whole (black line). 
Consistent with what has been reported from space, the minimal surface concentrations are observed on Sun-
day–Monday. As far as we are aware of, it is the first time that such a weekly cycle in  NH3 abundances is reported 
in the Netherlands. Its amplitude at the national scale is 0.96 μg m −3 and the average of Sunday concentrations is 
5% below the weekly average. This weekly temporal pattern varies from site to site. Vredepeel (blue, 131) presents 
by far the largest weekly cycle in absolute terms, with a difference of 2.38 μg m −3 between the weekly minimum 
and maximum. This is not surprising in view of the high emission sources surrounding the measurement site. 
Likewise, the lowest weekly cycle amplitude (0.47 μg m −3 ) is found in De Zilk (yellow, 444), a coastal site which 
reports the lowest  NH3 value in the entire network. However, it is worth noting that in relative terms, it is the site 
with the largest difference (21%) between its minimum on Monday and its maximum on Thursday.

The high temporal sampling of the LML ground-based measurements allow us to investigate in more detail 
the identified weekend effect. The hourly variability of  NH3 surface concentrations is shown on Fig. 4a for the 
entire week, for each station (coloured lines) and across the entire LML network (black line). The smoothness is 
due to the large amount of LML data considered and the running mean with a window of five hours applied for 
better visualisation. The diel cycle (Fig. 4b, in relative terms) is markedly different from sites located in source 
regions, such as Vredepeel (blue, 131) and Wekerom (olive green, 738), and remote sites such as Huijbergen (red, 
235) and De Zilk (yellow, 444). In high-emission regions, surface concentrations decrease during daytime, due 
to increasing wind speed and more favourable conditions for mixing in the planetary boundary layer, and then 
increase again at the end of the day. By contrast, the background sites are characterized by increasing concentra-
tions during the day, mainly due to transport from source  regions32.

To highlight the gradual variation of  NH3 surface concentrations over the course of the week, we remove 
the average diel cycle from each day to obtain the hourly time-series shown in Fig. 4c in relative terms. While 
a moderate decrease is initiated from the Friday, the strong decline in  NH3 occurs on Sunday. Atmospheric 
concentrations reach a minimum late evening on Sunday and early morning on Monday, with a reduction 
close to 10%, and are highest on Thursday evening. From all the sites, Zegveld (pink, 633) has one of the largest 
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Figure 3.  (a) Location of the National Air Quality Monitoring Network (LML) stations in the Netherlands 
superimposed on the IASI-NH3 (molec cm−2 ) oversampled distribution (0.01◦ × 0.01◦ grid, 2008–2020). (b) 
Normalized  NH3 day of the week time-series measured at the height LML sites and presented individually 
(coloured lines) and all sites considered together (black line).
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cycle in both relative and absolute values. Being located in an area dominated by dairy farming with grazing, 
it is likely the site most influenced by manure application on grassland. The remote sites De Zilk (yellow, 444), 
Wieringerwerf (purple, 538), Valthermond (light blue, 929) also present a strong weekend effect in relative terms. 
Vredepeel (blue, 131) and Wekerom (olive green, 738) exhibit generally the same pattern, and are sites influenced 
by animal housings located close by, which explains the less pronounced decrease during the weekend. The 
Sunday–Monday minima observed in the ground-based data confirm the timing of the weekend effect reported 
by IASI, and therefore rejects the hypothesis of the morning overpass time of the satellite being responsible for 
the late weekend effect observed in the columns.

Weekly cycle seasonality. In this section, we investigate the variability of the weekend effect as a function 
of the time of the year. The bottom panel of Fig. 5 shows the weekly average  NH3 time-series based on the IASI 
satellite columns over northwestern Europe (blue) and the ground-based LML surface concentrations in the 
Netherlands (orange). Both observational datasets show distinct spring and late-summer maxima, correspond-
ing to the two main fertilization periods in  Europe43.  NH3 abundances are however high throughout the entire 
spring–summer period due to agricultural activities and temperature dependent volatilization of  NH3

44.
The top panel in Fig. 5 shows the time-series of the weekend effect (with respect to Sunday–Monday) calcu-

lated both in absolute (solid lines) and relative (dashed lines) terms. Two distinct peaks are observed, around 
March–April (weeks 8–16) and a second one around July–August (weeks 27–35). These coincide with the fertili-
zation periods mentioned above, but the seasonality in the weekend effect is much stronger than that seen in the 
abundances. In spring, a decrease of up to 26% is observed in the LML surface concentrations measured in the 
Netherlands. A concomitant but even stronger decrease of 53% is seen on Sunday–Monday in the satellite data. 
The timing of these events strongly supports the conclusion that the weekly effect is largely driven by fertilization.

In most European countries, the time of the year when fertilizers can be applied is in fact tightly  regulated45. In 
the Netherlands for instance, application of nitrogen fertilizer is only allowed from February 1 to September 15. 
Manure application is furthermore regulated in finer detail in the same periods depending on the type of manure 
(slurry or solid) and the type of land (grassland or arable land)46. In Belgium, spreading of nitrogen fertilizers 
is in general only allowed between February 16 and August  3141. The regulation on the timing of application 
in Germany, is also based on blocking periods, including winter months and depending on fertilizer type and 
land  type47. These regulations explain the absence of an observed weekly cycle in the autumn/winter months.

The temporal shift between the  NH3 abundances and the weekend effect provides also information on the 
relative contribution of the source processes at play. With a decrease down to 32% in the satellite columns and to 
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Figure 4.  (a)  NH3 hourly surface concentrations (μg m −3 ) for each individual site (coloured lines) from 
the National Air Quality Monitoring Network (LML) and considering all the sites together (black line). (b) 
Normalized  NH3 diel cycle. (c) Average relative change of  NH3 (%) obtained by combining panel (a) in relative 
terms with the corresponding averaged diel cycle shown in panel (b) removed.
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16% in the ground-based surface concentrations in summer, the second peak of the weekend effect is in relative 
terms substantially lower in both datasets than the first peak. This is explained by the fact that in early spring, 
fertilization is the dominant source of atmospheric  NH3. Manure application is also larger in spring than in sum-
mer and the spreading period is more  condensed48,49. By contrast, the summer fertilization peak occurs during 
a broader period, when other sources also substantially contribute to the ambient  NH3 abundances.

Conclusions and perspectives
In previous studies, the temporal variability of atmospheric  NH3 has been constrained at diurnal and seasonal 
scale. Likewise, long-term trends have been derived by exploiting over a decade of satellite observations. The 
remaining gap addressed by the current study is the analysis of the daily variability over the course of the entire 
week. Here we identified for the first time an unambiguous weekly cycle in the  NH3 total columns derived from 
the IASI satellite measurements over Europe. The main weekly temporal pattern consists of decreasing abun-
dances starting on Friday-Saturday, minima observed on Sunday–Monday, and a building up of the abundances 
during the other week days. The observed weekend effect is most pronounced in northwestern Europe and Brit-
tany, but is also present to a lesser extent in the Po and Ebro Valleys. The weekly cycle revealed from space is con-
firmed using measured surface concentrations from the Dutch LML ground-based network. While the LML sites 
are very diverse (from remote to source regions), each of them presents a decrease of  NH3 on Sunday–Monday.

The intra-annual variability of the weekend effect shows two peaks, corresponding to periods of manure and 
fertilizer application in Belgium, the Netherlands and Germany. On a yearly basis a weekend effect of 15% is 
observed in the satellite data over northwestern Europe, increasing to 53% in spring. This reduction on Sunday-
Monday is less pronounced on ground, with a maximum drop of 26% during the same season. While  NH3 
emissions from road vehicles have been shown to be underestimated in current  inventories50,51, the absence of a 
clear weekly cycle reported by IASI over European cities suggests that traffic currently does not play a dominant 
role in  NH3 abundances in the urban environment. Meteorological factors (such as temperature, wind or rain) 
also affect the presence of  NH3 in the  atmosphere44, and one could wonder whether weekly cycles in the former 
could potentially have an effect on the observed weekly cycle of  NH3. Small weekly cycles in meteorology have 
indeed been reported, but mostly over large  cities52, for which we observed no significant weekend effect in the 
 NH3 total columns. Also, outside megacities, we rule out a significant contribution of meteorological param-
eters, given the very strong correlation of the observed spatial and temporal patterns with that of fertilizer and 
manure application.

Not shown in this work, we also performed a global analysis with the satellite data. Moderate weekly cycles 
were identified in some parts of the United States and China, but these were much weaker and less spatially 
consistent than those found in Europe. The results of this study highlight the importance for Europe of properly 
taking into account weekly variability of  NH3 in bottom-up inventories and atmospheric modelling to better 
represent the  NH3 atmospheric evolution and related impacts on human and environment health. Future satellite 
missions, including the IRS geostationary satellite instrument (https:// www. eumet sat. int/ mtg- infra red- sound 
er) that will offer hourly measurements, will allow for an even better characterisation of short temporal scale 
changes in  NH3 abundances.
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Data availability
The IASI-NH3 datasets are available from the Aeris data infrastructure (http:// iasi. aeris- data. fr/ NH3). It is also 
planned to be operationally distributed by EUMETCast under the auspices of the EUMETSAT Atmospheric 
Monitoring Satellite Application Facility (AC-SAF; http:// ac- saf. eumet sat. int).
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