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Abstract
Background: Flying lemurs or Colugos (order Dermoptera) represent an ancient mammalian lineage that
contains only two extant species. Although molecular evidence strongly supports that the orders
Dermoptera, Scandentia, Lagomorpha, Rodentia and Primates form a superordinal clade called
Supraprimates (or Euarchontoglires), the phylogenetic placement of Dermoptera within Supraprimates
remains ambiguous.

Results: To search for cytogenetic signatures that could help to clarify the evolutionary affinities within
this superordinal group, we have established a genome-wide comparative map between human and the
Malayan flying lemur (Galeopterus variegatus) by reciprocal chromosome painting using both human and G.
variegatus chromosome-specific probes. The 22 human autosomal paints and the X chromosome paint
defined 44 homologous segments in the G. variegatus genome. A putative inversion on GVA 11 was
revealed by the hybridization patterns of human chromosome probes 16 and 19. Fifteen associations of
human chromosome segments (HSA) were detected in the G. variegatus genome: HSA1/3, 1/10, 2/21, 3/
21, 4/8, 4/18, 7/15, 7/16, 7/19, 10/16, 12/22 (twice), 14/15, 16/19 (twice). Reverse painting of G. variegatus
chromosome-specific paints onto human chromosomes confirmed the above results, and defined the
origin of the homologous human chromosomal segments in these associations. In total, G. variegatus paints
revealed 49 homologous chromosomal segments in the HSA genome.

Conclusion: Comparative analysis of our map with published maps from representative species of other
placental orders, including Scandentia, Primates, Lagomorpha and Rodentia, suggests a signature
rearrangement (HSA2q/21 association) that links Scandentia and Dermoptera to one sister clade. Our
results thus provide new evidence for the hypothesis that Scandentia and Dermoptera have a closer
phylogenetic relationship to each other than either of them has to Primates.
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Background
Extensive research, based on large data sets of amino acid,
nuclear and mitochondrial sequences from broad mam-
malian taxonomic representatives, has led to a new con-
sensus on the phylogenetic relationships of the 18 extant
placental orders. Such studies have identified four super-
ordinal clades: Afrotheria (Proboscidea, Hyracoidea, Sire-
nia, Tubulidentata, Macroscelidea and Arosoricida),
Xenarthra (sloths, anteaters and armadillos), Suprapri-
mates or Euarchontoglires (Rodentia, Lagomorpha, Pri-
mates, Dermoptera and Scandentia) and Laurasiatheria
(Cetartiodactyla, Perissodactyla, Carnivora, Pholidota,
Chiroptera and Eulipotyphla) [1-8]. However, the phylo-
genetic relationships among the members within each of
the four superordinal clades are not well-resolved [9]. For
example, a well-known case is the evolutionary affilia-
tions of Euarchonta (= Primates + Dermoptera + Scanden-
tia) [1], a subgroup within Supraprimates [2] (also called
Euarchontoglires = Euarchonta + Glires (Rodentia + Lago-
morpha)) [1,4].

Within Euarchonta, the relationship between Primates,
Dermoptera and Scandentia remains unresolved [8,10-
12] and various hypotheses on the inter-ordinal relation-
ships have been proposed by different morphological and
molecular phylogenetic studies. In fact, all possible com-
binations have been proposed, including: (a) a closer rela-
tionship between Scandentia and Primates [13-15]; (b) a
closer relationship between Primates and Dermoptera
[1,2,8,16-19], forming the clade Primatomorpha [18]; (c)
Dermoptera as a sister group to the anthropoid primates
[3,20]; (d) Dermoptera as the closest living relative of Pri-
mates [21]; (e) a closer relationship between Scandentia
and Dermoptera [4-7,22]. Furthermore, based on some
intriguing similarities in morphology and molecular data,
a sister-group relationship between tree shrews (Scanden-
tia) and lagomorphs (Lagomorpha) has also been pro-
posed by several studies [15,23,24]. Nevertheless,
molecular and morphological studies so far have not
unambiguously resolved the relationships among Pri-
mates, Dermoptera and Scandentia, suggesting a need to
search for other evidence such as shared signatures pro-
vided by chromosomal rearrangements.

Cross-species chromosome painting [25,26] is a powerful
method for investigating the evolution of genome organ-
izations. This method enables (1) the rapid and reliable
identification of homologous chromosome segments
between any two species in placental mammals based on
DNA sequence homology, (2) the tracking of chromo-
somal rearrangements which have occurred during evolu-
tion based on the distribution pattern of conserved
chromosome segments, and (3) an independent verifica-
tion of the molecular phylogenetic tree using signature
chromosomal rearrangements [27-34]. Chromosomal

homologies between human and representative species of
other placental orders have been established by cross-spe-
cies chromosome painting using human chromosome-
specific probes. Up to now, only two (Dermoptera and
Hyracoidea) of the 18 extant placental orders have no
published genome-wide comparative maps with human.
While data from these orders are critical for understanding
the evolution of genome organization of placental mam-
mals as a whole, data from Dermoptera are also pivotal
for the reconstruction of the ancestral karyotype and evo-
lutionary history of all primates.

Here, for the first time, we have established the genome-
wide chromosomal correspondence between human and
the Malayan flying lemur (Galeopterus variegatus, GVA, 2n
= 56), one of the two living species in Dermoptera, by
reciprocal cross-species chromosome painting using
human and GVA probes. Comparative analysis of availa-
ble comparative chromosome maps of representative spe-
cies of Supraprimates has revealed cytogenetic evidence
that unites the Scandentia and Dermoptera into one
clade.

Results
The G-banded karyotype and flow karyotype of G. 
variegatus
As reported previously [35], G. variegatus has a 2n = 56
karyotype consisting of eight pairs of bi-armed (# 2, 4–6,
8, 11, 13 and 27) and 19 pairs of acrocentric autosomes
(Figure 1). Chromosome 27 has a secondary constriction,
the X chromosome is a large metacentric chromosome,
and the Y chromosome is the smallest bi-armed chromo-
some. The G-banded karyotype of G. variegatus has not
been reported previously.

The chromosomes of G. variegatus were resolved into 22
separate regions (Figure 2). Chromosome paints prepared
from individual regions were hybridized to metaphases of
G. variegatus, allowing the identification of chromosomes
contained in each region. Except for four regions, all other
regions each contained only one type of G. variegatus
chromosomes. Of these four regions, two regions each
contained two G. variegatus chromosomes (GVA8+9 and
16+17), the other two regions each contained three G. var-
iegatus chromosomes (GVA18+19+20 and 24+25+26). A
complete set of G. variegatus chromosome-specific paints
except for the Y was generated.

Reciprocal painting between G. variegatus and human
To establish the genome-wide chromosomal correspond-
ence between G. variegatus and human, the 22 human
autosomal probes and the X probe were firstly hybridized
onto G. variegatus chromosomes. Fluorescent in situ
hybridization (FISH) examples are presented in Figure 3.
The hybridization results are summarized onto a G. varie-
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gatus G-banded karyotype (Figure 1). Eight human chro-
mosome probes (HSA6, 11, 13, 14, 17, 20, 21 and X) each
painted one G. variegatus chromosomal segment or chro-
mosome. Painting probes derived from 10 human chro-
mosomes (HSA2, 3, 5, 7–9, 12, 15, 18 and 22) each
hybridized onto two different G. variegatus chromosomes.
Four human chromosome probes (HSA4, 10, 16, 19) each
delimited three homologous G. variegatus chromosomal
segments. Human chromosome probe 1 gave four signals
on four G. variegatus chromosomes. The heterochromatic
regions of G. variegatus, such as the centromeric regions of
most chromosomes, the short arm of GVA2 and two parts
of GVA20, were not painted by any human chromosome
probe. Together, 22 human autosomal paints and the X
chromosome paint defined 44 homologous segments in
the G. variegatus genome. The hybridization patterns of

human chromosome probes 16 and 19 revealed a puta-
tive inversion on GVA11. Fifteen combinations of adja-
cent human homologous segments, HSA1/3, 1/10, 2/21,
3/21, 4/8, 4/18, 7/15, 7/16, 7/19, 10/16, 12/22 (twice),
14/15 and 16/19 (twice), were detected in the G. variega-
tus genome.

To further verify these results, and to define the origin of
the homologous human chromosomal segments in the
segment associations detected in the G. variegatus
genome, we carried out reverse painting of G. variegatus
chromosome-specific paints onto human chromosomes.
Examples are shown in Figure 3, and the results are sum-
marized against an idiogram of the G-banded HSA karyo-
type (Figure 4). Eighteen G. variegatus paints (GVA4, 5, 7,
8, 10, 12–19, 23–26 and X) each labeled one HSA chro-

G-banded karyotype of G. variegatus (2n = 56, GVA), with a summary of the chromosome painting with human paintsFigure 1
G-banded karyotype of G. variegatus (2n = 56, GVA), with a summary of the chromosome painting with human 
paints. Chromosome numbers of GVA are indicated below the chromosomes and the segments homologous to human are 
indicated to the right of each chromosome. H: heterochromatin.
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mosome or chromosomal segment. Four paints (GVA2, 9,
20 and 27) each hybridized to two HSA chromosomal
segments. Three paints (GVA6, 11 and 22) each painted
three HSA chromosomal segments. GVA paint 1 gave
hybridization signals on four HSA chromosomal seg-
ments, and GVA paints 3 and 21 each produced hybridi-
zation signals on five HSA chromosomal segments. In
total, G. variegatus paints revealed 49 homologous chro-
mosomal segments in the HSA genome.

Discussion
Resolving the phylogenetic placement of Dermoptera
within Euarchonta is of fundamental importance to our
understanding of the origin and evolution of human
genome organization. The establishment of a genome-
wide comparative chromosome map between human and
G. variegatus, filled our knowledge gap on the comparative
genome organization of Dermoptera, and ensured that
each order contained in the Euarchonta group has at least
one representative species for which a genome-wide com-
parative map with human is available. An integrated anal-
ysis of the distribution patterns of synteny-conserved
homologous segments in Dermoptera and in the repre-
sentative species of Primates, Scandentia, Rodentia and
Lagomorpha, enabled us to search for signature rearrange-
ments that might provide further insight into the phyloge-
netic placement of Dermoptera within Euarchonta and
Supraprimates.

It has been demonstrated that chromosomal rearrange-
ments (including shared derived chromosomal syntenic
associations revealed through chromosome painting) can
serve as valuable phylogenetic markers to interpret the
relationships of the 18 extant placental orders by the prin-
ciple of parsimony [27,29,31-34,36-40]. When a derived
chromosomal association (segments that are syntenic to
two or more human chromosomes found on a single
chromosome in another species) is shared by various spe-
cies, this particular chromosome character (that is, a
synapomorphy) may reflect a common evolutionary ori-
gin or a close phylogenetic relationship of these species
[27,28,33]. For instance, the HSA5/21 and 1/19p in
Afrotheria [31,32,39], and HSA7q/10p and 2/8 in Xenar-
thra [40], are considered as signature rearrangements for
the superordinal clades Afrotheria and Xenarthra, respec-
tively.

In Primates, over 70 species, including several prosimian
species, have been analyzed so far by chromosome paint-
ing with human chromosome-specific probes. Except for
five common ancient associations, HSA3/21, 7/16, 12/22
(twice) and 14/15, which are ancestral for all placental
mammals, various landmark rearrangements have been
identified for most of the nodes in primate phylogeny
[41-47]. Such landmark rearrangements include HSA2/4,
4/6 and 8/15 associations in Lemuriform prosimians
[45], HSA1q/19p, 2/12/22, 6/14, 12/7/16, 9/15 and 10/
19q associations in Lorisiform prosimians [42,47], and
HSA5/7, 8/18 and 10/16 in the New World monkeys [46].
In the great apes and Old World monkeys, chromosome-
painting reveals that their karyotypes are highly con-
served, only a few chromosomal changes differentiate
their karyotypes from the ancestral karyotype of all pri-
mates [46]. However, the karyotypes of the lesser apes or
gibbons dramatically differ from those of other primates
in having an exceptionally high rate of chromosomal rear-
rangement [43,48-52].

In Scandentia, the chromosomal homologies have been
defined between human and a tree shrew (Tupaia belang-
eri, TBE, 2n = 62) by reciprocal chromosome painting
[53]. Results indicated that there are three derived associ-
ations (HSA2/21, 10/16 and 11/20) retained in the T.
belangeri genome. However, a subsequent study by Rich-
ard et al revealed the existence of a HSA7 homologous seg-
ment (HSA7b), which forms part of the ancestral
placental syntenic association of HSA7b/16p, between
HSA10 and 16 segments on TBE chromosome 1p [54].
Thus, the HSA10/16 association should be considered as
absent in the T. belangeri genome. Instead, the association
of HSA7b/10p should be considered as an additional
derived character for T. belangeri. In Dermoptera, our
chromosome painting results revealed eight additional
derived human chromosomal segment associations

Bivariate flow karyotype of G. variegatus with chromosome assignmentsFigure 2
Bivariate flow karyotype of G. variegatus with chro-
mosome assignments.
Page 4 of 11
(page number not for citation purposes)



BMC Biology 2008, 6:18 http://www.biomedcentral.com/1741-7007/6/18

Page 5 of 11
(page number not for citation purposes)

Examples of reciprocal chromosome painting of human (HSA) probes on G. variegatus (GVA) metaphases and G. variegatus paints on human metaphasesFigure 3
Examples of reciprocal chromosome painting of human (HSA) probes on G. variegatus (GVA) metaphases and 
G. variegatus paints on human metaphases. (a)–(d) Human (HSA) probes on G. variegatus (GVA) metaphases; (e), (f) G. 
variegatus paints on human metaphases.
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(HSA1/3, 1/10, 2/21, 4/18, 7/15, 7/16p, 7/19, 10p/16p)
in the genome of G. variegatus. Our reciprocal chromo-
some painting results shows that the HSA7/16 association
found in G. variegatus is not the same as the ancestral
HSA7b/16p syntenic association found in most placental
mammals. The ancestral HSA7b/16p syntenic association
has broken into two chromosomal segments in G. varieg-
atus (GVA3 and 21). In Lagomorpha, the chromosome
map between human and the rabbit (Oryctolagus cunicu-
lus) has also been established by reciprocal chromosome
painting [55]. In Rodentia, chromosome painting results
have demonstrated that murid rodents have highly rear-
ranged genomes [56,57], while the karyotypes of squirrels
are highly conserved [58-60]. Two shared derived syntenic
associations between the rabbit and squirrels (HSA1/10

and 9/11) [60] have provided additional support for the
clade Glires (Lagomorpha + Rodentia) [1].

We have compared the above chromosome painting data
of different representative species of each order within the
Supraprimates. However, we failed to detect any signature
rearrangement that would support a close phylogenetic
relationship either between G. variegatus and Primates or
between Dermoptera and Glires. Although the G. variega-
tus and the New World monkeys share the one derived
association of HSA10/16, while G. variegatus, rabbits and
squirrels share the HSA1/10 association, the reverse paint-
ing results indicate that the two associations detected in G.
variegatus and the other species had different origins. The
segments contained in the HSA10/16 association of G.

Summary of the chromosome painting with G. variegatus probes onto human on a G-banded idiogramFigure 4
Summary of the chromosome painting with G. variegatus probes onto human on a G-banded idiogram. Human 
chromosome numbers are indicated below the chromosomes and the segments homologous to G. variegatus are indicated to 
the right of each chromosome.
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variegatus originated from HSA10p and 16p, while in the
New World monkeys, they were derived from HSA10q
and 16p [61]. In the genome of G. variegatus, the segments
contained in HSA1/10 association are homologous to
HSA1q and10q (Figure 4), while in the genomes of rab-
bits and squirrels, they are homologous to HSA1q and10p
[55,60]. Furthermore, comparison of the chromosome
map between human and rabbits [55] with the map
between human and T. belangeri [53] reveals no shared
derived human chromosomal association that unites
Scandentia and Lagomorpha into one group either.

The most salient finding comes from the comparison of
the comparative chromosome map between human and
G. variegatus with the map between human and T. belang-
eri. Such a comparison revealed one common derived
human syntenic segment association, HSA2q/21, in both
T. belangeri and G. variegatus. The results of reverse paint-
ing using the probes of T. belangeri and G. variegatus to
hybridize human chromosomes demonstrated that
HSA2q/21 association in both T. belangeri and G. variega-
tus originated from the same human homologous seg-
ments: HSA2q and 21(Figure 4 in this study, and Figure 5
in [53]). This syntenic association has not been detected
in any other mammal so far studied by chromosome
painting, including bats (order Chiroptera). We thus
believe that the HSA2/21 association most likely repre-
sents the signature rearrangement that unites Scandentia
and Dermoptera orders into one sister clade. Such a clade
has been proposed previously by several molecular stud-
ies but with moderate to weak bootstrap support [4-7,22].
This grouping is in sharp contrast to a most recent molec-
ular study that suggested the flying lemur as the closest liv-
ing relative of primates [21]. It should be mentioned that
so far only one representative species from each of Scan-
dentia and Dermoptera has been studied by chromosome
painting. Most species in Scandentia have a karyotype 2n
= 52–68, with only one species (Urogale everetti) having 2n
= 44 [62], while in Dermoptera there is the species (Cyno-
cephalus volans) with 2n = 38 [63]. Further chromosome
painting between human and these low diploid number
species will help to validate if the HSA2q/21 association is
indeed the true signature rearrangement that link Scan-
dentia and Dermoptera into one clade.

In addition to the new insight into the phylogenetic affin-
ity of Dermoptera within Supraprimates, the establish-
ment of the first G-banded karyotype for G. variegatus and
the human-G. variegatus comparative map, together with
the published human-T. belangeri comparative map, has
provided us with an opportunity to compare the G-
banded karyotypes of the T. belangeri and G. variegatus in
detail on the basis of genome-wide homologies defined
by chromosome painting (Figure 5). Ignoring the mor-
phological changes due to variations in the amount and

distribution of heterochromatin, 12 G. variegatus auto-
somes (GVA1, 2, 7–9, 11, 13, 14, 17, 18, 20 and 26) show
one-to-one correspondence with their T. belangeri coun-
terparts; six G. variegatus autosomes (GVA10, 15, 19, 23–
25) each correspond to one T. belangeri autosomal seg-
ments; nine G. variegatus autosomes (GVA3-6, 12, 16, 21,
22 and 27) each correspond to between two and four T.
belangeri chromosomes or chromosomal segments. The
G-banding comparison demonstrates that most homolo-
gous chromosomes or chromosomal segments between T.
belangeri and G. variegatus defined by comparative paint-
ing also show matching G-banding patterns. It is notewor-
thy that the acrocentric G. variegatus chromosome 1 (=
HSA2/21/3), the largest autosome that also carries the
HSA2/21 association unique for G. variegatus and T.
belangeri, is conserved entirely. In contrast, G. variegatus
chromosome 11 (= TBE5) that carried the ancestral pla-
centals syntenic association of HSA16/19 has undergone
an inversion as demonstrated by the chromosome paint-
ing and banding comparisons. At the current resolution
level of G-banding and cross-species chromosome paint-
ing, our results suggest that simple chromosomal fissions/
fusions are the predominant mechanism that differenti-
ates the karyotypes of G. variegatus and T. belangeri. How-
ever, the conservation in G-banding patterns does not
necessarily indicate a close phylogenetic relationship
between G. variegatus and T. belangeri. Although we have
found only one interchromosomal rearrangement that
unites Scandentia and Dermoptera into one clade, small
and cryptic intrachromosomal rearrangements (inver-
sions) will escape detection by the current methods. Fur-
ther comparative high-resolution gene mapping in flying
lemurs, tree shrews as well as outgroup species such as the
rabbits, squirrels and prosimians may reveal some intrac-
hromosomal rearrangements that could serve as addi-
tional cytogenetic evidence for the proposed Scandentia
and Dermoptera sister clade.

Conclusion
We have characterized the G-banded karyotype of G. vari-
egatus and established the first genome-wide comparative
chromosome map between human and G. variegatus by
reciprocal chromosome painting. Comparative analysis of
the chromosome painting data from representative spe-
cies of each order within the superordinal clade Suprapri-
mates provides new molecular cytogenetic evidence that
supports a sister-clade relationship between Dermoptera
and Scandentia. However, our analysis has failed to iden-
tify any cytogenetic signature for well-defined clades such
as the Euarchonta and Supraprimates as well as for other
controversial clades.
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Correspondence between flying lemur (G. variegatus, GVA) and tree shrew (T. belangeri, TBE) G-banded chromosomes, based on chromosome paintingFigure 5
Correspondence between flying lemur (G. variegatus, GVA) and tree shrew (T. belangeri, TBE) G-banded chro-
mosomes, based on chromosome painting. The flying lemur chromosome numbers are given below. The tree shrew 
chromosome numbers are indicated at the top, right or left. * Müller et al [53] failed to detect the human 7 homologous seg-
ment on TBE 1p, but Richard et al [30] reported its presence.
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Methods
Cell culture, metaphase preparation and G-banding
Fibroblast cell lines derived from two male G. variegatus
(from Thailand) and one male tree shrew (Tupaia belang-
eri, TBE, 2n = 62, KCB 200305) were established in Kun-
ming Cell Bank, the Chinese Academy of Sciences
(Kunming, Yunnan, People's Republic of China) and the
Paris Natural History Museum (Paris, France) from skin
biopsies. Cell culture, metaphase preparations and G-
banding were carried out following conventional meth-
ods as described previously [31,64]. The chromosomes of
T. belangeri were numbered according to a previously pub-
lished G-banded karyotype [53]. The karyotype of G. vari-
egatus was arranged according to relative chromosomal
size.

Flow sorting and generation of chromosome-specific 
painting probes
Chromosome preparation of G. variegatus for flow sorting
followed the method described previously [26], and was
sorted on a dual-laser cell sorter (FACStar Plus, Becton
Dickinson) staining with chromomycin A3 (40 µg/ml,
Sigma) and Hoechst 33258 (2 µg/ml, Sigma). Chromo-
some-specific paints for G. variegatus were generated from
flow-sorted chromosomes by degenerate oligonucleotide
primed (DOP) polymerase chain reaction (PCR) amplifi-
cation [65]. DOP-PCR-amplified chromosome-specific
DNAs were labeled with biotin-16-dUTP, FITC-12-dUTP
(Roche) or Cy3-dUTP (Amersham) by secondary PCR
amplification. Human painting probes used in this study
were also prepared from flow-sorted chromosomes as
described previously [66].

FISH, image capture and processing
Reciprocal cross-species chromosome painting between
human and G. variegatus and post-hybridization detection
followed previous procedures [40,66]. Biotin-labeled
probes were visualized using a layer of Cy3-avidin
(1:1,000 dilution; Amersham). FITC-labeled probes were
visualized using rabbit anti-FITC (1:200; DAKO) and goat
anti-rabbit-FITC (1:200; Vector Laboratories). After detec-
tion, slides were mounted in Vectashield mounting
medium with DAPI (4'6-diamidino-2-phenylindole, Vec-
tor Laboratories). Digital images were acquired using the
CytoVision system (Applied Imaging Corp.) with a CCD
camera mounted on a microscope (Olympus or Zeiss).
Hybridization signals were assigned to specific chromo-
somes or chromosome regions defined by DAPI-banding
patterns.
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