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Abstract

Unique vascular responses adhere to the cardiovascular efficacy of the inodilator levosimendan. In particular, selective
venodilation appears to explain its clinical benefit during pulmonary hypertension complicated by heart failure with preserved
ejection fraction. Vasodilators increase vessel diameter in various parts of the vascular system to different degrees and
thereby influence blood pressure, its distribution, and organ perfusion depending on their mechanisms of action.
Levosimendan and its long-lived active metabolite OR-1896 mobilize a set of vasodilatory mechanisms, that is, the opening
of the ATP-sensitive K channels and other K* channels on top of a highly selective inhibition of the phosphodiesterase IlI
enzyme. A vessel-specific combination of the above vasodilator mechanisms—in concert with cardiac effects and cardiovascu-
lar reflex regulations—illustrates the pharmacological profile of levosimendan in various cardiovascular disorders. While
levosimendan has been known to be an inotrope, its properties as an activator of ATP-sensitive K* channels have gone largely
ignored with respect to clinical applications. Here, we provide a summary of what is known about the ATP-sensitive K™ channel
properties in preclinical studies and now for the first time, its ATP-sensitive K* channel properties in a clinical trial.
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Introduction potential to more negative values (i.e. hyperpolarization)

with a consequent vasodilatation because of Ca** channel

Tissue-specific and vessel-specific differences in the availabil-
ity of drug-responsive vasodilating mechanisms explain
distinct pharmacological responses upon vasodilator adminis-
trations. Vasodilation affects peripheral and central circula-
tion, target organ function, and clinical outcomes in a way
specific for the employed drug and its concentration. The
above factors set the basis for the applicability of different
vasoactive agents in cardiovascular diseases.

Levosimendan is an inodilator used to restore haemody-
namic balance in acute cardiac care. After extensive studies,
the emerging consensus is that the vasodilatory properties
of levosimendan are due to ATP-sensitive K* (K(ATP)) channel
activation.™ In general, K* outflux (upon K* channel activa-
tion/opening) shifts vascular smooth muscle cell membrane

closure.* Nonetheless, due to its complex pharmacodynamic
and pharmacokinetic profile, levosimendan-induced vasodila-
tion requires additional consideration and, in particular, when
its region-specific vasodilatory properties are evaluated
throughout the cardiovascular system.

Marked reductions in pulmonary capillary wedge pressure
(PCWP) and improvements in pulmonary circulation have
been recognized long ago as hallmarks of levosimendan
during intravenous administrations in acute and advanced
heart failure (HF).> Moreover, results of preclinical investiga-
tions suggested that levosimendan might reduce right ventric-
ular afterload by relaxing pulmonary arteries and alleviate
pulmonary oedema by pulmonary venodilation.®’ The safety
and efficacy of a repeated weekly intravenous infusion of
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levosimendan formulation has been recently tested in
patients with stable pulmonary hypertension (PH) and heart
failure with preserved ejection fraction (HFpEF), where initial
data also implicated favourable vascular and clinical re-
sponses. Interestingly, reductions of PCWP and central venous
pressure (CVP) were demonstrated in the absence of systemic
or pulmonary arterial vasodilation, or changes in cardiac
index.®2 Accordingly, selective venodilation leading to the
redistribution of stressed blood volume (SBV) to the splanch-
nic venous reservoir has been proposed to explain these
findings.’

Here, we provide an overview on the pharmacological
mechanisms that can form the basis of the pulmonary-
selective and veno-selective effect of levosimendan and
evaluate the related pharmacologic, physiologic, and clinical
implications.

The complex mechanism of
levosimendan-induced vasodilation

Levosimendan-induced K(ATP) channel activation was first
reported in rat mesenteric arterial myocytes and ventricular
cardiomyocytes on the basis of whole-cell and single channel
patch-clamp experiments under in vitro conditions.*®** These
findings were subsequently corroborated in ex vivo and
in vivo experiments in the coronary circulation of isolated
guinea pig hearts, in isolated small mesenteric arteries of
the rat, in the renal circulation of mice, and in human internal
thoracic arteries.**™*® Interestingly, in porcine endothelium
denuded epicardial coronary arteries and in human umbilical
arteries, the vasodilator effects of levosimendan were
associated with the combined activation of voltage-gated K*

channels (K channels) and large conductance Ca**-activated
K" channels (BKc, channels).*®Y” Moreover, in human internal
thoracic arteries levosimendan-evoked relaxations were
explained by the simultaneous activation of K(ATP) and BKc,
channels.®® Of note, results of levosimendan administrations
in human internal thoracic arteries implicated sex-specific dif-
ferences, whereby the vasodilatory effects of levosimendan
were more pronounced in male participants than in female
participants.®

Results of parallel preclinical studies using porcine
coronary arteries extended the above observations towards
additional effector mechanisms and suggested the involve-
ment of intracellular cyclic adenosine monophosphate
(cAMP) accumulation in the framework of B-adrenergic
signalling.?® An increase in cAMP concentration would
activate the protein kinase A enzyme to phosphorylate and
inhibit the myosin light chain kinase enzyme thereby
leading to vasorelaxation. The involvement of cAMP in the
levosimendan-evoked vascular responses, and at relatively
high drug concentrations in particular, is not surprising in
view of its highly selective inhibitory effect on the phosphodi-
esterase (PDE) Il isozyme (i.e. without PDE IV inhibition at
low levosimendan concentrations).?

Interestingly, in an in vitro experimental study on porcine
coronary endothelial cells an additional, nitric oxide-(NO)
dependent vasodilating mechanism (with the potential
involvement of the cyclic guanosine monophosphate
(cGMP)—protein kinase G—myosin light chain kinase enzyme
axis) has been also suggested for levosimendan.?? Moreover,
an interaction between K(ATP) channel activations and NO
signalling in reducing cell death has also been implicated
upon intracoronary levosimendan administrations in pigs.?>

K* channel openings were also linked to the vasodilating
effects of OR-1896, the long-acting metabolite of

Table 1 Levosimendan- (LS) and OR-1896- (OR) induced vasodilating mechanisms

Effector Drug Vascular bed (species) Reference
K(ATP) LS Mesenteric artery (rat) Yokosihiki et al."®
LS Coronary circulation (guinea pig) Kaheinen et al."®
LS Renal circulation (mice) Zager et al.
LS Internal thoracic artery (human) Yildiz, Seyrek, et al?
OR Skeletal muscle arteriole (rat) Erdei et al.?*
LS/OR Resistance arteriole (rat) Godény et al.”®
LS Portal vein (human) Pataricza, Hohn, et al%®
Ky + BKca LS Coronary artery (pig) Pataricza, Krassoi, et al."®
LS Umbilical cord artery (human) Yildiz, Nacitarhan, et al.V’
BKca OR Coronary arteriole (rat) Erdei et al.**
K(ATP) + BKc, LS Internal thoracic artery (human) Usta et al."®
LS Saphenous vein (human) Hoéhn et al.?’
cAMP LS Coronary artery (pig) Gruhn et al.*°
K(ATP) + cAMP + cGMP LS Pulmonary circulation (cat) De Witt et al.”®
Pulmonary artery (guinea pig) Rieg, Rossaint, et al.®
K(ATP) + BKca + cAMP + cGMP LS Pulmonary vein (guinea pig) Rieg, Rossaint, et al.®
K(ATP) + Ky + cAMP + cGMP LS Pulmonary circulation (human) Rieg, Suleiman, et al.
NO LS Coronary endothelial cells (pig) Grossini et al.**

BKca, large conductance Ca®"-activated K* channels; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate;
K(ATP), ATP-sensitive K* channel; Ky channels, voltage-gated K* channels; NO, nitric oxide.
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Figure 1 Schematic illustration of levosimendan-induced putative vasodilating mechanisms. Levosimendan is capable to mobilize a set of vasodilatory
mechanisms. Stimulatory and inhibitory effects are illustrated by green and red arrows, respectively. Effects of levosimendan are highlighted by dashed
arrows. 5/AMP: 5/ adenosine monophosphate; AC, adenylate cyclase; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; cGMP,
cylic guanosine monophosphate; GTP, guanosine triphosphate; L-Arg: L-arginine; MLCK, myosin light chain kinase; NO, nitric oxide; NOS, nitric oxide
synthase; PDE lll, phosphodiesterase Ill; PDE 1V, phosphodiesterase 1V; PKA: protein kinase A; PKG, protein kinase G; sGC, soluble guanylate cyclase.

See the text for further abbreviations and details.
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levosimendan.  OR-1896-elicited  vasodilation  largely
depended on BKc, channel activations in isolated coronary
microvessels, and K(ATP) channel activation in skeletal mus-
cle arterioles of the rat.* In an in vivo follow-up investigation
on real resistance arterioles (that are pertinent to the regula-
tion of microcirculation), levosimendan and OR-1896-induced
dilation were similarly effective and were both dominated by
K(ATP) channel activation.?

The involvement of K(ATP) channel activations were also
demonstrated with levosimendan administrations in isolated
human portal vein preparations.?® In human saphenous
vein preparations, levosimendan-evoked vasodilation was
explained by the combined K(ATP) and BKc, channel
activation.?’

Taken together, results of preclinical investigations (using
sulfonylureas and other types of K* channel blockers) pointed
to the involvement of more than a single mechanism for the

explanation of levosimendan-induced vasodilation in several
vascular beds (Table 1). Accordingly, activation of K(ATP)
channels and other types of K" channels together with a
variable degree of PDE inhibition can all be involved in
this effect depending on the characteristics of the vascular
bed and the nature of the experimental conditions
(e.g. levosimendan dose) (Figure 1).

The mechanism of
levosimendan-induced vasodilation in
the pulmonary circulation

The involvement of K(ATP) channel activation in
levosimendan-induced pulmonary vasodilation was clearly
demonstrated under sophisticated experimental conditions
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in cats in vivo.?® Moreover, in precision-cut lung slices from
guinea pigs, complex signalling pathways were associated
with levosimendan-evoked vascular smooth muscle relaxa-
tion. While in pulmonary arteries, the involvement of K
(ATP) channel activation and cAMP/cGMP-dependent
processes were stressed, in pulmonary veins, additional roles
for Ky and BKc, channel activation was postulated.® Subse-
quent investigations confirmed and extended these observa-
tions for the human lung whereby levosimendan-induced
vascular smooth muscle relaxation was explained by a
combination of K(ATP) and Ky channel activation, as well as
by increased intracellular cAMP and cGMP.” Interestingly,
levosimendan also attenuated the vascular remodelling pro-
cess in a rat model of pulmonary hypertension suggestive
for K(ATP) channel-dependent long-term anti-proliferative
and anti-inflammatory effects.?

The role of mitochondrial K(ATP)
channels in the levosimendan-evoked
cardiovascular effects

In addition to the effects on vascular smooth muscle cells,
levosimendan was also shown to open mitochondrial K(ATP)
channels (mK(ATP) channels) in cardiomyocytes,>**? which
has been associated—in both ex vivo and in vivo models—
with  pharmacological pre-conditioning®*** and post-
conditioning.®**®> Interestingly, activation of another
mitochondrial K" channel, the mitochondrial BKc, channel
(mBKc, channel), has been also demonstrated during
levosimendan-evoked cardiac pre-conditioning and post-
conditioning in rats.3%3”

Overall, the cardiovascular significance of K(ATP) and/or
mK(ATP) (and possibly other K*) channel activations has been
supported by repeated observations related to
levosimendan-evoked clinical benefits.*®3° For example, K
(ATP) channel activation was a prerequisite for improved
survival  following cardiopulmonary resuscitation in
levosimendan-treated rats following ventricular fibrillation.*°
In line with preclinical studies of these kinds, pharmacological
pre-treatment with levosimendan significantly improved
outcomes in patients undergoing coronary artery bypass
graft surgery.** Of note, the administration of sulfonylureas
did not attenuate the haemodynamic or other effects of
levosimendan under clinical conditions suggestive for the
significance of the several times higher concentrations of
sulfonylureas used in experimental settings than in clinical
conditions.*> It is also a matter of importance that
levosimendan shares its K(ATP) channel agonist property with
the anti-angina medication nicorandil.** Nicorandil, however,
has a pronounced negative inotropic effect while
levosimendan—in line with its unique dual inodilator mecha-
nism - is a positive inotrope.**

Importantly, the sum of levosimendan-evoked effects on
cardiac mitochondria, cardiomyocytes and coronary circula-
tion preserves the overall energy balance of cardiac function,
which has not been shown for any other inodilator.*®

Levosimendan-evoked K(ATP) channel
activation beyond the cardiovascular
system

Levosimendan-induced K(ATP) channel activation in combina-
tion with BKc, channel activation has been identified in
tracheal ring preparations of guinea pigs.*® Importantly,
levosimendan prevented bronchoconstriction via K(ATP)
channel activation in rabbits in vivo, which can be of impor-
tance for patients with decreased cardiorespiratory
reserve.*’ Additionally, lung tissue integrity was protected in
a rat model of pulmonary ischaemia and reperfusion through
mitigated levels of apoptosis by levosimendan-evoked post-
conditioning.*®

Levosimendan also induced relaxation of human
myometrial strip preparations via K(ATP) channel activation.*®
Moreover, the anticonvulsant effects of levosimendan (and
thus its influence on the central nervous system) has also
been associated with K(ATP) channel activation.*®

An effect of levosimendan on liver mitochondria has been
documented,®®  which—in  association  with  the
levosimendan-induced increase in liver blood flood>*—could
explain the protective effect elicited by the drug against liver
ischaemia—reperfusion.>? Similar observations in a pig model,
where the protective effects of levosimendan against ischae-
mia/reperfusion injury on kidney function were demon-
strated, support the activation of mK(ATP) channels in
organ-protective effects.>

Characteristics of
levosimendan-induced vasodilation in
view of other vasodilators

Results detailed above illustrate a complex mechanism of
action for levosimendan-induced vasodilation that involve
the activation of sarcolemmal and mitochondrial K* channels
and the modulation of cyclic nucleotide levels in cardiovascu-
lar and other tissues. Here, we postulate that the combina-
tion of these effector mechanisms, together with its other
cardiovascular effects, form the foundation for the unique
organ-selective and veno-selective characteristics of
levosimendan that cannot be reproduced by single
drug-target interactions (Figure 2).

Indeed, in porcine coronary vascular smooth muscle cells,
levosimendan-evoked vasodilation was paralleled by an
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Figure 2 Hypothetical explanation for increased tissue sensitivity of levosimendan-evoked vasodilation with marked venodilation. An increased level
of levosimendan-induced vasodilation can relate to more than a single vasodilator effector mechanism.
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apparent Ca®*-desensitization (thus giving space for K*
channel activation), an effect that was not seen upon the
administration of milrinone, a PDE Il inhibitor.>* Likewise, in
contrast to levosimendan, dobutamine (a [-mimetic)
evoked frequent arrhythmias and suggested distinct effects
on [Ca**]; in a model of ischaemia and reperfusion of
Langendorff-perfused guinea pig hearts.>®> Moreover,
while the concentration dependencies of levosimendan and
OR-1896 on systemic cardiovascular haemodynamic re-
sponses (e.g. blood pressure, pulse pressure, rate-pressure
product, cardiac output, & peripheral resistance) were
similar, they were different from those evoked by dobuta-
mine or milrinone in rats in vivo.>®

In a canine model, Pagel et al.>* showed that levosimendan
and milrinone cause different alterations in regional tissue
perfusion while producing similar systemic haemodynamic
effects. Importantly, levosimendan decreased vascular resis-
tance in the renal and splanchnic circulation while milrinone
increased it. Moreover, in that model, milrinone did not re-
duce pressure work index (an estimate of myocardial-oxygen
consumption) in contrast to levosimendan.®” In a dog model,
Schwarte et al.>® showed that levosimendan was superior to
milrinone and dobutamine in selectively increasing microvas-
cular gastric mucosal oxygenation.

In an experimental study conducted in instrumented
cats, levosimendan was significantly more potent in decreas-
ing lobar pulmonary arterial pressure than either of the type

Il or IV PDE inhibitors, or the K(ATP) channel agonist
pinacidil.?®

In summary, cardiovascular responses following
levosimendan administration are distinguishable from those
evoked by activators of the B-adrenergic system and conse-
quently from sole intracellular cyclic nucleotide changes
(Table 2).

Levosimendan in pulmonary
hypertension from heart failure with
preserved ejection fraction

Recent investigations into the mechanisms of elevated PCWP
in HF have drawn attention to increased SBV as playing an
important role.? Total blood volume of the body is divided
into two functional compartments: SBV and unstressed blood
volume (UBV). UBV is the amount of blood required to fill the
vascular system just to the point wall stress and mean circu-
latory filling pressure start to rise; SBV is the blood volume
about UBV. Thus, TBP = SBV + UBV (Figure 3). The splanchnic
circulation constitutes the body’s largest reservoir of UBV,
predominantly in the veins, which can be recruited rapidly
to the SBV pool. Importantly, the splanchnic reservoir is
responsive to changes in sympathetic tone due to the large
concentration of adrenergic receptors in the walls of venous
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Table 2 Cardiovascular profiles of levosimendan (LS) and other inodilators in comparative studies

Drug Examined parameter Effect Preparation (species) Ref.
LS [Ca2+]i-force relationship Desensitization Coronary arteries (pig) Bowman et al.>4
Milrinone " No desensitization
LS Post-ischaemic arrhythmia None Isolated hearts (guinea pig) Du Toit et al.>
Dobutamine " Frequent
LS/OR-1896 Mean arterial pressure Decrease (high potential) Instrumented animals Segreti et al.>®
(rats)
Pulse pressure Decrease (high potential)
Rate-pressure product Decrease (low potential)
Cardiac output (LS) Increase (high potential)
Peripheral resistance Decrease (high potential)
Milrinone Mean arterial pressure Decrease (low potential)
Pulse pressure Decrease (low potential)
Rate-pressure product Decrease (low potential)
Cardiac output Small increase (low potential)
Peripheral resistance Decrease (low potential)
Dobutamine Blood pressure No effect
Pulse pressure Increase
Rate-pressure product Increase (high potential)
Cardiac output No effect
Peripheral resistance No effect
LS Pulmonary lobar pressure decrease High potency Instrumented animals De Witt et al.?®
(cats)
Siguazodan " Low potency
Rolipram ! Low potency
Pinacidil ! Low potency
LS Regional distribution of cardiac output LS-specific combination at Anaesthetized animals Pagel et al.>"*’
comparable systemic effects (dogs)
Renal vascular resistance Decrease
Splanchnic vascular resistance Decrease
Pressure work index Decrease

Milrinone Regional distribution of cardiac output
Renal vascular resistance

Splanchnic vascular resistance

Pressure work index no effect
Pimobendan Regional distribution of cardiac output

Renal vascular resistance
Splanchnic vascular resistance
Pressure work index
LS Oxygenation of gastric mucosa
Milrinone !
Dobutamine

Milrinone-specific combination
at comparable systemic effects
Increase
Increase

Pimobendan-specific combination
at comparable systemic effects
Increase

Increase

No effect

Selective increase Anaesthetized animals
(dogs)

No effect

Non-selective increase

Schwarte et al.>®

Milrinone, pimobendan, and siguazodan are inhibitors of the PDE Ill enzyme, rolipram is an inhibitor of the PDE IV enzyme, and pinacidil is

an activator of K(ATP) channels.

vessel that regulate their smooth muscle tone and thus the
capacity of the venous system. SBV plays a critical role in de-
termining venous pressure®! and is an adaptive mechanism
that regulates systemic and pulmonary venous pressures dur-
ing exercise, times of stress, and in response to haemorrhage.
Chronic increases in SBV become maladaptive from the
sustained elevated activity of the sympathetic nervous
system that occurs in HF and in pulmonary hypertension.
The importance of SBV in HF was recently validated by
experiments in patients with chronic HF and elevated PCWP.
A percutaneous splanchnic ganglion nerve block that tempo-
rarily dilated the splanchnic veins was shown to markedly
lower CVP and PCWP at rest and during exercise with a

reduction in estimated SBV.%? The splanchnic veins have also
been shown to dilate in response to K(ATP) activators.?®
The Hemodynamic Evaluation of Levosimendan in Patients
With PH-HFpEF (HELP) trial was a mechanistic trial designed to
understand the mechanisms behind a potential benefit of
levosimendan in patients with PH-HFpEF.®2 PH-HFpEF was
chosen as the disease to study because of the following®3:
(1) it is a progressive and fatal disease with no effective treat-
ment and a high unmet medical need; (2) it has become
increasingly common in pulmonary hypertension specialty
clinics; (3) a chronic elevation in PCWP at rest which worsens
with exercise has been identified as an important target to
achieve clinical benefit; and (4) the inotropic properties of
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Figure 3 Stressed and unstressed vascular volume. The volume inside a vessel at near zero transmural pressure is termed ‘unstressed volume’ (blue).
It fills the system without exerting tension in the vessel wall. The blood volume that creates positive transmural pressure via the elastic recoil of the
vessel wall is termed ‘stressed volume’ (red). Mean circulatory filling pressure (MCFP) is a function of stressed volume and vascular compliance; com-
pliance is the slope of the pressure—volume curve above the unstressed volume. (A) Cross section of a blood vessel. (B) The relationship between blood
volume and MCFP. (C) The venous system contains approximately 70% of the blood volume. The splanchnic vascular bed serves as a reservoir and will
adjust the amount of venous return based on signalling from the autonomic nervous system. In chronic HF, the increased sympathetic tone associated
with activation of the renin—angiotensin—aldosterone system will also activate the splanchnic circulation to increase venous return, referred to SBV.
This will increase the CVP and the pulmonary capillary wedge pressure. Q, cardiac output; R, systemic vascular resistance; RA: right atrium. Panels
(A) and (B) freely adapted from Gribler et al.>® Panel (C) is freely adapted from Noel-Morgan and Muir.%
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levosimendan could prove helpful in patients with coexistent
right HF.5

Levosimendan has demonstrated to be consistently effec-
tive in lowering PCWP in a broad spectrum of acute HF
trials.®® The classical teaching was that the fall in PCWP was
attributed to its inotropic effect which would, theoretically,
increase LV ejection and thereby result in greater ‘emptying’
of the pulmonary venous system; potential concomitant
lusitropic effects have also been postulated to improve
relaxation to enhance diastolic filling. However, the haemody-
namic studies of levosimendan in HF patients show a rapid
and marked reduction in PCWP before meaningful increases
in cardiac output occur, which raised questions about a differ-
ent mechanism of action.®®

The HELP trial had two phases. Phase 1 was an open-label
lead-in where patients would undergo a rest and exercise
right heart catheterization to set a baseline haemodynamic

profile of the PH-HFpEF. The patients then received a 24 h
intravenous infusion of levosimendan and returned to the
lab the following day for a repeat haemodynamic study.
Those patients who demonstrated a >4 mmHg reduction
in exercise PCWP were characterized as levosimendan
responders and were enrolled into Phase 2, which was a
6 week outpatient, randomized, placebo-controlled, blinded
study design. Phase 1 allowed the evaluation of the mecha-
nism of action of levosimendan with patients serving as their
own control. It showed significant reductions in PCWP and
CVP at rest and exercise with no change in cardiac output,
supporting effects on both venous pressure independent of
any inotropic property of levosimendan, which were similar
to the effect of splanchnic ganglion blockade. Phase 2 tested
the durability of weekly levosimendan infusions over 6 weeks,
followed by an end-of-study right heart catheterization at
rest and exercise. The 24 h haemodynamic changes persisted
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over the 6 weeks, but importantly were associated with a
significant increase in exercise capacity. An analysis of the
data supports that the mechanism of action to be a reduction
in SBV, with no evidence for an inotropic effect.®” This is
consistent with the vasodilator effects of levosimendan as a
K(ATP) channel activator on the splanchnic bed.?®

There are also considerable data that support the down-
regulation of K* channels as one of the fundamental
processes that underlies the development of pulmonary
hypertensive vascular disease.®® Whether a long-term
reduction in pulmonary arterial pressure due to the K(ATP)
channel activation from levosimendan is also possible in
these patients is unknown, but needs to be studied to see if
this additional property of levosimendan could reverse the
underlying pulmonary vascular disease.

Conclusions

Preclinical investigations with various vascular (arterial and
venous) and non-vascular preparations identified K" channel
(most frequently K(ATP) channel) activation as a mediator
of the levosimendan-mediated smooth muscle relaxing
effects. The pharmacological profile of levosimendan and of
its long-acting metabolite, OR-1896, is very similar in this re-
spect. Methodological and tissue-specific characteristics may
explain part of the discrepancies among the observed combi-
nations of additional effector mechanisms (including Ky, and
BKc, channels, cAMP and NO—cGMP). Of note, the expres-
sion levels of K™ channel subtypes depend on the type of
vascular bed and cardiovascular diseases.®® Intuitively, the
number of levosimendan-mobilized targets may correlate
with the tissue sensitivity for vasodilation (e.g. in the pulmo-
nary circulation and in peripheral veins) and can form the
basis of its favourable haemodynamic profile with low-dose
levosimendan administrations (Figure 2).

Undoubtedly, levosimendan affects a host of vasodilatory
mechanisms and its smooth muscle relaxing effects extend
beyond the cardiovascular system. The vasodilation is exerted
in many vascular beds: in arteries and veins and in the periph-
eral and central circulations. Levosimendan mobilizes
vasodilating mechanisms in combinations allowing for a dif-
ferential and region-specific regulation in vascular beds and
for the promotion of venodilation in the absence of systemic
effects on the cardiovascular system as a whole at relatively
low levosimendan concentrations. This feature differentiates
this drug from other vasodilators or inodilators.
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