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SFARI genes and where to find 
them; modelling Autism Spectrum 
Disorder specific gene expression 
dysregulation with RNA‑seq data
Magdalena Navarro Torres Arpi1 & T. Ian Simpson1,2*

Autism Spectrum Disorders (ASD) have a strong, yet heterogeneous, genetic component. Among 
the various methods that are being developed to help reveal the underlying molecular aetiology 
of the disease one approach that is gaining popularity is the combination of gene expression and 
clinical genetic data, often using the SFARI‑gene database, which comprises lists of curated genes 
considered to have causative roles in ASD when mutated in patients. We build a gene co‑expression 
network to study the relationship between ASD‑specific transcriptomic data and SFARI genes and 
then analyse it at different levels of granularity. No significant evidence is found of association 
between SFARI genes and differential gene expression patterns when comparing ASD samples to 
a control group, nor statistical enrichment of SFARI genes in gene co‑expression network modules 
that have a strong correlation with ASD diagnosis. However, classification models that incorporate 
topological information from the whole ASD‑specific gene co‑expression network can predict novel 
SFARI candidate genes that share features of existing SFARI genes and have support for roles in ASD 
in the literature. A statistically significant association is also found between the absolute level of gene 
expression and SFARI’s genes and Scores, which can confound the analysis if uncorrected. We propose 
a novel approach to correct for this that is general enough to be applied to other problems affected 
by continuous sources of bias. It was found that only co‑expression network analyses that integrate 
information from the whole network are able to reveal signatures linked to ASD diagnosis and novel 
candidate genes for the study of ASD, which individual gene or module analyses fail to do. It was also 
found that the influence of SFARI genes permeates not only other ASD scoring systems, but also lists 
of genes believed to be involved in other neurodevelopmental disorders.

Autism Spectrum Disorder (ASD) encompasses a diverse group of developmental disorders characterised by defi-
cits in social interaction, impaired communication skills, and a range of stereotyped and repetitive  behaviours1. 
ASD has a strong genetic component, with heritability estimated to be as high as 52%2 and hundreds of genes 
believed to be disrupted by  it3, however, for 75% of the cases, the causes still remain  unknown4, which suggests 
there is still a lot to discover about this complex and heterogeneous disorder.

There are many approaches to study the genetic components underlying the aetiology of ASD. The most direct, 
and one of the most popular approaches, is to study likely causative mutations that have been found in patients 
with the disorder. Arguably the largest source of these are the Simons Foundation Autism Research Initiative 
(SFARI)5 who created SFARI-gene, a constantly evolving, expertly curated database of candidate genes involved 
in autism susceptibility by integrating genetic information from multiple research studies. The latest version 
of the dataset consists of 942 genes, which have been scored with a value from 1 to 3 reflecting the strength of 
the evidence linking a gene to ASD, where a score of 1 is assigned to genes that have a high confidence of being 
implicated, 2 to strong candidates, and 3 to genes that only have relatively weak evidence supporting their con-
nection to ASD.

Another common approach is to compare gene expression between ASD patients and unaffected controls 
using transcriptomics. This has led to the discovery of many candidate genes for ASD and identified convergent 
molecular processes involved in the  disorder6. These analyses have also revealed interactions between molecular 
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pathways and other contributory factors and have helped us to understand how diverse mechanisms and risk 
factors can combine to produce complex behavioural  outcomes4.

Interpreting transcriptomic data in the context of the curated SFARI-gene list is commonly undertaken both 
in experimental design to validate  results7–14, and, more recently, to combine information from these two sources 
into single models that learn jointly from these data using classification methods or network analysis  tools15–18.

These classification methods use transcriptomic datasets derived from neurotypical donors and therefore 
model canonical gene expression patterns in the brain. We believe that using a combined analysis of transcrip-
tomic data derived from ASD donors and unaffected controls instead, can provide new insights into ASD, includ-
ing revealing patterns of ASD-specific dysregulation and potentially novel ASD candidate genes. Our aim is to 
determine how best to combine transcriptomic data from both ASD and unaffected patients alongside SFARI 
genes; focusing on when it is suitable to combine them and what aspects should be taken into consideration 
when doing so.

In this study we analyse an ASD-specific gene co-expression network at three different levels of granularity 
starting at the gene-level, by examining individual genes independently from one another, then at the module-
level, by examining groups of genes defined by similarities in their expression profiles, and finally at the systems-
level, by analysing all of the genes simultaneously in a fully-connected co-expression network.

Results
SFARI genes have higher levels of expression than other neuronal and non‑neuronal 
genes. Before studying more specific patterns in gene expression related to SFARI genes and ASD we per-
form a principal component analysis of gene expression across all 80 samples and find that 99% of variation is 
captured in the first principal component. We find a perfect correlation between this first principal component 
and the mean level of gene expression. This can be clearly seen in Fig. 1 where genes are coloured by their mean 
level of expression. This means that the ASD diagnostic status of a sample is not a dominant feature at this level of 
analysis and that more sensitive approaches will be needed to investigate the relationship between gene expres-
sion and ASD.

Comparing the mean level of expression of the genes that correspond to SFARI against the rest of the genes 
in our transcriptomic dataset, we can see that they have a statistically significantly higher level of expression than 
both of the other gene groups with a Benjamini–Hochberg corrected p value lower than 10−4 , as seen in Fig. 2A, 
agreeing with the results presented  in18.

Figure 2B shows that separating the SFARI Genes by SFARI Scores, we find a similar pattern; the higher the 
SFARI Score, the higher the level of expression of the genes, with genes belonging to SFARI Score 1 having the 
highest level of expression of all groups, followed by SFARI Score 2 and then by SFARI Score 3. All of the differ-
ences between groups are statistically significant with a corrected p value lower than 10−3 , even between SFARI 
Scores, except for the comparison between SFARI Score 3 and the neuronal genes, where the difference is not 
statistically significant.

There is as yet no biological or technical explanation for the observed relationship between a SFARI gene’s 
mean level of expression and its role in ASD. We have modelled the effect of a range of possible features of the 
samples as co-variates, but none of these explain the effect. Taken together, the previous report of elevated gene 
expression in SFARI  genes18 and our finding of the same pattern in three independent ASD gene expression 
datasets supports the idea that there is a group of neuronal genes associated with ASD that have elevated mean 
expression compared to other neuronal genes. It is tempting to speculate that the high mean expression level 
of these genes identifies them as having crucial roles in maintaining normal brain function, their dysregulation 
causes ASD.

Gene level: SFARI genes have smaller differences in level of expression between ASD and con‑
trol patients than other neuronal genes. This section studies the relation between the SFARI genes and 
differential expression analysis between ASD and control groups by comparing the percentage of differentially 
expressed genes in each group as well as the magnitude of the log fold-change of the genes.
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Figure 1.  Mean level of expression plays a central role in gene characterisation. PCA plot of genes characterised 
by their expression patterns across all samples and coloured by their mean level of expression. The numbers 
in parenthesis on the axis represent the percentage of variance explained by each component. The x-axis 
corresponds to the first principal component, which represents over 99% of the information in the dataset and is 
strongly related to the mean level of expression of the genes.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10158  | https://doi.org/10.1038/s41598-022-14077-1

www.nature.com/scientificreports/

We find that SFARI genes have a consistently lower percentage of differentially expressed genes when com-
pared to the neuronal group, and very similar values to the rest of the genes, regardless of the log fold-change 
threshold (Fig. 3).

Comparing the log fold-change magnitude of genes in each category we find that the SFARI genes have 
statistically significantly lower values than genes with a neuronal function with a corrected p value lower than 
10−4 , and comparable log fold-change magnitudes to the remaining genes in the dataset (genes that are neither 
SFARI nor neuronal) (Fig. 4A).

Separating the SFARI genes by SFARI Scores we find that the higher the SFARI Score, the lower the log fold-
change magnitude (Fig. 4B), with SFARI Score 1 having the lowest values of all groups, including the rest of 
the genes that are neither SFARI nor neuronal, followed by SFARI Score 2 and SFARI Score 3 genes having the 
highest. Differences in log-fold change between SFARI scores and between non-SFARI non-neuronal genes and 
each SFARI Score are visible but not statistically significant. However, differences between neuronal genes and 
all other gene groups are statistically significant with a corrected p value lower than 10−3.

Module level: SFARI genes are not enriched in modules from gene co‑expression networks 
that are strongly correlated with ASD diagnosis. In this section, the relation between SFARI genes 
and the modules obtained with WGCNA’s gene co-expression network is analysed, comparing each module’s 
association to the diagnosis status of the samples to their enrichment in SFARI genes to determine if there as a 
relation between them.

The network consist of 55 gene co-expression modules, with only 138 genes (0.9%) unassigned to any module. 
Measuring the association of a module to diagnosis using the module-diagnosis correlation and the enrichment 
in SFARI genes using Over Representation Analysis, we find that the distribution of modules that were found 
to be significantly enriched in SFARI genes is relatively uniform across different levels of module-diagnosis cor-
relation; furthermore, enrichment in SFARI genes of all the modules is largely constant (Fig. 5). These findings 
suggest there is not a strong relationship between these two features.

Performing a similar analysis by substituting the module-diagnosis correlation of each module for the mean 
level of expression of the genes it contains, we get a much clearer pattern: as Fig. 6 shows, modules with higher 
levels of expression have a higher enrichment in SFARI genes, and none of the modules where the enrichment 
in SFARI genes were found to be statistically significant have a low mean level of expression. These results are 
consistent with the findings presented in the first section, and show that the positive relationship between level 
of expression and SFARI genes persist in WGCNA’s co-expression modules.

Figure 2.  SFARI genes have higher levels of expression than other genes. Comparison between the SFARI 
genes, genes with neuronal annotations and with the rest of the genes in the dataset. The brackets at the top 
indicate pairwise comparisons, using a Welch t-test to study wether the differences in level of expression 
between groups are statistically significant, and the asterisks indicate the magnitude of the corrected p value of 
each test: ns = p value ≥ 0.05, *p value < 0.5, **p value < 0.01, ***p value < 0.001, and ****p value < 0.0001. (A) 
SFARI genes. (B) SFARI Scores. Outlier genes are represented individually as open circles. The t-tests use all the 
points in each group, including outliers.
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Figure 3.  SFARI genes have a lower percentage of differentially expressed genes than neuronal genes and a 
similar percentage to the rest of the genes. Percentage of differentially expressed genes for different log fold-
change thresholds grouping genes by SFARI, other neuronal genes, and the rest of the genes in the dataset. 
DESeq2 v1.24.0 https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ DESeq2. html.

Figure 4.  SFARI genes have lower log fold-change magnitudes than neuronal genes and similar magnitudes 
to non-neuronal genes. Comparison of the log-fold change magnitude between the SFARI genes, genes with 
neuronal annotations and with the rest of the genes in the dataset. As before, the asterisks at the top indicate the 
magnitude of the corrected p value from pairwise Welch t-test comparisons to study if the differences between 
groups is statistically significant. (A) SFARI genes. (B) SFARI Scores. Outlier genes are represented individually 
as open circles. The t-tests use all the points in each group, including outliers. DESeq2 v1.24.0 https:// bioco nduct 
or. org/ packa ges/ relea se/ bioc/ html/ DESeq2. html.

https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html


5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10158  | https://doi.org/10.1038/s41598-022-14077-1

www.nature.com/scientificreports/

Systems level: whole co‑expression network integration facilitates discovery of novel candi‑
date SFARI genes. This section studies the relation between SFARI genes and topological information 
extracted from the whole co-expression network to determine if there is a relation between the global structure 
of the network and the SFARI genes.

The previous sections show that local gene expression information is not robust enough to model ASD-
related patterns from SFARI genes, but the fact that in the Gene level section these two data sources actively 
contradict each other, but in the Module level section they do not anymore, appearing to be independent, could 
indicate that integrating more information from the co-expression network had a positive effect. Based on this, 
we hypothesise that models built using more information from the whole co-expression network can represent 
more intricate shared patterns between genes and capture information that would remain hidden when studying 
genes at a more local level, allowing for the information coming from SFARI genes and from transcriptomic data 
to complement each other in a deeper way.

If this hypothesis is true, then we would expect SFARI genes to have a positive relation with the structure 
underlying the whole co-expression network, including its ASD-specific dysregulation patterns. To test this, we 
build a gene classifier using information extracted from the whole co-expression network including; the cor-
relation between a gene’s expression pattern and diagnosis, and each module’s eigen-gene, and between a gene’s 
assigned network module and diagnosis, as descriptive variables, as well as a binary objective variable indicating 
whether the gene is a SFARI list gene. We obtain a probability for each non-SFARI gene that can be interpreted 
as how similar the gene is to the SFARI genes in the co-expression network. We can quantify the reliability of 
the model using the classifier’s performance metrics as well as analysing whether biological evidence exists in 
the literature to support the relevance to ASD of the genes with the highest probabilities.

The classification task was performed using a Ridge regression and the performance metrics selected were 
the Area Under the ROC Curve (AUC), the Maximum Lift Point (MLP) and the Balanced Accuracy which are 
described in “Methods” section. Table 1 shows the performance of this first classifier, referred to as the “original” 
model, and it can be seen that it has higher values for all three performance metrics than the “shuffled labels” 
model, which was used as a baseline against which we could compare our models. For this last model, the classi-
fier used was the same Ridge regression, but the SFARI labels in the classification dataset are shuffled at random.

The performance metrics of the “shuffled labels” model show that both the AUC and Balanced accuracy are 
0.50 with small standard deviations, which means the model is not able to differentiate between classes at all, 
and although it has a MLP above 1, it has a very large standard deviation (larger than itself), so it means that 

Figure 5.  SFARI gene enrichment in modules does not correlate with ASD diagnosis status. Scatter plot of 
WGCNA modules comparing the strength of the correlation of the modules to the diagnosis of the samples 
and enrichment in SFARI genes. Each point represents a module; its position on the plane defined by the two 
metrics mentioned above, its size corresponds to the number of genes in the module, and its colour indicates 
if the enrichment in SFARI Scores is statistically significant using a corrected p value of 0.05. The grey line 
corresponds to the trend line illustrating the relation between the two variables we are studying, with the shaded 
area around the line displaying its 95% confidence interval. This means that with a 95% confidence the true 
trend connecting the two variables lies within this shaded area. WGCNA v1.69 https:// cran.r- proje ct. org/ web/ 
packa ges/ WGCNA/ index. html.

https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
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this model may sometimes by chance have a large proportion of SFARI Genes in the top scoring genes but it is 
not reliable. All these metrics together indicate that the model, as expected, is not able to identify SFARI genes.

The original model performs well, as we can see in Table 1, but when we compare the mean expression of the 
genes against the probability assigned to them by this model, we find that there is a positive association between 
these two characteristics, with the genes with medium to high mean level of expression trending towards the 
upper-right part of Fig. 7. This suggests that the classifier is using the level of expression of a gene, or some 
confounder of it, as a factor when calculating its similarity to the SFARI genes, which was expected, since this 
relation had already been noticed both at gene- and module-level.

As mentioned before, there is no biological evidence supporting the relation found between a gene’s level 
of expression and its role in ASD, so it is better to remove it from the model to be certain that the patterns it is 
detecting are genuinely biological. A bias correcting technique was used to correct this relation, after which the 
strongest patterns connecting the mean level of expression and the probability of the model are removed (Fig. 8), 
and only a small negative trend remains. This new version of the algorithm, which we call the “unbiased” model, 
has a worse performance than the original model, as seen in Table 1, because it is no longer using the mean 
expression of the genes to identify the SFARI genes, which was a strong indicator, but is still performing better 
than the “shuffled labels” model.

Table 2 shows the non-SFARI genes that were assigned the highest probabilities by this final unbiased model. 
All of these genes have been found to have some connection with ASD, and gene CORO1A has subsequently 
been included in the SFARI-gene list with a score of 1. This suggests the model is indeed able to identify genes 
with similar behaviour to SFARI genes and that the results also have biological relevance to ASD.

These results show that we can successfully identify novel candidate genes by combining a systems-level net-
work approach to differential gene expression modelling with categorical labelling of disease genes, even when 
removing the signal related to the level of expression of the genes.

Figure 6.  SFARI gene enrichment in modules is related to the mean level of expression of the genes in the 
module. Scatter plot of WGCNA modules comparing the mean level of expression of the genes contained in 
each module and the enrichment in SFARI genes. The details of the plot are the same as in Fig. 5. WGCNA v1.69 
https:// cran.r- proje ct. org/ web/ packa ges/ WGCNA/ index. html.

Table 1.  Performance metrics of the two classification models used as well as a third model using a shuffling 
of the SFARI labels in the data. The highest value for each performance metric is represented in bold.

Model AUC MLP Balanced accuracy

Original 0.69 ±4 × 10
−4 20.43 ± 0 0.64 ± 0.0018

Unbiased 0.58 ± 0.03 13.61 ± 6.84 0.56 ± 0.01

Shuffled labels 0.50 ± 0.02 2.83 ± 3.4 0.50 ± 0.01

https://cran.r-project.org/web/packages/WGCNA/index.html
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Comparison with other scoring systems and disorders. Given the strong pattern related to the mean 
level of expression of the genes found in the SFARI genes dataset, this last section studies how pervasive this pat-
tern may be, studying if it is also present in other lists of candidate ASD genes, or in genes believed to be involved 
in other neurodevelopmental disorders.

Other ASD scoring systems. Three ASD scoring systems were selected to compare against SFARI based on their 
popularity: the Krishnan probability score, which uses a gene co-expression network and a list of ASD genes 
(including the SFARI genes) to train a classifier; the Sanders TADA score, which uses whole-exome sequencing 
to incorporate information from de novo mutations, inherited variants present, and variants identified within 
cases and controls to create a gene-based likelihood model; and the DisGeNET score, which integrates informa-
tion from various repositories (also including the SFARI genes). All of these scores are continuous instead of 
categorical like SFARI, so we use the Pearson correlation to make pairwise comparisons between these scores 
and the Polyserial correlation to compare them to the SFARI genes.

As Fig. 9 shows, the SFARI, DisGeNET and Krishnan scores have a strong correlation, while Sanders TADA 
score has either a neutral or a negative correlation with all the others. All of the correlations have a corrected p 
value lower than 0.05, the highest being Krishnan vs. TADA with 0.04.

Table 3 shows the correlation found between each of the scoring systems and the mean level of expression of 
the genes. Parallel to the results found above, The SFARI, Krishnan and DisGeNET scores have positive correla-
tions, while Sanders TADA score appears to be independent.

The correlations between the SFARI, Krishnan and DisGeNET scoring systems as well as their statistically 
significant correlations with level of expression can be explained by the connections that exist between the 
SFARI-gene list and these other scoring systems, what is surprising is the strength and significance of these 
relations, which suggest that SFARI genes play a much more central role in the characterisation of these other 
scoring systems than expected.

Relation between mean expression and other neuronal disorders. The gene scores for other neuronal disorders 
were obtained from DisGeNET. The disorders selected were Schizophrenia (Scz), Bipolar Disorder (BD), Intel-
lectual Disability (ID), Depressive Disorder (DD) and Chronic Alcohol Intoxication (CAI).

A big proportion of the genes associated to all of these disorders belong to the SFARI genes, as Table 4 shows, 
the highest being Intellectual Disability with 24% and the lowest Schizophrenia, with 18%.

Figure 7.  There is a positive relation between the level of expression of the genes and the probabilities assigned 
by the classification model. The x-axis corresponds to the mean level of expression of the genes and the y-axis 
to the probability assigned by the model indicating how likely they are to be SFARI genes. The grey line 
corresponds to the trend line illustrating the relation between these two features, with the shaded area around 
the line displaying its 95% confidence interval.
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Studying the scores associated to each of the disorders, Fig. 10 shows that SFARI genes are not only over-
represented in all disorders, but they also have higher scores than the rest of the genes associated to each disorder. 
This difference is statistically significant for all disorders except for Chronic Alcohol Intoxication.

Finally, calculating the correlation between the different scores and the mean expression of the genes, Table 5 
shows ASD is the disorder with the highest correlation, followed by Schizophrenia and Bipolar Disorder, all 
three of them with p values lower than 0.05, but this relation weakens significantly when we remove the SFARI 
genes, even for the genes related to ASD, as Table 6 shows, where Schizophrenia is the only disorder that still 
has a significant p value.

Taken together these results demonstrate that the unexpected profile of the mean level of expression observed 
for genes in the SFARI-gene list permeates not only to other ASD scoring systems, but, because of the important 
role this group of genes play in other neurodevelopmental disorders, it also has an impact in other neurodevel-
opmental disorders, especially Schizophrenia and Bipolar Disorder.
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Figure 8.  The bias correction algorithm removes the relation between the level of expression of the genes and 
the probabilities assigned by the classification model. Caret v6.0-86 https:// cran.r- proje ct. org/ web/ packa ges/ 
caret/ index. html Glmnet v3.0.2 https:// cran.r- proje ct. org/ web/ packa ges/ glmnet/ index. html.

Table 2.  Top 10 non-SFARI genes with the highest probabilities assigned by the unbiased model.

Gene Probability Literature review

1 SNX25 0.73 CNV associated both to ASD and  ADHD44

2 CLMP 0.71 QTN associated to play skills in twins with  ASD45

3 EGR1 0.70 Role in the aberrant regulation of synaptic maturation in  ASD46

4 HECTD2 0.69 Phylogenetically similar to UBE3A (SFARI Gene Score 1)47

5 PLXNC1 0.69 Part of the Axonal Guidance signaling pathway, one of the canonical pathways significantly associated 
with dysregulated genes with LINE-1  insertion48

6 AHI1 0.69 Mutations associated to  ASD49

7 CORO1A 0.69 Now a SFARI Gene with Score 1 in the latest version of the  dataset5

8 ARC 0.68 Target protein of gene UBE3A (SFARI Gene Score 1)50

9 ARPP21 0.68 Gene associated to candidate intergenic risk loci in  ASD51

10 ARHGAP20 0.68 Differential expression related to  ASD52

https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
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Discussion
SFARI genes have a lower percentage of differentially expressed genes as well as a lower log fold-change mag-
nitude than non-SFARI genes with neuronal function, and when separating the SFARI genes by score, we find 
that the higher the SFARI Score, the lower the log fold-change magnitude of the genes. This decrease within 
SFARI Scores and between SFARI genes and neuronal genes is not explained by the observed bias by level of 
expression, since the shrunken log fold-change estimates were used for this analysis, which already account for 
this. A possible explanation could be that SFARI genes are more tightly regulated than other genes with neuronal 
function, with SFARI genes assigned a score of 1 having the tightest regulation of all.

Modules derived from our gene co-expression network showed no significant correlation between the module 
diagnosis status and module enrichment for SFARI genes. This suggests that even though SFARI genes do cluster 
together within modules, these modules are not especially disrupted by ASD. The bias by gene expression level 
in modules was unexpected, since the network was built using pairwise gene correlations, and the correlation 
metric is invariant to linear transformations, which could mean that there may be more factors involved in this, 
and the level of expression may only be a confounding factor for another underlying trait.

Contrary to the results observed at gene-level and module-level, we demonstrate that SFARI-gene status can be 
successfully used in combination with differential gene expression data when considered at the systems-level. This 
suggests that local information is not sufficient to describe the complex role SFARI genes play in gene-expression 
profiles and their dysregulation in ASD, but instead requires the whole network to model this intricate system.

The classifier used here was chosen for its explicit interpretability rather than predictive power per se, so it 
would be interesting in the future to determine whether different classification approaches are able to further 
improve on classification performance and to what extent this approach can generalise to other biological set-
tings. Models could further be developed to embrace a semi-supervised learning approach because SFARI genes 
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Figure 9.  Pairwise correlation between the different ASD scoring systems. The size and colour of the circles 
correspond to the magnitude and sign of the correlation, respectively.

Table 3.  Correlation between different ASD scoring systems and the mean level of expression of the genes.

SFARI Krishnan DisGeNET TADA

Correlation 0.35 0.35 0.19 − 0.01

p value 4× 10
−17 0 0.003 0.097

Table 4.  Number of genes associated to different neuronal disorders according to DisGeNET and percentage 
of genes that belong to the SFARI genes list.

ASD Scz BD ID DD CAI

Total number of genes 231 765 415 425 254 228

% of SFARI genes 61.9% 18.0% 22.2% 24.2% 21.7% 18.9%
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are confirmed disease genes, so it is valid to label them as positive, but the opposite is not true for non-SFARI 
genes since we do not know whether they are associated with ASD or not, so instead of labelling them as strictly 
negative, a better approach might be to leave them unlabelled, as the PU Learning methodology  proposes19, 
and which has already been used for disease gene identification in protein–protein interaction networks with 
reported good  performance20. We also consider that the selection of which features to extract and use from the 
co-expression network warrants further investigation since much of the information about the structure of the 
network is lost, so using a classifier directly on the network, as reported  elsewhere17, could be productive in 
further optimising classification performance.

The relationship found between SFARI genes and the mean level of expression was significant and persisted 
throughout all of the levels of our analysis. Although we don’t know what could be causing this, a possible expla-
nation for it, as well as for the bias within the SFARI Scores, could be a bias in the selection of the participants 
for genetic experiments; focusing mostly on people with moderate to severe ASD and overlooking people with 
milder cases,  since21 found that the severity of ASD phenotype is directly related to the expression level of the 
genes, but since no information about the severity of the ASD of the participants is in the Spark Gene  List22, on 
which the SFARI-gene selection and scoring criteria rely, we cannot assess this possibility.

Importantly, the bias found in the mean expression of SFARI genes is also present in other ASD gene scoring 
systems with the exception of the TADA-score. This observation could be an indirect effect of the incorporation 
of SFARI-gene related information into the generation of DisGeNET and Krishnan scoring systems, but it is not 
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Figure 10.  SFARI genes have higher DisGeNET Scores than the rest of the genes involved in different disorders. 
Box plots of gene scores from different disorders comparing SFARI genes with the rest of the genes. The asterisks 
at the top indicate how statistically significant is the difference between the two groups of genes.

Table 5.  Correlation between the scores associated to different disorders by DisGeNET and the mean level of 
expression of the genes.

ASD Scz BD ID DD CAI

Genes 231 765 415 425 254 228

Correlation 0.19 0.13 0.10 0.07 − 0.07 − 0.15

p value 0.003 0.0002 0.04 0.16 0.29 0.03

Table 6.  Correlation between the scores associated to different disorders by DisGeNET, removing the SFARI 
genes, and the mean level of expression of the genes.

ASD Scz BD ID DD CAI

Non-SFARI genes 88 627 323 322 199 185

Correlation 0.02 0.09 0.07 − 0.06 − 0.08 − 0.09

p value 0.86 0.02 0.24 0.31 0.24 0.20



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10158  | https://doi.org/10.1038/s41598-022-14077-1

www.nature.com/scientificreports/

clear how this would result in such a strong effect based on how different are the methods by which the scores 
are calculated. Similarly, when we look at the DisGeNet scores of SFARI genes for other neuronal disorders, we 
find they have statistically significantly higher scores than the rest of the genes associated with each disorder. This 
raises the possibility that there may be significant shared molecular aetiology between these neurological diseases.

The relationship between SFARI genes and ASD-specific gene expression data is subtle and complicated, 
needing information derived from the whole gene co-expression network to be modelled accurately. We have 
shown that neither differential expression results nor co-expression modules with a high correlation to diagnosis 
status are significantly associated with SFARI genes. Rather, careful systems-level network analysis and the use of 
machine learning models to combine different sources of data in disease settings can prove to be highly effective 
at least for the novel candidate gene prediction approach addressed here. We also emphasise the importance 
of carefully studying the innate features of the gene expression data used in any given study as exemplified by 
the sizeable gene expression level feature found for SFARI genes and SFARI Scores which, to our knowledge, 
has been overlooked until now, and we propose a novel method to remove this pattern and study the effects 
this has. Understanding the intricate behaviour of SFARI genes is crucial, as their influence permeates to other 
ASD scoring systems, and even impacts data from other neurodevelopmental disorders. Further studies into 
the origins of this observed gene expression level bias and its origins will undoubtedly help us better understand 
ASD in the future.

Methods
Pre-processing and analysis of transcriptomic data was performed using the  DESeq223 and  WGCNA24 software 
packages, and the classification models using the  caret25 and  glmnet26 packages.

Datasets. The version of the SFARI Gene dataset used corresponds to Q1 2020. It contains 1114 genes, of 
which 202 genes have a score of 1, 239 a score of 2 and 586 a score of 3. The 87 genes that were not assigned a 
score were not included in the analysis (Supplementary Information).

For the transcriptomic data, three RNA-seq datasets were studied, all consisting of human post-mortem brain 
tissue samples belonging to ASD individuals as well as a non-psychiatric control group. The main dataset was 
obtained from the GitHub repository  from27. It contains 88 samples; 53 belonging to 24 ASD individuals and 
35–17 controls, corresponding to the frontal, temporal, parietal and occipital cortical regions. After preproc-
essing, the final dataset contains 16132 genes and 80 samples. The first supporting dataset corresponds  to28. It 
contains 104 samples; 47 belonging to 32 ASD individuals and 57–40 controls, extracted from the frontal and 
occipital lobes. The final version of this dataset contains 13,162 genes and 89 samples. And the second support-
ing dataset was obtained  from29, the expression matrix was downloaded  from30 and the metadata information 
from NCBI’s Gene Expression  Omnibus31 with Series accession number GSE102741. It contains 52 samples, all 
corresponding to the dorsolateral prefrontal cortex; 13 of these belong to ASD individuals and 39 to controls. 
The final version of this dataset contains 15,392 genes and 49 samples.

Post-mortem samples may suffer from RNA degradation resulting from technical differences in sample 
collection and processing and as the length of time between death and sampling increases. These effects can be 
extremely heterogeneous and affect read quality and coverage. We used post mortem interval (2–43 h) and RNA 
integrity number (2.6–7.9) data to assess any impact on gene expression but observed no significant effects for 
the samples used in this study.

To broadly define genes that had neuronal functions we annotated genes as “Neuronal” using Gene Ontology 
 annotations32,33 if their term name or description contained the substring “neuro”. All comparisons performed 
between SFARI genes and the rest of the genes within the gene expression data are performed separately, allow-
ing us to compare SFARI genes to non-SFARI neuronal genes as well as to non-SFARI non-neuronal genes as 
required.

“Krishnan-scores” were obtained from genome-wide autism-gene predictions available from http:// asd. princ 
eton. edu as part of the supplementary material  from34. “TADA-scores” were extracted from Table S3  in35, and 
“DisGeNET-scores” were retrieved using the disgenet2r R  package36.

Data preprocessing. Meta-data for genes were retrieved from  NCBI37 using the bioMart  package38. Dur-
ing filtering we retained known protein coding genes. Of these, genes with a high percentage of zeroes across all 
samples were removed. The threshold for this was determined as the minimum percentage of zeroes where the 
strongest heteroscedasticity patterns in the normalised dataset disappears, which was 75% for our main data-
set. We next removed outlier samples by calculating the pairwise correlation between expression profiles, then 
aggregating these for each sample and calculating their distance to the rest of the samples as a group. Outlier 
samples were identified if this distance was larger than two standard deviations away from the mean.

For Differential Expression Analysis (DEA), first, the SVA  package39 was used to calculate the surrogate vari-
ables associated with unknown sources of batch effects in the data, and then, the DESeq2 package was used to 
perform DEA, using Diagnosis as target and including the batch-related features as well as the surrogate variables 
obtained from SVA into the formula. The null hypothesis used for the analysis was a log fold-change threshold 
of 0. After this, the data was normalised using the vst function from the DESeq2 package. Finally, batch effects 
were corrected for using a linear transformation to remove the effects captured by the surrogate variables from 
the SVA and ComBat functions removing the batch effects captured by the original features of the samples.

After preprocessing, the main feature that characterises our samples is their diagnosis status. This achieves 
perfect separation of the samples using only the first principal component (Fig. 11).

http://asd.princeton.edu
http://asd.princeton.edu


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10158  | https://doi.org/10.1038/s41598-022-14077-1

www.nature.com/scientificreports/

WGCNA and enrichment analysis. The coexpression patterns of the genes were modelled using a net-
work, which was built using the Weighted Gene Correlation Network Analysis (WGCNA) package: the expres-
sion matrix was transformed using the biweight midcorrelation metric, with the signed hybrid and pickSoft-
Threshold functions to obtain a scale-free topology, and subtracting the resulting topological overlap matrix 
from 1.0 to obtain the dissimilarity matrix. Clusters within this matrix were identified using hierarchical cluster-
ing with the cutreeDynamic algorithm. The strength of the relation between each of these modules and Diagnosis 
status was measured with the correlation of the module’s first principal component (called Eigengene) and the 
Diagnosis feature vector of the samples belonging to that module. Modules with a correlation magnitude higher 
than 0.9 were considered to have a strong correlation with the diagnosis status.

The enrichment in SFARI genes within a module was calculated using the Over Representation Analysis 
(ORA) provided by the clusterProfiler  package40; the modules with a Bonferroni corrected p value lower than 
0.05 were labelled as having a statistically significant enrichment in SFARI genes.

Classification model. The dataset used to train the classification model consists of all the genes that were 
assigned to a module by WGCNA, characterised by a set of descriptive variables and a binary objective variable 
indicating if the gene is included in the SFARI-gene set or not, ignoring the SFARI Scores. The descriptive vari-
ables selected for the model are the correlation of a gene’s expression pattern to diagnosis status (called Gene 
Significance), including both the original correlation and its absolute value; the correlation of a gene’s assigned 
module to diagnosis status (called Module-Trait correlation); and the gene’s correlation to the eigen-gene of 
each of the modules in the network (called Module Membership). The resulting dataset consists of 15,994 obser-
vations, 58 descriptive variables, and one objective variable, which contains 789 positive and 15,211 negative 
values.

The genes are separated into training and testing sets, using 75% of the genes in the training set, where the 
imbalance between labels is corrected using the SMOTE over-sampling  technique41, and reserving the remaining 
25% of the genes for the test set.

Ridge  regression42 was selected as the classification model because of the strong multicollinearity found in 
the descriptive variables in the dataset, using repeated cross validation to estimate the optimal value for the 
regularisation parameter of the model using 10-fold cross validation with 5 repeats. The model is trained 100 
times using different partitions of the training and testing sets and the results from each of the runs are combined 
for the calculation of the final predictions and performance evaluation of the model. The performance metrics 
used are; (1) area under the ROC curve (AUC), which measures the ability of a classifier to distinguish between 
classes by comparing the true positive classification rate and the false positive classification rate at different prob-
ability thresholds. A value of 0.5 indicates that the model cannot distinguish between classes at all and a value 
of 1.0 reflects a perfect separation. (2) Maximum lift point (MLP) which measures the proportion of positive 
observations in the set of observations with the highest assigned probabilities against the proportion of positive 
samples in the entire dataset. A value of 1.0 indicates that the model does not assign the highest probabilities to 
the positive samples any more frequently than to the rest of the samples; increasing values greater than 1.0 reflect 
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Figure 11.  Diagnosis plays an important role in the characterisation of the samples. PCA plot of samples 
characterised by their expression patterns across all genes. This figure was created using the transpose of the 
matrix used for Fig. 1.
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increasing model performance. (3) Balanced Accuracy, is a commonly used substitute for the regular Accuracy 
metric when classes are imbalanced, and is the average of the proportion of correctly classified positive observa-
tions. A value of 0.5 indicates that the model is no better than classifying observations at random and a value of 
1.0 corresponds to a perfect classification.

As a modification to this regression model, the weighting technique proposed  by43 was used to correct the 
bias found related to the mean level of expression of the genes. This technique focuses on the samples that are 
classified as a specific category (in our case as SFARI genes), measures the bias in each of them and, based on 
this, assigns a specific weight to all of the samples for the classifier to incorporate when re-training the model, 
giving larger weights to samples that do not have the bias and smaller weights to samples that reinforce it. This 
process of bias measurement, weight adjustment and re-training of the classification model is repeated iteratively 
until the bias becomes negligible.

For the implementation of this technique, Demographic Parity was used to measure the bias, which considers 
a classifier to be fair when it makes positive predictions in each segment of the population at the same rate as 
in all the population, and since this technique was designed for biases associated to categorical variables (such 
as gender or ethnicity) and our bias is a continuous one, some alterations had to be made to the constraint that 
measures the bias so that it could reflect its magnitude in a continuous instead of a binary way. The constraint 
selected for this was:

where x corresponds to each of the genes that are labelled as SFARI genes by the model in the previous iteration 
and G to all of the genes in the dataset.

Figure 12A shows how the bias correction algorithm removes the bias completely while barely affecting the 
performance of the model, and Fig. 12B shows how the model assigns high weights to samples that contradict 
the bias, such as non-SFARI genes with high levels of expression and SFARI genes with low levels of expression, 
and lower weights to the samples that reinforce it.

The top candidate gene list comprises those genes with the highest probabilities assigned by the final model 
and represent genes that share features in common with existing SFARI-genes. To allow calculation of the stand-
ard deviation of the performance metrics, the whole model, including the repetitions for different training-testing 
partitions, is repeated 100 times using different random seeds.

Data availability
Data are available from the Edinburgh DataShare repository https:// doi. org/ 10. 7488/ ds/ 2980 and the source 
code from GitHub (https:// doi. org/ 10. 5281/ zenodo. 44636 93).
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Figure 12.  The bias correction algorithm removes the bias in the model by adjusting the weights of the 
samples in an optimal way. (A) Balanced accuracy and bias through each of the iterations of the bias correction 
algorithm. (B) Weights assigned to each gene by the final iteration of the bias correction algorithm based on 
their mean expression and label. Caret v6.0-86 https:// cran.r- proje ct. org/ web/ packa ges/ caret/ index. html Glmnet 
v3.0.2 https:// cran.r- proje ct. org/ web/ packa ges/ glmnet/ index. html.
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