
����������
�������

Citation: Kalamvoki, M.; Norris, V. A

Defective Viral Particle Approach to

COVID-19. Cells 2022, 11, 302.

https://doi.org/10.3390/

cells11020302

Academic Editor: Ezequiel Álvarez

Received: 14 September 2021

Accepted: 13 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

A Defective Viral Particle Approach to COVID-19
Maria Kalamvoki 1,* and Vic Norris 2

1 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center,
3901 Rainbow Blvd, Kansas City, KS 66160, USA

2 Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821 Mont Saint Aignan,
France; victor.norris@univ-rouen.fr

* Correspondence: mkalamvoki@kumc.edu

Abstract: The novel coronavirus SARS-CoV-2 has caused a pandemic resulting in millions of deaths
worldwide. While multiple vaccines have been developed, insufficient vaccination combined with
adaptive mutations create uncertainty for the future. Here, we discuss novel strategies to control
COVID-19 relying on Defective Interfering Particles (DIPs) and related particles that arise naturally
during an infection. Our intention is to encourage and to provide the basis for the implementation of
such strategies by multi-disciplinary teams. We therefore provide an overview of SARS-CoV-2 for
a multi-disciplinary readership that is specifically tailored to these strategies, we identify potential
targets based on the current knowledge of the properties and functions of coronaviruses, and we
propose specific strategies to engineer DIPs and other interfering or therapeutic nanoparticles.

Keywords: antivirus; immunity; therapy; coronavirus; defective interfering particle; aptamer;
COVID-19; extracellular vesicle; synthetic defective viral genome

1. Introduction

In a Holliday lecture in 1999, Don Ganem explained that pandemic infection is a
recurrent, not a temporary, phenomenon: “The supervention of the AIDS pandemic put the
lie to all of these optimistic predictions about how infectious disease was conquered and
was no longer a problem. Now we know, of course, that notion was foolish to begin with,
that infectious disease, epidemic infection, is a part of the human condition. I’m going
to show you that it’s really a part of human evolution that we can never get away from
infectious disease as a class. We can triumph over individual infectious diseases, but the
concept that we’re going to be free of infection as a species is a ridiculous one and one that
nobody believes anymore” [1]. The current COVID-19 pandemic is a reminder that the
need to develop new weapons to combat infections is as pressing now as then.

A powerful, anti-viral strategy could exploit the DIPs and related particles that arise
naturally for every family virus. DIPs are particles containing degenerate forms of the virus
genome, which interfere with the replication of the parental virus but are non-replicative
per se. Historically, such particles were considered artefacts of virus propagation in vitro;
however, studies have shown that defective viral genomes are present in patients infected
with viruses such as hepatitis C, influenza A and respiratory syncytia [2–4]. Thus, DIPs are
currently investigated for their potential role in influencing disease outcomes and shaping
virus evolution. A similar form of interference is observed when small viruses such as
satellite viruses and virophages parasitize the larger viruses with which they are associated
thereby decreasing their fitness. Other particles that can be produced during an infection
include the virus-like particles (VLPs). These particles are composed of viral structural
proteins, they morphologically resemble the parental virus but are non-infectious due to
lack of genetic material. Another type is the extracellular vesicle (EV). EVs are released by
all types of cells as they facilitate intercellular communication. During an infection they
communicate virus-specific signals.
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DIPs reduce virulence, induce high levels of interferons, and promote viral persistence
by mechanisms that are not well understood [5]. In the case of RNA viruses, the shorter
genome of the particle may allow it to out-compete the wild-type virus [6]. Alternatively,
specific changes to the particle’s genome confer advantages over the full-length genome
in using a limiting viral or host factor [7]. Also, the particle’s genome may interfere with
the assembly of the wild-type’s genome into virions [8]. Furthermore, the particles may
stimulate the host immune system [9]. Finally, the particles may compete with the wild-type
virus for entry or cause internalization of the virus entry receptor inhibiting virus entry
and spread [5].

Therapeutic interfering particles (TIPs) are a class of DIPs engineered to reduce the
severity of viral diseases [10]. TIPs could be designed to use the same transmission routes
as the wild-type virus thereby limiting viral transmission in populations at risk. Given
that DIPs are diverse, it is unclear which design of TIP would prove most effective. Single-
cell studies have revealed the importance of phenotypic diversity in a large number of
systems. It is likely that this also applies to viral infections; hence, the diverse popula-
tion of DIPs actually benefits both the virus and host. A novel anti-viral strategy might
take this into account by constructing a diverse population of synthetic defective viral
genomes (synDVGs) with prophylactic or therapeutic potential. In addition, the proper-
ties of EVs and VLPs could be harnessed to suppress SARS-CoV-2 infection and mitigate
pathogenesis. These particles could be engineered to trigger antiviral responses, alleviate
inflammation, enable tissue regeneration, or interfere with macromolecular assemblies
during SARS-CoV-2 infection.

Finally, it is likely that the design, construction, implementation and analysis of
strategies based on therapeutic nanoparticles will entail multi-disciplinary collaborations.
In what follows, we therefore provide a non-comprehensive overview of SARS-CoV-2
(Overview Section) that is related to these strategies. We discuss potential targets of
the different types of nanoparticles described above and describe strategies to engineer
nanoparticles with different properties. We collectively term the different types of nanopar-
ticles “therapeutic nanoparticles” because the overarching goals are to suppress infection
and alleviate disease.

2. SARS-CoV-2 DIPs, VLPs and Other Nanoparticles

Defective Viral Genomes (DVGs) can be formed during the replication of a virus when
the polymerase switches between different templates or skips parts of the same template.
Discontinuous transcription of CoV genomes enables recombination in a cell coinfected
with more than one CoV species or variants via strand switching by the viral RdRp [11–17].
Some RNAs produced following such recombination procedures gather characteristics
of DVGs including deletions that range from <1 kb to >20 kb; these DVGs retain intact
5′- and 3′-UTRs, and can be amplified by the CoV replication transcription complex (RTC)
provided in trans by a helper virus. These recombination events have been attributed to
the 3′–5′ exoribonuclease activity of the proofreading nsp14 protein and are responsible for
CoV evolution. Packaging of DVGs into viral particles results in DIP production.

Another particle produced during CoV infections is the VLP. VLPs are self-assembled
nanostructures composed of the structural proteins of a virus that, due to a lack of ge-
netic material, are non-infectious. The data regarding the minimum requirements for the
formation of SARS-CoV-2 VLPs and the ability of the membrane protein (M) alone to
be secreted are controversial. However, co-expression of M with either the nucleocapsid
(N) or the envelope (E) protein appears to be sufficient for VLP formation, while M, N
and E together are required for optimal VLP production [18,19]. VLPs could advance our
understanding of the assembly requirements for SARS-CoV-2, but could also be used for
vaccine or interference strategies [20–25].

Finally, an analysis of plasma-derived nanoparticles from COVID-19 patients demon-
strated that they were enriched in pro-inflammatory cytokines, IFN-γ, peptidases and pro-
teases involved in vascular remodelling, and markers of cardiovascular tissue injury [26].
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These nanoparticles could augment pro-inflammatory responses, endothelial dysfunction
and thrombosis, which have been observed in severe COVID-19 cases.

3. Strategies
3.1. Targeting Macromolecular Assemblies

It has been persuasively argued that many cellular functions are performed by high-
level complexes, modules or “supermolecules” [27,28]. Hence, those assemblies associated
with viral processes can be targeted. The replication of coronaviruses involves the as-
sembly of membrane-bound replicative organelles in which two lipid bilayers are closely
paired [29]. This pairing is induced by the ribonucleoprotein complex proteins, which
have been localized to networks of convoluted membranes and vesicles [30]. Targeting this
network is important because viral polymerases that have a decreased fidelity often have
an increased production of defective viral genomes [31–33]. Markers such as the Green
Fluorescent Protein, chromobodies, or the haemagglutinin tag could be used to localize
DVGs with the ability to encode proteins [34].

Poisoning complexes—and thereby disrupting functions—could be achieved in sev-
eral ways. One way is via the production of novel or truncated peptides. Such production
occurs in deletion DVGs derived from influenza [35]. DVGs constructed with mutations in
the conserved regions, by which the influenza A polymerase subunits interact, inhibited
polymerization and reduced virulence [36]. The multimerization of the polymerase is
essential in the production of DVGs during influenza virus infection [32]. Such multimers
might be perturbed either by altering the stoichiometry of coronavirus proteins or by gen-
erating incomplete RNAs or incomplete proteins that interfere with associations between
macromolecules. For example, in the case of stoichiometry, this depends in part on post-
translational regulation such as the phosphorylation of the serine and arginine residues
in the SR-region of the SARS-CoV-2 N protein; a synDVG could therefore be created with
this region deleted. In the case of incomplete proteins, deletion of the C-terminus of the N
protein might disrupt the oligomerization of both the mutant and the wild-type protein.
Sequestration of key constituents could be achieved by constructing synDVGs containing
multiple copies of regulatory sequences, as illustrated by the sequestration of components
of the Tat-based transcriptional activation system of HIV-1, where a vector was used that
contained multiple copies of the sequences to which Tat binds [37]. Given the potential
value of a recombinant protein, it may be worth considering the construction of a TIP to
encode fusion of the ACE2 fragment to the M-protein to perturb SARS-CoV-2 assembly.

3.2. Targeting RNA

The transcription-regulating sequences (TRSs) at the 3′ end of the leader sequence
(TRS-L) that precedes each viral gene (TRS-B) contains a conserved core sequence (CS) of
6–7 nucleotides along with variable 5′ and 3′ flanking sequences; as the conserved core
sequence is identical for the genome leader (CS-L) and all mRNA coding sequences (CS-B),
the CS-L may form a base-pair with the nascent negative strand complementary to each
CS-B during the template-switching, which is central to transcription and replication [38].
The TRSs are therefore good candidates for targeting both viral transcription and replication.

3.3. Deletions

synDVGs constitute a powerful approach to viral therapy. Those that have deletions of
part of the wt-genome could outcompete the wt-virus for the proteins and lipids essential
to infectivity, which means wild-type virus release would be lower. Also, the synDVG
could be released and transmitted to other cells where it could again hinder the replication
of the wild-type virus. The factors to consider when designing synDVGs include the
complex relationship between the length of the DVG, the degree of interference with the
wild-type virus and the number of effective DVGs released. The minimum for a deletion
DVG would be to have the 5′-UTR and 3′-UTR and the secondary structures they adopt
to allow replication by the RdRp. Depending on whether the objective is to maximize
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production of DVGs or maximize interference, there is likely to be more than one optimum
size. For example, the tight regulation of the quantity of each sub-genomic mRNA, which is
believed to be important for the correct stoichiometry of the proteins of the wild-type virus,
could be perturbed by a synDVG with partial deletions so that it encodes some proteins
but not others.

The nature of the deletions in naturally occurring DIPs is useful in the design of
synDVGs. An analysis of DVGs isolated from a respiratory syncytial virus indicated that
the generation of copy-back mutations was not completely random but resulted from
specific sequences encoded in the viral genome [39]. The analysis of the 5′ and 3′ regions
flanking deletion sites during influenza infection was also consistent with conservation of
specific sequences and structures [3,40].

A synthetic defective interfering SARS-CoV-2 was developed using the 5′ UTR and the
adjacent 5′ part of nsp1 in ORF1a, the nsp15 that includes the putative packaging signal and
the sequence spanning the 3′ part of the N sequence, ORF10 and the 3′-UTR. The rationale
of this design is that a long ORF enables defective interfering genomes in some CoVs to
replicate more efficiently and, since multiple transcriptional regulatory sequences (TRS)
reduce replication efficiency, the 3′ portion was chosen to start within the N sequence to
exclude its TRS. This synthetic defective genome was found to replicate three times faster
than SARS-CoV-2 thereby reducing the viral load. Moreover, it transmitted as efficiently
as the full-length genome, confirming the putative packaging signal of SARS-CoV-2 [41].
Based on this principle, two TIPs were developed recently that could inhibit SARS-CoV-2 in
primary human lung organoids and in the Syrian Golden Hamster model of SARS-CoV-2
following intranasal delivery. These TIPs also reduced pro-inflammatory cytokines, and
prevented pulmonary edema. The mechanism of SARS-CoV-2 inhibition by these TIPs was
proposed to be due to competition for viral trans elements and no stimulation of innate
immunity was recorded [42].

The use of a cocktail of different synDVGs directed against one or different targets
may be more effective than a single synDVG. This is not only because synDVGs may act
synergistically but also because the probability of the virus escaping inhibition by mutating
is reduced. These “cocktail” synDVGs would be constructed so that they could neither
complement one another nor recombine to generate the wild-type virus. In the case of HIV,
antiviral genes were constructed that contained Tat- and Rev-binding decoys that acted
synergistically [43], while a therapeutic vaccine, DermaVir, has been designed to boost T
cell responses specific to 15 HIV antigens expressed from a single plasmid DNA [44,45].

Cocktails of synDVGs could have another advantage. There is no reason to suppose
that viruses might cause only one pandemic at a time. We should therefore anticipate that
two or more different viruses will eventually cause concurrent pandemics. Such a scenario
could be dealt with by using a cocktail containing synDVGs to several different viruses.
The success of such treatment would not depend on prior knowledge of the virus infecting
or risking infecting a particular individual.

3.4. Immune Stimulation by TIPs

In designing an anti-viral therapy, one approach would be to construct a synDVG
based on SARS-CoV-2 containing sequences resembling the copy-back sequences that stim-
ulate the immune system. Alternatively, heterologous copy-back DVGs able to stimulate
innate anti-viral immune responses strongly could be used. In the case of the Sendai
virus (SeV), DVGs with copy-back genomes appear to be better at stimulating the immune
system than those with a deleted genome [46]; although this was attributed to their long
stretches of dsRNA, it has been argued that other characteristics of copy-back DVGs are also
important contributors to the induction of anti-viral responses as shown by the induction of
type 1 IFNs by the 44 nucleotide (nt)-long stem-loop motif in the copy-back genome of the
DVG-546 Sendai virus [47]. SeV-based, copy-back DVGs increase the antigen presentation
capacity of mouse and human dendritic cells, which increases the activation of T cells
whilst, in the case of influenza A and respiratory syncytial virus, experimental vaccines
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with an adjuvant containing SeV-based, DVGs delivered subcutaneously, intramuscularly
or intranasally have an increased level of antibodies and anti-viral protection [5,48–50].

A general purpose DVG might be developed based on the DIP 244 which was derived nat-
urally from genome segment 1 of influenza A; this not only inhibits influenza viruses via RNA
interference but also has a broad-spectrum activity against all other interferon-sensitive respi-
ratory viruses via stimulation of type I interferon and pro-inflammatory cytokines [9,51–53].
It should be noted that SARS-CoV-2 is particularly sensitive to recombinant human IFN-α and
IFN-β, which reduce viral titers [54]. Indeed, co-infections with IAV DIPs and SARS-CoV-2
led to abrogation of SARS-CoV-2 replication in a JAK/STAT-dependent mechanism [55]. Sim-
ilarly, EVs from HSV-1 were found to restrict the respiratory syncytia virus (RSV). Thus,
defective virus particles or other nanoparticles released from virus-infected cells could restrict
heterologous viruses most likely through innate immunity activation [56].

3.5. Anti-Sense Oligonucleotides, Aptamers, Ribozymes, and Antibodies

Anti-sense RNA, RNA aptamers and ribozymes could all be incorporated into a TIP
as could the RNA coding for the epitope-binding part of an antibody.

3.5.1. Anti-Sense Oligonucleotides

The anti-sense oligonucleotides (ASOs) strategy involves the use of nucleic acid strands
of approximately 20 nt that can specifically hybridize to the complementary sequence of the
target RNA [57,58]. The fate of the ASO:RNA hybrid varies depending on the ASO design
strategy and either it could lead to cleavage of the mRNA, alter splicing, or it could form a
steric blockade resulting in disruption of translation. Morpholino-type ASOs targeting the
TRS in the 5′-UTR of the SARS-CoV block virus replication [59]. ASOs targeting conserved
regions of the CoV genome such as the RdRp or the N sequence can be used to bypass
issues of increased mutagenesis. An ASO-based strategy could be used to improve the
effectiveness of treatments based on nucleoside analogues by splicing out ExoN [60].

Delivery of ASOs has been achieved using cationic polymers or by modifying them
with lipids so they assemble in nanomicelles [61–63]. Phages are ideal vehicles for trans-
ferring nucleic acids, because they have the advantages of simple production, purification
and a large capacity for containing genetic material. VLPs from bacteriophage Qβ have
been used to encapsidate target RNAs to detect viral infections, including foot-and-mouth
disease virus (FMDV) or Ebola virus. Asuragen and SeraCare have announced develop-
ments of SARS-CoV-2 positive controls for diagnostics, in which a SARS-CoV-2 detection
module for RT-PCR was encapsidated into VLPs from the bacteriophage Qβ and the
CCMV virus [64]. RNA nanoparticles of the bacteriophage ϕ29 have been used to deliver
therapeutic oligonucleotides [65].

DNA rich in non-methylated CpG motifs are immunostimulatory and can be used
as vaccine adjuvants or to stimulate protective immunity against pathogens. To enhance
their stability and reduce serious side effects, a packaging and delivery strategy using VLPs
has been proposed. These oligonucleotides induce protective cytotoxic T cell responses
in the absence of systemic side-effects; hence, VLPs mounting protective immunity could
accelerate SARS-CoV-2 clearance [66].

An alternative is to take a gene therapy approach, in which RNA oligos are encoded
in a viral vector such as adeno-associated virus (AAV). Thus, short, hairpin RNAs can
be fused to small PolIII promoters such as tRNA genes. The PolIII transcripts would be
exported to the cytoplasm where the shRNAs would function in the RNAi pathway to
knock down expression of various RNAs.

3.5.2. Aptamers

Nucleic acid aptamers are artificial, single-stranded or double-stranded DNA or RNA
that can bind to their targets [67–69]. Because of their binding specificity, aptamers are
often compared to antibodies [70,71]. Those that bind to viral proteins can have diagnostic
and therapeutic potential. For example, aptamers binding to haemagglutinin have been
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used to detect different influenza strains [72]. Single-stranded DNA aptamers that bind to
the ZIKA NS1 protein have diagnostic potential [73]. DNA aptamers against the dengue
virus envelope protein can neutralize infection by all four serotypes of the virus [74]. RNA
and DNA aptamers that disrupt the interaction of HSV-1 glycoprotein D with the virus
entry receptor interfere with virus entry into the cells [75,76]. RNA aptamers were also
described against the HIV-1 Gag protein that perturbed the Gag-genomic RNA interaction
leading to the inhibition of HIV-1 genomic RNA levels [77]. Aptamers can also be used to
suppress the activity of viral enzymes or host targets that contribute to pathogenesis [78,79].
Two RNA aptamers specific to the polymerase of HCV inhibited the initiation and the
elongation of viral RNA synthesis by competing for the binding sites of the polymerase
with viral RNA template [80].

RNA aptamers of approximately 40 nt were described for the SARS-CoV NTPase/helicase.
The aptamers could inhibit the dsDNA unwinding activity of the helicase but not the
ATPase [78]. A ssDNA aptamer that binds the N protein of SARS-CoV was proposed for
diagnostic purposes [81]. This aptamer can also bind the N protein of SARS-CoV-2 [82].
Considering that the N protein is critical for nucleocapsid assembly, to antagonize host
antiviral responses and the RNAi machinery, the aptamer targeting N protein could be
repurposed to interfere with N functions [83,84]. Indeed, the C-terminus of the N protein
contains a highly positively charged region possessing a strong affinity for ssDNA, ssRNA
and dsDNA that can be easily targeted by aptamers. Also, an aptamer that binds nucleolin
was found to inhibit SARS-CoV-2 replication [85]. Nucleolin is hijacked by the virus for its
replication and the aptamer inhibits this process. Aptamers that bind the S protein have
been designed mostly for diagnosis [86,87]. Aptamers that bind to the receptor-binding
domain of S that could potentially inhibit virus entry were recently reported [88]. Aptamers
that target the different methyltransferases of the virus, endonucleases and proteases are
predicted to be effective.

Aptamers can be linked to therapeutic oligonucleotides such as siRNAs, miRNAs,
and gRNAs forming chimeras that improve the properties of the therapeutic oligonu-
cleotides [89]. RNA aptamer siRNA chimeric molecules could be designed to target the
RNA genome/transcript of SARS-CoV-2.

3.5.3. Ribozymes and Antibodies

In the case of HIV, inactivation was achieved via anti-sense sequences against rev
to prevent replication [90]: the Gag component of the capsid was fused to a calcium-
sensitive nuclease to inactivate viral nucleic acids [91,92] and the 5′ leader was cleaved
by a ribozyme [93]. These related technologies and DVGs based on SARS-CoV-2 could be
used to target one or more of the RNA targets discussed above [94–97]. For example, the
CRISPR/Cas13 RNA knockdown system delivered by the adeno-associated virus was used
to cleave the SARS-CoV-2 RNA genome using guide RNAs to target the sequences encoding
ORFab and the S-protein [98]. A single-domain camelid antibody against the S-protein can
neutralize the SARS-CoV-2 pseudovirus [99]; such nanobodies could be encoded by a TIP.

3.6. EVs

EVs facilitate cell-to-cell communication and are produced by all types of cells. Recent
studies demonstrated that COVID-19 patients had increased circulating platelet-derived
EVs [100]. These EVs could transport platelet-derived cytokines and other proinflammatory
molecules, including damage-associated molecular patterns [101]. The contribution of these
EVs to COVID-19-associated coagulopathy and lung injury remains undetermined [102].

While EVs produced during an infection can exacerbate pathogenesis, those produced
by uninfected cells could be modified and used for therapeutic purposes (Figure 1). EVs can
be engineered to serve as carriers of nucleic acid sequences, including siRNAs, aptamers,
genomes of TIPs, or other inhibitory molecules including proteins and small molecule
inhibitors [103,104]. EVs would be more attractive if they could be directed to the desired
targets. EVs produced by a particular type of cell, such as an immune cell, could target
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the proteins on the surface of diseased cells or an inflammatory immune cells [105]. Other
strategies to redirect EVs include the expression of antibodies on the surface of EVs that
target surface molecules in recipient cells or the expression of ligands to specific receptors.

Cells 2022, 11, x FOR PEER REVIEW  7  of  22 
 

 

3.6. EVs 

EVs facilitate cell‐to‐cell communication and are produced by all types of cells. Re‐

cent studies demonstrated that COVID‐19 patients had increased circulating platelet‐de‐

rived EVs [100]. These EVs could transport platelet‐derived cytokines and other proin‐

flammatory molecules, including damage‐associated molecular patterns [101]. The con‐

tribution of these EVs to COVID‐19‐associated coagulopathy and lung injury remains un‐

determined [102]. 

While EVs produced during  an  infection  can  exacerbate pathogenesis,  those pro‐

duced by uninfected cells could be modified and used for therapeutic purposes (Figure 

1). EVs can be engineered to serve as carriers of nucleic acid sequences, including siRNAs, 

aptamers, genomes of TIPs, or other  inhibitory molecules  including proteins and small 

molecule inhibitors [103,104]. EVs would be more attractive if they could be directed to 

the desired targets. EVs produced by a particular type of cell, such as an  immune cell, 

could target the proteins on the surface of diseased cells or an inflammatory immune cells 

[105]. Other strategies to redirect EVs include the expression of antibodies on the surface 

of EVs that target surface molecules in recipient cells or the expression of ligands to spe‐

cific receptors. 

 

Figure 1. Harnessing EV properties to combat SARS‐CoV‐2 infection or treat COVID‐19. (A) EVs 

can be used to deliver nucleic acid sequences that either modulate the expression of specific targets, 

express genes of interests, or encode for viral products. (B) EVs can be used to deliver compounds 

of interest. (C) EVs derived from a specific cell type or tissue could be used to mitigate disease and 

trigger tissue regeneration. (D) EVs carrying the spike protein can be used to antagonize viral entry 

into a host cell. (E) EVs carrying the virus entry receptor ACE2 could serve as decoys for the virus. 

(F) EVs carrying viral antigens could be used for vaccine development. The image was generated 

with BioRender.com. 

In the case of SARS‐CoV‐2, vesicles could be designed to carry the S protein to antag‐

onize virus entry  [106]. Alternatively, EVs released during SARS‐CoV‐2  infection were 

found to carry ACE2; such EVs could be used to treat infections by coronaviruses that rely 

on ACE2 binding  to enter host cells  [107].  In addition, mesenchymal/stromal stem cell 

(MSC)‐derived EVs have been  shown  to naturally  target  injured  tissue and ameliorate 

acute organ injury [108]. These MSC EVs have been suggested for promoting recovery in 

patients with ARDS [109]. Thus, MSC EVs that carry ACE2 receptors could have a decoy 

function for SARS‐CoV‐2, while mitigating ARDS [110]. Currently, there are four clinical 

Figure 1. Harnessing EV properties to combat SARS-CoV-2 infection or treat COVID-19. (A) EVs
can be used to deliver nucleic acid sequences that either modulate the expression of specific targets,
express genes of interests, or encode for viral products. (B) EVs can be used to deliver compounds
of interest. (C) EVs derived from a specific cell type or tissue could be used to mitigate disease and
trigger tissue regeneration. (D) EVs carrying the spike protein can be used to antagonize viral entry
into a host cell. (E) EVs carrying the virus entry receptor ACE2 could serve as decoys for the virus.
(F) EVs carrying viral antigens could be used for vaccine development. The image was generated
with BioRender.com (accessed on 13 September 2021).

In the case of SARS-CoV-2, vesicles could be designed to carry the S protein to an-
tagonize virus entry [106]. Alternatively, EVs released during SARS-CoV-2 infection were
found to carry ACE2; such EVs could be used to treat infections by coronaviruses that rely
on ACE2 binding to enter host cells [107]. In addition, mesenchymal/stromal stem cell
(MSC)-derived EVs have been shown to naturally target injured tissue and ameliorate acute
organ injury [108]. These MSC EVs have been suggested for promoting recovery in patients
with ARDS [109]. Thus, MSC EVs that carry ACE2 receptors could have a decoy function for
SARS-CoV-2, while mitigating ARDS [110]. Currently, there are four clinical trials exploring
the use of MSCEVs [111]. One trial aims to determine the therapeutic potential of aerosol
inhalation of adipose-tissue derived MSC EVs in patients with severe COVID-19. The safety
profile of this treatment is assessed in a different trial. An additional trial aims to determine
whether MSC EVs can suppress immune system over-response to the virus, and whether
they can trigger regenerative processes. In other trials, bone marrow-derived MSC EVs are
being tested in COVID-19 patients with moderate-to-severe ARDS [111].

Finally, viral antigens on EVs could also be used for vaccine development or to
serve as adjuvants. Depending on the status and the type of cell from which they origi-
nated, EVs may facilitate the initiation, expansion, maintenance, or silencing of adaptive
immune responses [112].

3.7. Mimics

One possibility would be to produce the ACE2 receptor fragment, to which SARS-CoV-2
binds, on the surface of a bacteriophage or a bacterium to act as a competitor; these phages
or bacteria might then be used to impregnate masks and coat other surfaces, including skin
and mucosal membranes, or even be used as inhalants. There is a novel technique that

BioRender.com
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could be used to produce peptides that would bind proteins on the surface of the virus
and, indeed, that would bind the other viral proteins (and that could then be encoded by a
synDVG). This technique is the Mimic Chain Reaction [113] which, in a sense, is the peptide
equivalent of the PCR technique. The Mimic Chain Reaction is based on the auto-induction
or quorum-sensing systems of bacteria and allows both the selection of peptides that bind
to a target and peptides that mimic the epitopes of the target.

4. Problems
4.1. Constructing Large synDVGs

Synthesizing long sequences of nucleic acids has long been considered difficult. Error
rates during DNA synthesis are typically 0.5% per nucleotide and particular difficulties
arise when the sequence requires multiple, consecutive, repetitions of the same nucleotide
or a stretch rich in C and G.

Now, however, it is relatively straightforward to synthesize sequences of 30 kb.
The phosphoramidite-based technology employed by Twist Bioscience (San Francisco,
CA, USA) allows the simultaneous synthesis of up to 10,000 different DNA fragments
each 200 nucleotides long, which can then be joined. Agilent’s machines are capable of
synthesizing 244,000 DNA fragments simultaneously and those of Thermo Fisher, 35,000.
Several companies (Nuclera Nucleics, Ansa Biotech, Spindle Biotech, Molecular Assemblies,
Merck, and DNA Script) are developing a technology based on Terminal Deoxynucleotidyl
Transferase. Helixworks is now believed capable of synthesizing DNA sequences longer
than 2000 nucleotides in one go. Catalog’s machine recently converted 16 gigabytes of the
English text version of Wikipedia into DNA in about 12 h. Hence it should be possible
to make the DNA sequences of many synDVGs end to end in a day. Of course, a DNA
sequence corresponding to the synDVG genome still needs to be transcribed into RNA and
contain all the required sequences for assembly into the virion itself.

4.2. Obtaining DIPs That Attenuate Rather Than Exacerbate Disease Progress

Despite the fact that many studies are focusing on the therapeutic potential of DIPs,
examples demonstrating that DIPs can exacerbate symptoms have been reported. It was
shown that the proportion of defective hepatitis B virus genomes was higher in patients
with severe liver disease compared to those with milder disease. Perhaps the outcome of
an infection in the presence of DIPs depends on a balance between the immunostimulatory
potential of the DIPs versus the host response. Some DIPs may shift this balance by
activating strong immune responses that could trigger a cytokine storm and augment
disease progression.

Another mechanism for disease exacerbation occurs when DIPs interfere with vaccines.
DIPs and wild type virions have a high antigenic similarity, so DIPs compete with the
virus to bind host-produced antibodies that would otherwise bind and neutralize the
virus. The mechanisms implicated in disease severity by DIPs are multiple and remain
poorly understood.

4.3. Avoiding Loss of EV Activity and Other Complications

The different EV purification methods and selected cargo packaging could result in
the loss of EV activity [104]. EVs produced by infected cells could be a double-edged
sword as interwoven relationships exist between the biogenesis of EVs and virion envel-
opment. Also, viruses often hijack or divert EV biogenesis pathways to communicate
virus-specific signals to surrounding cells. Furthermore, EV population dynamics could
shift an infection outcome, as the milieu of the infection is enriched in an EV population
with proviral and antiviral roles in different ratios [56,114,115]. Another challenge is that
during an infection, virus-like particles (VLPs) can be formed. In the case of infection
by coronaviruses, these VLPs are composed of the virus’s structural proteins M, S, E, N
but they lack the viral genome. Different types of VLPs lacking one, two, or three struc-
tural proteins have been reported. The potential role of these VLPs on virus infection and
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virus-mediated pathogenesis currently remains unknown. A final complication is that EVs
carrying viral components may exacerbate pathogenesis. This is the case for EVs released
from EBV-infected cells that carry the viral oncoprotein LMP-1, which contributes to EBV-
associated malignancies [116]. Similarly, EVs released from Karposi’s sarcoma-associated
herpesvirus (KSHV)-infected cells can cause cell proliferation, migration and transcriptome
reprogramming of EV-recipient cells [117]. Despite the complications, EVs are evolving as
a powerful tool.

4.4. Avoiding Loss of Aptamers

Major problems can arise when using aptamers. The first is rapid degradation, partic-
ularly of RNA aptamers. Nuclease-resistant aptamers can be developed by incorporating
modified nucleotides and by developing “mirror aptamers” [118]; second is the rapid
removal of the aptamer from the bloodstream by renal filtration. A solution to this problem
is based on conjugating aptamers to polyethylene glycol (PEG); third is cross-reactivity
of aptamers with molecules of similar structure. To avoid this, a negative selection step
with structurally similar molecules can be performed; fourth is the delivery of aptamers to
intracellular target molecules because most aptamers are selected for molecules on the cell
surface or in the bloodstream. Delivery of aptamers to intracellular targets can be achieved
using viral vectors or through receptor-mediated endocytosis. Strategies to overcome
issues related to the duration and regulation of aptamer activity and automation in their
production keep evolving.

5. Discussion

Herein we propose to harness properties of different types of nanoparticles that
are naturally produced by SARS-CoV-2-infected and uninfected cells for SARS-CoV-2
inhibition and COVID-19 treatment. We collectively term these nanoparticles “therapeutic
nanoparticles”. One approach relies on the use of DIPs and TIPs that compete with the
wild-type virus for entry, replication, assembly, and egress. The same type of particles could
be used to enhance antiviral responses for viral clearance. An alternative approach involves
the use of engineered EVs that can carry the genome of TIPs, small interfering RNAs, viral
entry receptor(s), viral antigens, immunostimulatory molecules and anti-inflammatory
factors. VLPs offer another approach that could be used to antagonize viral entry into the
cells or stimulate immune responses.

The proposed approach underlying the development of therapeutic nanoparticles is
based on population dynamics. This is because we first consider the problem as arising
from the complex web or ecology of interactions among multiple players (e.g., various
types of host cells, the heterogeneous population of viruses and naturally occurring DVGs),
and second we advocate acting on this ecology by constructing a variety of therapeutic
nanoparticles to target these players and their interactions in different ways. The design of
therapeutic nanoparticles and synDVGs would benefit from a better understanding of the
complex interplay between the host immune system and the heterogeneous population of
viruses and DIPs. Indeed, it may turn out that DIPs are emerging naturally in the present
pandemic and are responsible for attenuating symptoms in some individuals [119].

In the “population dynamics” approach to therapeutic nanoparticles and synDVGs, it
is worth noting that the presence of DIPs in vaccines appears to increase both the efficiency
of the vaccine and its safety [5]. It might therefore be expected that using a cocktail of
nanoparticles and synDVGs in the presence or absence of a wild-type virus could both
reduce its replication and spread and provide many epitopes for the immune system.

Finally, improving techniques, in the case of aptamers or nanobodies, or emerging
techniques, in the case of the Mimic Chain Reaction [113], could be used to generate the
sequences needed for synDVGs to inhibit a variety of viral targets.
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6. SARS-CoV-2 Overview: Viral and Host Targets
6.1. Spike (S) and Viral Entry into the Host Cell

SARS-CoV-2 entry into the cells is a profound target as it involves macromolecular assem-
blies that include virus entry machinery and host receptor complexes, enzymatic processes
that alter the conformation of the virus entry machinery from a pro-fusogenic to a post-
fusogenic state, and other biochemical processes that lead to the fusion of the viral membrane
with the cellular [120–122]. The spike (S) viral glycoprotein mediates entry to the cells. It is
produced as a precursor that trimerizes and is cleaved by furin-like proteases into the receptor-
binding fragment (S1) and the fusion fragment (S2). S1 binds to the viral entry receptor. A
second cleavage occurs in the S2 by the transmembrane serine protease 2 (TMPRSS2), or by
the endosomal cathepsins B and L that causes dissociation of the receptor-binding fragment
and the irreversible refolding of the fusion fragment into a stable post-fusion conformation.
The post-fusion conformation of the cleaved fragment (S2′) is a trimeric hairpin structure,
containing the heptad repeat 1 (HR1) and heptad repeat 2 (HR2) regions, which form a
six-helical bundle (Figure 2) [120–122]. The HR region is a potential antiviral target as it is
conserved among HCoVs and is essential for fusion events. A synthetic lipopeptide that binds
to the HR1 region appears to inhibit infection by different CoVs [123]. Generally, peptides
derived from the HR2 region of class I viral fusion proteins of enveloped viruses appear to
bind competitively to viral HR1 and inhibit infection [124].
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genome is occupied by two large overlapping open reading frames (ORF1a and ORF1b) that are
translated into polyproteins and that are processed to generate 16 non-structural proteins (nsp1
to nsp16). The rest of the genome includes ORFs for the structural proteins and several accessory
proteins. The 5′-UTR is 265 nucleotides long, while the 3′-UTR is 358 nucleotides. The major
distinction between other coronaviruses related to SARS-CoV and SARS-CoV-2 is in orf3b, Spike and
orf8 but especially in the highly variable Spike S1 and orf8, which are recombination hot spots.

6.2. Nucleocapsid (N)

The N protein plays a central role in transcription, replication and encapsidation
of the viral RNA [125]. It consists of three highly conserved domains: the N-terminal
domain (NTD) which associates with the viral genome; the C-terminal domain (CTD)
involved in RNA binding and protein oligomerization; an intrinsically disordered central
serine/arginine (SR)-rich linker that is heavily phosphorylated [30,126]. The N protein
forms dimers that are arranged into octamers via the CTD and can further assemble
into larger intertwined filaments. The ribonucleoprotein complexes are incorporated into
the forming viral particles via interactions with the M protein [127]. The N protein is
also involved in interferon inhibition, actin reorganization, cell cycle progression and
apoptosis [83]. Thus, potential targets of the N protein include the NTD to inhibit RNA-
binding [128], the self-binding domain of N to inhibit oligomerization, the kinase and the
SR-rich region to inhibit synthesis of the full-length genome, and the binding site on the N
for the M protein to inhibit virion assembly.

6.3. Envelope (E)

E is an integral membrane protein present at a low amount in the virion that is impor-
tant for particle assembly; this role is attributed to its induction of membrane curvature
and its interaction with the M protein [129,130]. Indeed, the E protein and the M protein
together are sufficient for production of VLPs [131,132]. The E protein assembles as a
pentameric viroporin-like protein that functions as an ion channel [133]. It also contains a
PDZ-binding motif (PBM) allowing it to bind cellular proteins [134]. Disruption of the ho-
motypic interactions that lead to channel formation, the interactions through the PBM motif,
and the binding of E to M will inhibit infection. Small molecules interfering with the ion
channel activity will negatively impact infection and perhaps mitigate pathogenesis [135].

6.4. Membrane (M)

M is the most abundant protein in the CoV particle, and it is essential for virion
formation. It is the primary driver of virus budding as it oligomerizes and forms a lattice
structure at the ERGIC membranes. M protein alone, or together with either E or N, appears
to form VLPs [18,19]. During virion formation, the S and E proteins are integrated into the
lattice through lateral interactions with M, whereas the N protein and the RNA interact
with the cytoplasmic domain of M [136]. Thus, antagonizing the interactions between M
and the other virion components will negatively affect SARS-CoV-2 infection.

6.5. RNA-Dependent RNA Polymerase (RdRp) (nsp12) and the Co-Factors nsp7 and nsp8

RdRp is responsible for the replication and transcription of the RNA genome, and
it helps viruses to escape host defences by acquiring mutations. The activity of RdRp is
enhanced by accessory proteins. Nsp7 and nsp8 form the primase complex, which activates
and enhances the primer-dependent activity of RdRp and also increases RdRp template
binding [137]. Nsp14 provides the exoribonuclease activity for proofreading that the RdRp
lacks. In replicating the viral genome, access of RdRp is facilitated by sequences and
structures at the 3′ end of the RNA. Replication of positive-sense genomic RNA requires
RNA elements in both the 5′ and 3′ ends of the viral genome [38]. Thus, potential targets to
suppress SARS-CoV-2 infection include domains involved in the interaction with accessory
proteins, template RNA and rNTP binding sites, and the catalytic active site. TIPs and
other nanoparticles could be used to deliver different types of interfering molecules.
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6.6. Non-Structural Protein 1

SARS-CoV-2 nsp1 acts as a translation inhibitor by binding 40S and 80S ribosomes and
reducing the pool that is available for translation. Under such ribosome-limiting conditions,
mRNAs with a more efficient 5′-UTR gain an advantage [138,139].

The SARS-CoV-1 nsp1 appears to employ an additional mechanism to suppress host
gene expression that involves host mRNA degradation, but this mechanism has not been
confirmed yet for the SARS-CoV-2 nsp1. Among the transcripts found to be destabilized
following SARS-CoV-1 nsp1 expression are those encoding type I interferon components.

Thus, antagonists targeting the Nsp1-40S ribosome interaction are expected to decrease
SARS-CoV-2 replication and render the virus vulnerable to immune clearance [139].

6.7. Non-Structural Protein 9

Nsp9 is essential for SARS-CoV replication. Nsp9 has RNA- and DNA-binding
ability and most likely is a member of the viral replication complex and perhaps reg-
ulates viral RNA replication and transcription. Nsp9 dimerizes via a conserved α-helical
‘GXXXG’ motif. Substitutions within this motif reduce RNA binding and SARS-CoV
replication [140–142]. Thus, the residues involved in RNA binding can be targeted.

6.8. Viroporins

SARS-CoV-2 encodes three viroporins: E (see above), ORF3a and ORF8a.

6.8.1. Open Reading Frame 3a

ORF3a contributes to pathogenesis through increased virulence, infectivity, and virus
release [134]. ORF3a is a transmembrane protein that localizes at the Golgi but can also traf-
fic to the plasma membrane. ORF3a forms an ion channel that is linked to its proapoptotic
activity, NLRP3 inflammasome activation, pro-inflammatory responses and antagonizes
type I IFN responses [143,144]. Dominant negative mutants that sequester host interactors
of ORF3a or that interfere with the channel formation will obstruct ORF3a function.

6.8.2. Open Reading Frame 8

ORF8 is an accessory protein that has less than a 20% sequence similarity with SARS-
CoV ORF8a/b [145]. ORF8 is a highly immunogenic, immunoglobulin-like protein that can
suppress type I interferon responses, inhibit the presentation of viral antigens by MHC-I,
and take part in pulmonary inflammation and fibrogenesis [146]. The crystal structure
of SARS-CoV-2 ORF8 indicates that the protein can form large-scale assemblies, but their
biological significance remains unclear.

6.9. Viral Proteases
6.9.1. Papain-like Protease (PLP2 or nsp3)

Nsp3 has multiple domains. First, the ubiquitin-like domain 1 (Ubl1) binds ssRNA
containing AUA patterns [147], and its deletion abrogates CoV replication. Ubl1 (and Ubl2)
may interact with Ub or ISG15 by mimicking their shape. Ubiquitination and ISGylation
are involved in anti-viral responses and protein degradation and nsp3 through mimicry
could interfere with ubiquitinated or ISGylated host targets, leading to disruption of
host-antiviral signals.

Second, a Glu-rich domain may be involved in metal-ion binding, DNA/RNA mimicry
and protein–protein interactions, Third, an X domain acts as a hydrolase by removing mono-
and poly(ADP-ribose) from modified proteins, also termed “de-MARylation” and “de-
PARylation”, respectively. ADP-ribosylation is involved in various cellular processes,
including innate immunity activation [148]

Fourth, is the ubiquitin-like domain 2 (Ubl2), a second ubiquitin-like subdomain.
Fifth, is the papain-like protease, which is responsible for releasing nsp1, nsp2, and nsp3
from the N-terminal region of polyproteins 1a and 1a/b. It also exhibits de-ubiquitinase
activity [149,150] and cleaves the IRF3 blunting type I interferon responses. Sixth, are the
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transmembrane regions (TM1 and TM2) that along with nsp4 and nsp6 drive the formation
of replication organelles. Nsp3 also serves as a scaffold for the assembly of the membrane-
associated replication/transcription complex (RTC). Thus, nsp3 is an attractive target for
inhibiting SARS-CoV-2 infection since peptides that antagonize the function of individual
domains, small molecule inhibitors or dominant negative forms of the protein-disrupting
macromolecular assemblies could have therapeutic potential [151,152].

6.9.2. Main Protease (Mpro) or 3C-like Protease (3CLpro) or nsp5

Nsp5 is indispensable for viral replication as it mediates processing of viral polypro-
teins in at least 11 conserved cleavage sites, including its own proteolysis. Nsp5 is composed
of three domains: domains I and II resemble the architecture of chymotrypsin and the
substrate binding site is located in the cleft between these two domains; domain III medi-
ates nsp5 dimerization. Nsp5 also cleaves host substrates including mediators of innate
immunity and inflammation. Cleavage of these substrates is speculated to contribute to the
production of IL-6 and inflammatory responses observed during COVID-19. The crystal
structure of nsp5 from different coronaviruses indicates a high degree of conservation of
the substrate-binding site, which makes it an attractive antiviral target [153–155].

6.10. Viral Endonucleases, Helicase and S-Adenosylmethionine (SAM)-Dependent
Methyltransferases (MTases)
6.10.1. Non-Structural Protein 14

Nsp14 carries a 3′–5′ exonuclease (ExoN) and a guanine-N7 methyl transferase
(N7-MTase) [156]. The ExoN activity corrects errors made by the RdRp. ExoN-deficient mu-
tants display a hyper-mutation phenotype with decreased sub-genomic RNA populations
and increased defective viral genomes (DVGs). ExoN is important in viral RNA synthesis
and viral fitness [57,157].

Nsp14 contains a conserved motif (S-adenosyl-L-methionine-binding motif or SAM)
that is important for introducing the 5′-cap of the viral RNA. Mutations within the SAM
motif that abrogate the N7-methyltransferase activity without affecting the ExoN activity
have detrimental effects on the infection as the stability of the viral mRNA decreases [158].
The N7–MTase activity of nsp14 is enhanced following the nsp10 binding.

The ExoN activity has been implicated in viral resistance to the nucleoside analog
remdesivir and Ribavirin [154,159–162]. Impairment of the ExoN activity will result in a
higher mutagenesis rate during virus replication and will render the virus more susceptible
to nucleoside analogs. Also, inhibition of the N7-methyltransferase activity will reduce the
translation efficiency of the viral mRNA.

6.10.2. Non-Structural Protein 16 and nsp10

For SARS-CoV-2 RNA cap formation, the nsp10, nsp13, nsp14 and nsp16 proteins are
involved. Nsp13 is the helicase that unwinds the viral RNA during replication and also
possesses a 5′-RNA triphosphatase activity that cleaves the 5′end of the nascent RNA to
provide a diphosphate. Nsp14 and nsp16 are responsible for cap methylation. Activities
of both MTases is enhanced by nsp10. Nsp10 stabilizes the SAM-binding pocket of nsp16
and extends its substrate RNA binding groove. An nsp10 peptide derived from its region
that binds nsp16 could suppress nsp16 activity and replication of SARS-CoV [163,164].
The 2-O’-MTase activity of nsp16 is indispensable for replication of CoVs and therefore is
considered an attractive target.

2′-O-methylation of RNA cap structures is a mechanism that pathogens have evolved
to circumvent interferon-stimulated genes. Loss-of-function mutations in the catalytic site
of nsp16 resulted in decreased viral replication and increased sensitivity to type I interferons.
Such attenuated mutant viruses have potential as vaccines as they retain immunogenicity
and confer protection in vivo against challenge with pathogenic coronaviruses [165].
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Inhibition of the 2′-O-MTase activity of nsp16 by either preventing binding of its co-factor
nsp10 or by loss-of-function mutations can affect the viral mRNA by depriving it of a cap
structure. These effects will decrease mRNA stability and reduce its translation efficiency.

6.10.3. Non-Structural Protein 13

Nsp13 has a helicase activity that catalyzes the unwinding of double-stranded oligonu-
cleotides using energy from hydrolysis of NTPs. Nsp13 unwinds both RNA and DNA
duplexes in the 5′ to 3′ direction [166]. All natural nucleotides and deoxynucleotides can
be used as substrates by the cognate NTPase activity of the helicase [167,168]. Nsp13 is
essential for the replication of CoVs and its sequence is conserved [169]. The helicase and
ATPase activities of nsp13 increase after binding to the replication-transcription complex
(nsp12, nsp8 and nsp7). Thus, approaches to inhibit nsp13 include inhibition of the ATP-
binding domain, of the NTPase activity, of nucleic acid binding to the helicase domains, of
helicase translocation and also of the interaction between nsp13 and nsp12 [166].

6.10.4. Non-Structural Protein 15

Nsp15 is an endoribonuclease (EndoU) that facilitates the evasion of viral double-
stranded RNA recognition by RNA sensors. EndoU cleaves the 5′-polyU from negative-
sense viral RNA, termed PUN RNA. The protein cleaves dsRNA substrates on the 3′ end of
U in unpaired regions. PUN RNA activates MDA5-dependent interferon responses leading
to a suppression of the infection. The crystal structure of nsp15 demonstrated that it forms
a hexamer. In addition, the endonuclease active site is structurally similar to RNase A,
and small molecule inhibitors of RNase A inhibit nsp15. Mutations in nsp15 affected viral
replication leading to greatly attenuated disease in mice. Thus, expression of dominant
negative mutants with impaired EndoU activity are expected to antagonize the ability of
SARS-CoV-2 to suppress RNA sensors [170–172].

6.11. Viral Replication Organelles
6.11.1. Non-Structural Proteins nsp4 and nsp6

The membrane-spanning proteins nsp3, nsp4 and nsp6 divert production of host
endomembranes into double-membrane vesicles (DMVs), which are the replication or-
ganelles [152,173]. Nsp6 of SARS-CoV and MHV facilitates generation of autophagosomes
from the ER but limits their expansion at the stage of omegasome formation [174,175].
Similar to these coronaviruses, control of autophagy by SARS-CoV-2 nsp6 could turn out to
be a mechanism of the virus to evade adaptive immunity and other host responses [176].

Nsp4 interacts with nsp3 and possibly host proteins to initiate the rearrangement
of ER membranes and induce membrane curvature to form DMVs. This interaction is
essential for viral replication. Thus, disruption of the nsp3/nsp4 interaction and expression
of nsp6 dominant negative mutants that cannot hijack autophagy pathways are expected
to disrupt replication.

6.11.2. Lipid Composition of Viral Replication Organelles

Lipids are fundamental to the life cycle of viruses as they are involved in viral entry into
the cells [177], in the assembly and functioning of the viral replication complex [178,179],
in fuelling viral replication [180], and in determining the distribution of viral proteins [181].
Coronavirus replication entails the formation of double-membrane vesicles and other
membranous structures that provide a scaffold for the viral replication/transcription com-
plexes and that sequester these complexes away from antiviral host factors [182]. An
idea of the lipid requirements of coronaviruses comes from the finding that, in cells in-
fected with the HCoV-229E, levels of lysophosphatidylethanolamine and arachidonic acid
were raised with the linoleic acid-to-arachidonic acid pathway being perturbed [183]. In
addition, the lipid synthesis pathways regulated by the sterol regulatory element bind-
ing protein are required for the palmitoylation of viral proteins and the formation of
double-membrane vesicles [184].
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