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Identification of biomarkers of response to preoperative
talazoparib monotherapy in treatment naïve gBRCA+ breast
cancers
Xuan Liu1,11, Zhongqi Ge2,11, Fei Yang 3, Alejandro Contreras4, Sanghoon Lee5, Jason B. White 6, Yiling Lu7, Marilyne Labrie 8,
Banu K. Arun6, Stacy L. Moulder6, Gordon B. Mills 8, Helen Piwnica-Worms 9, Jennifer K. Litton6 and Jeffrey T. Chang 1,10✉

Germline mutations in BRCA1 or BRCA2 exist in ~2–7% of breast cancer patients, which has led to the approval of PARP inhibitors in
the advanced setting. We have previously reported a phase II neoadjuvant trial of single agent talazoparib for patients with
germline BRCA pathogenic variants with a pathologic complete response (pCR) rate of 53%. As nearly half of the patients treated
did not have pCR, better strategies are needed to overcome treatment resistance. To this end, we conducted multi-omic analysis of
13 treatment naïve breast cancer tumors from patients that went on to receive single-agent neoadjuvant talazoparib. We looked for
biomarkers that were predictive of response (assessed by residual cancer burden) after 6 months of therapy. We found that all
resistant tumors exhibited either the loss of SHLD2, expression of a hypoxia signature, or expression of a stem cell signature. These
results indicate that the deep analysis of pre-treatment tumors can identify biomarkers that are predictive of response to
talazoparib and potentially other PARP inhibitors, and provides a framework that will allow for better selection of patients for
treatment, as well as a roadmap for the development of novel combination therapies to prevent emergence of resistance.
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INTRODUCTION
Pathogenic germline variants in BRCA1 and BRCA2 (gBRCA+)
confer an elevated risk (57% and 49%, respectively) of developing
breast cancer1 and are found across breast cancer subtypes2.
Together, approximately 1.6–7% of all breast cancers have
hereditary aberrations in BRCA3,4, although up to 39% are
predicted to be deficient in the homologous recombination (HR)
DNA damage repair pathway where BRCA are key mediators5.
PolyADP ribose polymerase (PARP) inhibitors (PARPi) were found
to be synthetic lethal in cancers with aberrations in HR mediated
by BRCA6 and multiple PARPi have now been approved for the
treatment of several cancer subtypes, including gBRCA+ breast
cancers7.
In gBRCA+ breast cancers, the randomized OlympiAD8 and

EMBRACA9 trials both demonstrated that single agent PARPi
(olaparib and talazoparib, respectively) increased response rates
and progression-free survival compared to physician’s choice of
chemotherapy, with substantial improvements in quality of life10.
While objective response rates were approximately 60% in both
trials, resistance eventually developed in most patients and
neither trial has shown an improvement in overall survival11,12.
Recently, PARPi have shown promise as single agent therapy in
the neoadjuvant setting achieving a pathologic complete
response (pCR) rate of 53%13, which is similar to that historically
seen with anthracycline/taxane-based chemotherapy. Notably,
nearly half of the gBRCA+ breast cancers treated with

neoadjuvant PARPi did not result in pCR; thus, primary resistance
to PARP inhibition remains a substantial problem.
Several PARPi resistance mechanisms have been identified

in vitro and in various mouse models. Both olaparib14 and
talazoparib15 are substrates of the ABCB1 multidrug efflux
channel16, which functions to decrease intracellular concentra-
tions of the drug. PARPi resistance can also be mediated by
reinstitution of HR through restoration of BRCA function by
reversion17,18 or hypomorphic BRCA mutations19, and promotion
of homologous recombination through inhibition of the shieldin
complex20,21, as well as by stabilization22 or repriming23 of
replication forks. The shieldin complex determines the balance
between low fidelity non-homologous end joining (NHEJ) that can
result in accumulation of further mutations and eventual cell
death and HR that is compromised but not completely abrogated
by BRCA mutations.
Although a range of resistance mechanisms has been demon-

strated in models, only a limited number have been linked to
resistance to PARPi in the clinical setting. Most commonly seen are
secondary BRCA mutations that restore the HR repair compro-
mised by gBRCA mutations. These mutations have been reported
in breast and ovarian cancer tumors24–26, and also in circulating
cell-free DNA in PARPi or platinum resistant prostate27, ovarian28–
31, and breast30 cancers. While reversion of BRCA is the most
frequently documented mechanism, other mutations that could
potentially restore HR have been sporadically reported in clinical
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samples such as RAD51C and RAD51D mutations in ovarian
cancer32, or loss of TP53BP1 and amplification of MRE11A in breast
cancer26. Reversion of PARP trapping may also occur; a PARP1
mutation that can prevent trapping was seen in a resistant ovarian
cancer patient33.
Notably, most clinical mechanisms of disease resistance have

been studied in more heavily pre-treated patients with disease
recurrence or metastasis at the time of PARPi therapy. To identify
biomarkers of response and to elucidate mechanisms underlying
response and resistance for PARPi in treatment naïve gBRCA+
breast cancers, we performed multi-omic (RNA-Seq and whole-
exome sequencing (WES)) analysis on 13 treatment-naïve gBRCA+
tumors from a neoadjuvant clinical trial of the single-agent PARPi
talazoparib13. Response, determined by residual cancer burden
(RCB)34, was assessed after six months of treatment. Our results
identified possible resistance mechanisms and suggest that
biomarkers present in pre-treatment biopsies have the potential
to enrich for disease response to single agent talazoparib therapy.
Our data may also inform targeted therapy strategies for
combination regimens.

RESULTS
Genomic profiling of treatment naïve gBRCA+ tumors from
patients treated with single agent PARPi
As part of an IRB approved protocol, pretreatment core needle
biopsies were collected from 20 treatment-naïve patients with
BRCA-associated breast cancers who consented to receive
neoadjuvant talazoparib monotherapy on clinical trial (Table 1).
We excluded one patient who opted to also receive chemother-
apy prior to surgery and one patient due to poor RNA data quality,
leaving 18 samples in all.

We then profiled the tumors using whole-exome sequencing
(WES) and RNA-sequencing. Copy number analysis with FACETS35

revealed a large variation of tumor cellularity. The copy number
profiles of five of the 18 tumors were not called, indicating little
evidence of copy number changes (Supplementary Fig. S1). An
ABSOLUTE36 analysis substantiated these results, calling four of
these five tumors non-aneuploid. The fifth produced only an
implausible prediction of a tumor with 100% purity and ploidy=
1, with little evidence of copy number change (Supplementary Fig.
S2). Further, these five tumors also had a significantly lower
mutation burden (p= 0.01) and no detectable somatic mutations
in TP53, which is almost universally mutated in gBRCA+ breast
cancers37 (Supplementary Fig. S3). The H&E (hematoxylin and
eosin) stained tissue slides from these five tumors confirmed a
deficiency of cancer cells in two of them (P32, P35). The remaining
three had adequate cancer cell purity (50–70%). The discrepancy
between the histology and genomics may be due to spatial
heterogeneity within the tumor, and we opted to discard these
samples due to uncertainty in the quality of the genomic profiles,
leaving 13 tumors for analysis.
This cohort (n= 13) included 10 patients with deleterious

gBRCA1 mutations and three with deleterious gBRCA2 mutations.
Nine of the 13 (69%) gBRCA mutant tumors were triple negative
breast cancers (TNBC). 67% (2 out of 3) of the gBRCA2 mutant
tumors were ER+, while only 20% (2 out of 10) gBRCA1 were ER+,
a frequency consistent with previous reports38. RCB was assessed
after patients completed six months of neoadjuvant talazoparib,
and we defined response as pCR (38% of tumors) and RCB-I (15%),
and resistance as RCB-II (31%) and RCB-III (15%) (Table 1).
We called single nucleotide mutations from the WES data and

identified 859 non-synonymous somatic mutations with a median
of 2.44 mutations per Mb. TP53 mutations were the most common
mutations identified and were present in 10 out of 13 tumors

Table 1. Description of samples.

Sample Germline ER Status TP53 Response Subtype Mutations Purity Ploidy

P15 BRCA1 TNBC G266E RCB-III IM 0.67 23% 1.5

P16 BRCA1 ER 5% weak, PR− E258G RCB-I 1.17 50% 1.8

P17 BRCA1 TNBC C141Y pCR IM 0.73 48% 1.8

P18 BRCA1 TNBC R175H RCB-III BL2 2.44 48% 3.1

P21 BRCA2 TNBC 17:7,579,310 pCR M 5.22 81% 3.4

P23 BRCA1 TNBC R175H RCB-II BL2 3.71 34% 1.8

P24 BRCA1 TNBC L265P pCR BL1 3.74 50% 3.1

P25 BRCA1 ER+, PR+, HER2− wt RCB-II 2.54 63% 2.0

P26 BRCA1 TNBC Y220C pCR MSL 4.11 43% 1.8

P30 BRCA2 ER+, PR+, HER2− wt pCR 2.14 23% 2.0

P31 BRCA1 TNBC R175H RCB-II BL1 3.66 40% 2.2

P34 BRCA1 TNBC V216M RCB-II BL1 1.71 21% 1.7

P36 BRCA2 ER+, PR+, HER2− wt RCB-I 2.39 27% 2.3

P19 BRCA1 TNBC pCR 1.09 0% 2.0

P27 BRCA1 TNBC RCB-II 0.78 0% 2.0

P29 BRCA1 TNBC pCR 0.97 0% 2.0

P32 BRCA2 TNBC pCR 0.98 0% 2.0

P35 BRCA1 ER+, PR−, HER2− pCR 0.68 0% 2.0

Each sample contains a germline BRCA1 or BRCA2 mutation (Germline column). The ER Status column includes the expression of ER, PR, or HER2 based on
immunohistochemistry. TNBC (for triple-negative breast cancer) indicates that the patient was negative in all three receptors. Somatic TP53 mutations were
identified by whole-exome sequencing. wt indicates no mutation identified. The Response column delineates whether the patient was responsive to treatment
at surgery, assessed by RCB status. For the TNBC tumors, the TNBC Subtype is shown. BL1 is basal-like 1, BL2 is basal-like 2, M is mesenchymal, MSL is
mesenchymal stem-like, and IM is immunomodulatory. Mutations quantifies the number of non-synomous coding mutations per megabase. Purity contains the
percent of tumor cells found in the sample, as estimated from the copy number profiles of the exome sequencing. The Ploidy of the tumor is also estimated
from the exome sequencing.
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(77%), which is comparable to prior studies showing frequent TP53
mutations in BRCA mutant breast cancers (Fig. 1a)39. Nine of the
mutations targeted residues in the core DNA-binding domain40,
while one was predicted to affect splicing. Three tumors harbored
R175H hotspot mutations41, and three others (G266E, L265P,
variant 17:7,579,310) were previously documented in the COSMIC
database42. All coding region mutations were predicted to be
deleterious by both Polyphen243 and SIFT44. No other known
cancer driver genes were found to be recurrently mutated.
However, there were individual cases with mutations in genes or
pathways previously associated with PARPi response such as
ARID1a, ATM, BAP1, and TSC1.
In addition to driver genes, mutations can also reveal the

mutagenic processes that promote the acquisition of mutations
throughout the progression of the tumor45. BRCA mutant breast
cancers have defects in double strand break repair that result in
mutational patterns characterized as signature 3, which has
previously been found to be a marker for BRCAness and HR
deficiency46,47. We confirmed that this signature is seen in this
cohort of gBRCA+ tumors using SigMA, a tool that was optimized
to detect Signature 3, which predicted that this signature
contributed 74–85% of the mutational patterns across these

tumors48 (Fig. S4). However, we found no correlation between this
signature and sensitivity to talazoparib (p= 0.61), when sensitivity
was defined as pCR or RCB-I, and resistance as RCB-II or RCB-III,
consistent with the endpoint of the clinical trial that generated
these samples13; or when comparing pCR and non-PCR tumors (p
= 0.58). In subsequent analyses, we will primarily defined
sensitivity according to the definition from the trial, but also
report results from the pCR and non-PCR comparison in the
Supplementary Information.
To determine if other processes contribute to the mutations, we

repeated the analysis with DeconstructSigs49, which can score the
contribution of a range of signatures. From this analysis, we found
that the mutations across all tumors predominantly reflect
signature 3, confirming the SigMA prediction, as well as signatures
5, 16, and U2 (Fig. 1b). The etiology of signatures 5 and 16 is not
known, and signature U2 is suspected to be a sequencing
artifact45. The predictions of signature 3 from the two algorithms
were highly correlated (p= 0.0004, Supplementary Fig. S4),
although the absolute percentages from DeconstructSigs were
lower, likely due to contributions from other signatures and
artifacts. Accordingly, the predicted contributions from Decon-
structSigs also failed to correlate with response (Fig. 1c,

Fig. 1 Genomic profile of data set. a This oncoplot shows the somatic mutations in cancer-associated genes from the COSMIC database
found in this cohort. Each row represents a mutated gene and each column represents a patient. The patients are grouped by RCB. The
rectangles are colored according to mutation status. b This plot shows the predicted contribution of each mutation signature (y-axis), as
predicted by DeconstructSigs, to the overall mutational processes in the tumors (columns). The signatures are distinguished by color. c The
percent contribution of signature 3 (indicative of homologous recombination deficiency) as predicted by DeconstructSigs, are shown on the
y-axis for each of the tumors. The % contribution from signature 3 is separated according to the response of each tumor. The red line indicates
mean contribution, and the p-values are calculated using an unpaired two-sided Student’s t test comparing pCR and RCB-I against RCB-II and
RCB-III. d The tumor mutation burden (y-axis) is shown for each of the tumors, separated by response. The red lines indicate average
mutations. The p-values are calculated as in c. e The weighted genome instability index (y-axis) is shown for each tumor, separated by
response. The mean indexes are shown by red lines. The p-values are calculated as in c. f The number of large-scale state transitions (y-axis) is
shown for each tumor, separated by response. The red lines indicate means. The p-values are calculated as in c. g The number of telomeres
with imbalanced alleles (y-axis) is shown for each tumor, separated by response. The red lines indicate means. The p-values are calculated as in
c.
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Supplementary Fig. S5). It is possible that this signature is best
suited for differentiating tumors with and without HR deficiency,
and is not sensitive enough to distinguish more subtle degrees of
HR competency seen in a cohort consisting entirely of gBRCA+
breast cancers.
We next associated tumor mutation burden with response, due

to the potential for neoantigens in BRCA+ breast cancers to
contribute to an immune response50. However, we found no
association between response to PARPi with either tumor
mutation burden (Fig. 1d, Supplementary Fig. S6) or with the
weighted genome instability index51, a measure of genome
instability based on copy number aberrations (Fig. 1e). Similarly,
we saw no associations between response and other surrogate
measures of HRD including large-scale structural chromosomal
aberrations, quantified as a large-scale state transition score52,53

(Fig. 1f, Supplementary Fig. S7); or telomeric allelic imbalance,
asymmetrical copy numbers of the major and minor alleles
extending to the telomere, which was predicted to result from
failures in double stranded break repair54 (Fig. 1g, Supplementary
Fig. S8). Taken together, we observed no correlation between
measures of HR deficiency and response to single agent
talazoparib in this gBRCA+ cohort.

Loss of shieldin complex member SHLD2 is associated with
resistance
We next searched for evidence of genomic or transcriptomic
changes in 51 genes previously associated with PARPi resistance
in pre-clinical models (Table 2). We started by identifying non-
synonymous somatic single nucleotide mutations from the WES
data (Fig. 2a). We also estimated copy numbers from this data
using FACETS35 and plotted amplifications or deletions that
corresponded with a two-fold deviation from the average
expression in responsive tumors. We found no significant
structural rearrangements using Manta55, although it is highly
likely that rearrangements were not well captured in the WES
data. In addition, alternative splicing changes can also lead to
BRCA reversions56. However, the RNA-Seq data did not reveal any
BRCA splicing events.
The oncoplot of the variants revealed mutations in potential

resistance genes in nearly every tumor (Fig. 2a). There was
frequent somatic copy number deletion in BRCA1 and BRCA2,
likely reflecting loss of heterozygosity events57. In the resistant
tumors, alterations that may associate with resistance were seen
across every patient except for P31 in genes including SHLD2,
RAD51, ATMIN, PTEN, PARG, MLL4, EZH2, SLFN11, AR, KRAS, and
GPBP1. We prioritized these genes by looking for mutations or
copy number alterations that led to predicted loss or gain of
function in PARPi resistant but not PARPi sensitive tumors. Four
genes were identified as potential candidates mediating resis-
tance including SHLD2 (FAM35A), PARG, MLL4 (KMT2B), and
SLFN11. Of these, SHLD2 was the only one altered recurrently,
with copy number deletion seen in three of the six resistant
tumors. SHLD2 is a member of the shieldin complex, which
mediates 53BP1-dependent non homologous end joining20,58.
Loss of shieldin promotes HR, leading to resistance to PARPi. Here,
all tumors with SHLD2 loss had gBRCA1 mutations. The fact that
SHLD2 loss was not observed in gBRCA2 mutant tumors may be
due to the fact that BRCA2 acts downstream of shieldin, and thus
shieldin loss would not confer resistance in gBRCA2+ tumors59.
To verify the copy number aberrations, we used an additional

copy number caller Sequenza60, which confirmed copy number
loss in the tumors of patients 23 and 34, but did not recapitulate
the copy number loss seen in the tumor from patient 15. We then
compared the gene expression of shieldin complex proteins
between PARPi resistant and sensitive tumors (Fig. 2b, Supple-
mentary Fig. S9). Expression of SHLD2 alone was 2.2x lower in
PARPi resistant tumors (p= 0.003) and tumors with the lowest

SHLD2 expression also had copy number loss in at least one of the
callers. We repeated this analysis across the remainder of the 51
established resistance genes, regardless of mutation or copy
number change. The expression of CDK12 and SMARCAL1 were
both significantly higher in the sensitive tumors (both p= 0.03),
but the average changes in gene expression were modest (1.2×
and 1.3×, respectively) and therefore unlikely to indicate a general
resistance mechanism (Supplementary Fig. S10). Thus, our analysis
identified loss of SHLD2, either by copy number loss or reduced
expression, as a potential mechanism for PARPi resistance in
gBRCA+ tumors.

Gene expression signatures are associated with both
sensitivity and resistance to PARPi
To look more broadly for markers of resistance, we performed a
pathway analysis. We used a pre-ranked GSEA (prGSEA) test (see
Methods) on the Hallmarks database61 to identify the pathways
that correlated with response. We found that sensitive tumors
were associated with activation of E2F (adjusted p= 0.003), MYC
(adjusted p= 0.003), and G2/M (adjusted p= 0.02) (Fig. 3a, b). This
could represent more proliferative tumors or alternatively tumors
with premature entry into S phase and replication stress that has
been associated with response to PARPi62. In contrast, resistant
tumors had high predicted activity of hypoxia (adjusted p=
0.0004), EMT (adjusted p= 0.0004), altered metabolism (glycolysis
adjusted p= 0.003, oxidative phosphorylation adjusted p= 0.007,
cholesterol homeostasis adjusted p= 0.007), along with several
other pathways.
To verify the association between MYC targets and sensitivity to

talazoparib, we extracted the genes from the leading edge of the
signature (i.e., the genes with the largest change in expression)
and visualized their expression in a heatmap (Fig. 3c). This
confirmed that nearly all the tumors that achieved pCR, with the
exception of P26, had high expression of MYC target genes, while
the tumors with RCB-II and -III had lower expression across
those genes.
In resistant tumors, the hypoxia gene expression signature was

predicted to be active. As an initial validation of this result, we
scored the tumors with a validated hypoxia signature63 and found
that its scores were highly correlated with the Hallmarks signature
from our analysis (Supplementary Fig. S11). Next, we asked
whether gene expression of known mediators of hypoxia, HIF1A (a
downstream transcriptional regulator of a hypoxia response) and
VEGF-A (a hypoxia responsive growth factor) (reviewed in64) had
concomitant changes (Fig. 3d, Supplementary Fig. S12). VEGF-A
was expressed higher in resistant tumors, although it did not
achieve statistical significance (p= 0.06). Expression of HIF1A was
not associated with response (p= 0.53). This could be because
HIF1A is regulated post-translationally by ubiquitination, and its
activity may not correlate with its gene expression levels.
Therefore, we examined whether expression of HIF target genes65

correlated with the hypoxia signature and found that HIF target
genes were upregulated in resistant tumors (p < 0.0001) (Fig. 3e).
The expression levels of HIF1 targets (seen on the leading edge of
a GSEA analysis), including VEGF-A, were highly upregulated in 4
out of the 6 most aggressive tumors (Fig. 3f). This provides
evidence that hypoxia is a common feature in talazoparib-resistant
tumors.

An EMT signature and stem cell markers are correlated with
resistance
In addition to the hypoxia signature, the pathway analysis also
showed an equally strong association of epithelial mesenchymal
transition (EMT) with resistance to talazoparib (Fig. 3a), which was
also previously seen in PDX models of small cell lung cancer66. To
corroborate the EMT signature, we evaluated tumors for the
expression of CDH1, the primary cadherin responsible for
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Table 2. Mechanisms of resistance.

Gene Mechanism Resistance Reference

ABCB1 Drug efflux Gain Multiple ABCB1 transcriptional fusions in drug resistant high-grade serous
ovarian and breast cancer

DNA
Damage
Response

BRCA1 Promotes DNA end resection. Gain Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with
platinum resistance

BRCA2 Promotes homologous
recombination.

Gain Secondary mutations as a mechanism of cisplatin resistance in BRCA2-
mutated cancers

BRIP1 Binds BRCA1. Gain Inactivation of the Tumor Suppressor BRIP1 Gene Confers Increased
Susceptibility to Platinum Antineoplastic Agents and Augments the
Synergistic Response to PARP Inhibition in Ovarian Epithelial Cells

TP53BP1 Inhibits DNA end resection. Loss 53BP1 inhibits homologous recombination in Brca1-deficient cells by
blocking resection of DNA breaks

RIF1 Inhibits DNA end resection. Loss 53BP1 regulates DSB repair using Rif1 to control 5′ end resection

SHLD1
(C20orf196)

Inhibits DNA end resection.
Shieldin complex.

Loss DNA repair network analysis reveals Shieldin as a key regulator of NHEJ and
PARP inhibitor sensitivity

SHLD2
(FAM35A)

Inhibits DNA end resection.
Shieldin complex.

Loss DNA repair network analysis reveals Shieldin as a key regulator of NHEJ and
PARP inhibitor sensitivity

SHLD3 Inhibits DNA end resection.
Shieldin complex.

Loss DNA repair network analysis reveals Shieldin as a key regulator of NHEJ and
PARP inhibitor sensitivity

REV7/
MAD2L2

Inhibits DNA end resection.
Shieldin complex.

Loss MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′
end resection

TRIP13 Promotes dissociation of REV7-
Shieldin complex.

Gain TRIP13 regulates DNA repair pathway choice through REV7
conformational change

STN1 Inhibits DNA end resection. CST
Complex.

Loss The CST complex mediates end protection at double-strand breaks and
promotes PARP inhibitor sensitivity in BRCA1-deficient cells

CTC1 Inhibits DNA end resection. CST
Complex.

Loss The CST complex mediates end protection at double-strand breaks and
promotes PARP inhibitor sensitivity in BRCA1-deficient cells

TEN1 Inhibits DNA end resection. CST
Complex.

Loss The CST complex mediates end protection at double-strand breaks and
promotes PARP inhibitor sensitivity in BRCA1-deficient cells

RAD51 Stimulates strand invasion.
Stabilizes replication forks.

Gain Secondary somatic mutations restoring RAD51C and RAD51D associated with
acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian
carcinoma

PALB2 Stimulates strand invasion. Gain Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in
stimulating homologous recombination

SHFM1 Stimulates strand invasion. Gain Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in
stimulating homologous recombination

CDK12 Promotes homologous
recombination.

Gain Ovarian cancer-associated mutations disable catalytic activity of CDK12, a
kinase that promotes homologous recombination repair and resistance to
cisplatin and poly(ADP-ribose) polymerase inhibitors

HELB Inhibits DNA end resection. Loss HELB Is a feedback inhibitor of DNA end resection

DYNLL1 Inhibits DNA end resection. Loss DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells

ATMIN Transcriptionally activates
DYNLL1.

Loss DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells

MRE11 Promotes end resection and
replication fork degradation.

Uncleara Double-strand break repair-independent role for BRCA2 in blocking stalled
replication fork degradation by MRE11

PTEN Controversial. Loss

PIK3CA PI3K controls DSB repair. Gain PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient
triple-negative breast cancer to PARP inhibition

PIK3CB PI3K controls DSB repair. Gain PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient
triple-negative breast cancer to PARP inhibition

AKT1 PI3K controls DSB repair. Gain PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient
triple-negative breast cancer to PARP inhibition

POLQ Catalyzes MMEJ, promoting cell
survival in HR-deficient cells.

Gain Polymerase theta inhibition kills homologous recombination deficient tumors

Replication
Fork

PARP1 Promotes PARP trapping. Loss A genetic screen using the PiggyBac transposon in haploid cells identifies
Parp1 as a mediator of olaparib toxicity

PARG Inhibits PARP parylation. Loss Selective loss of PARG restores PARylation and counteracts PARP inhibitor-
mediated synthetic lethality

PTIP
(PAXIP1)

Promotes replication fork
degradation.

Loss Replication fork stability confers chemoresistance in BRCA-deficient cells
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epithelial cell adhesion that is suppressed in EMT67,68. Surprisingly,
we found that resistant tumors had higher, rather than lower,
levels of CDH1 expression, although the differences were not
statistically significant (p= 0.16) (Fig. 4a). Next, we examined
tumors for expression of both CDH1 (an epithelial state marker)
and vimentin (VIM, a mesenchymal state marker) but did not see a
clear distinction between canonical epithelial cells (high CDH1 and
low VIM) and mesenchymal cells (low CDH1 and high VIM)69 (Fig.
4b). Therefore, despite the correlation between PARPi resistance
and an EMT pathway signature, resistant tumors did not exhibit
classic EMT markers.
Because the EMT is associated with a number of phenotypes,

we investigated the possibility that activation of a subset of the
EMT program may be responsible for the high scores in the gene

expression signature, even if an EMT itself is not achieved. We
visualized the expression of the 93 genes on the leading edge of
the prGSEA analysis (i.e., the most differentially expressed genes
from the EMT gene set) and saw that they are more highly
expressed in the resistant tumors (Fig. 4c). To understand their
function, we performed a GATHER analysis70 with a collection of
oncogenic gene sets, which is more comprehensive than Hall-
marks, from MSigDB. This revealed 63 pathways that are
significantly (false discovery rate (FDR) < 5%) enriched in the
subset of the EMT program (Fig. 4d). The most significant one was
associated with genes upregulated in embryonic stem cells
(ESC_V6.5_UP_EARLY.V1_DN; FDR= 10−23). The fact that the
EMT signature was not correlated with EMT markers, but was
associated with a stem cell signature, suggests that the Hallmark

Table 2 continued

Gene Mechanism Resistance Reference

MLL3 Promotes replication fork
degradation.

Loss Replication fork stability confers chemoresistance in BRCA-deficient cells

MLL4 Promotes replication fork
degradation.

Loss Replication fork stability confers chemoresistance in BRCA-deficient cells

EZH2 Promotes replication fork
degradation.

Loss EZH2 promotes degradation of stalled replication forks by recruiting MUS81
through histone H3 trimethylation

SMARCAL1 Promotes replication fork
degradation.

Loss Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by
inactivation of SNF2-family fork remodelers

ZRANB3 Promotes replication fork
degradation.

Loss Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by
inactivation of SNF2-family fork remodelers

HLTF Promotes replication fork
degradation.

Loss Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by
inactivation of SNF2-family fork remodelers

SLFN11 Stalls stressed replication forks. Loss Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR
inhibition

CHD4 Inhibits translesion synthesis. Loss1 Resistance to therapy in BRCA2 mutant cells due to loss of the nucleosome
remodeling factor CHD4

RADX Inhibits RAD51 at
replication forks.

Loss RADX promotes genome stability and modulates chemosensitivity by
regulating RAD51 at replication forks

TLK1 Stabilizes replication forks. Gain Tousled-like kinases stabilize replication forks and show synthetic lethality
with checkpoint and PARP inhibitors

TLK2 Stabilizes replication forks. Gain Tousled-like kinases stabilize replication forks and show synthetic lethality
with checkpoint and PARP inhibitors

PRIMPOL Promotes repriming of
stalled forks.

Gain PRIMPOL-mediated adaptive response suppresses replication fork reversal in
BRCA-deficient cells

Other AR Regulates HR genes. Gain Androgen receptor inhibitor enhances the antitumor effect of PARP inhibitor
in breast cancer cells by modulating DNA damage response

KRAS RAS mutant cell lines are
resistant to PARPi.

Gain Rational combination therapy with PARP and MEK inhibitors capitalizes on
therapeutic liabilities in RAS mutant cancers

HRAS RAS mutant cell lines are
resistant to PARPi.

Gain Rational combination therapy with PARP and MEK inhibitors capitalizes on
therapeutic liabilities in RAS mutant cancers

NRAS RAS mutant cell lines are
resistant to PARPi.

Gain Rational combination therapy with PARP and MEK inhibitors capitalizes on
therapeutic liabilities in RAS mutant cancers

BRAF RAS mutant cell lines are
resistant to PARPi.

Gain Rational combination therapy with PARP and MEK inhibitors capitalizes on
therapeutic liabilities in RAS mutant cancers

ARID1A Unknown Unclear ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells
to PARP Inhibitors, A quantitative chemotherapy genetic interaction map
reveals factors associated with PARP inhibitor resistance

GPBP1 Unknown Loss A quantitative chemotherapy genetic interaction map reveals factors
associated with PARP inhibitor resistance

TDG Unknown Loss A quantitative chemotherapy genetic interaction map reveals factors
associated with PARP inhibitor resistance

RNF168 Multiple Unclear

aPhenotype appears to be BRCA-dependent.
Genes that are known or suspected to be linked to resistance to PARPi are shown. Resistance indicates whether a Gain or Loss of function has been either
shown or inferred to lead to resistance to PARPi.
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EMT signature was evincing an EMT-associated stem cell
program71. To determine whether the stem cell program was
seen in patient tumors, we scored it on the tumors using prGSEA
and found that it was significantly upregulated in resistant tumors
(p= 2 × 10−5) (Fig. 4e).

DISCUSSION
We previously demonstrated the efficacy and reduced toxicity of
talazoparib as a single-agent neoadjuvant therapy for previously
untreated gBRCA+ cancers13. However, not all patients demon-
strated benefit as indicated by complete responses to neoadju-
vant therapy. Thus, biomarkers of both sensitivity and resistance
to PARPi are needed to identify patients most likely to benefit, and
resistance remains a critical issue that must be addressed to
achieve durable responses in a greater number of patients. Prior
studies to determine mechanisms underlying sensitivity and
resistance to PARPi have been performed predominantly in cell
culture and genetically engineered mouse models, and little is
known about the emergence of resistance in the clinical setting of
breast cancer, particularly in the up-front neoadjuvant setting.

To identify correlates of resistance, we performed an extensive
genomic and transcriptomic analysis of treatment-naïve gBRCA+
breast cancer tumors treated with neoadjuvant talazoparib
monotherapy. This study establishes, for the first time, correlates
of sensitivity and resistance to a single agent PARPi in a treatment
naïve neoadjuvant breast cancer clinical setting. It reveals
potential resistance mechanisms including copy number loss
coupled with low expression of the shieldin complex member
SHLD2, or a gain of a hypoxia, or EMT/stem cell signature (Fig. 5).
The potential role that the shieldin complex plays in promoting
resistance to PARPi has been well established in pre-clinical
studies. Here, all resistant tumors exhibited either loss of shieldin,
gain of hypoxia signature, or gain of an EMT/stem cell signature.
Potential biomarkers of response included MYC and
E2F1 signatures.
The link between EMT, cancer stem cells, and resistance to

chemotherapies is well established72 and reported for PARPi as
well73. However, the connection between EMT and PARP function
remains an intense area of investigation, as PAR appears to be
present in epithelial adherens junctions74, and PARP1 has both

Fig. 2 Known resistance genes associated with resistance. a This oncoplot shows the mutations seen across a curated list of genes linked
with resistance to PARPi. b The gene expression of members of the shieldin complex are shown on the Y-axis as log2 TPM. Individual patients
(dots) are grouped according to RCB response. Mean expressions are shown by red lines. The p-values are calculated from unpaired two-sided
Student’s t tests. In the SHLD2 plot, patients predicted to have copy number loss of the gene are labeled.
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positive75,76 and negative77,78 associations with TGF-ß signaling, a
potent inducer of an EMT79 that may be context dependent.
In contrast to EMT, the connection between PARPi and hypoxia

has been explored more deeply, although with mixed success thus
far in the clinic. Under a severe hypoxic condition (0.5% oxygen),
cells are more sensitive to PARPi due to the synthetic lethality
induced by decreased expression of HR proteins80. However, the
opposite is seen in moderate hypoxic conditions (2% oxygen)
where a hypoxia signature predicted resistance to a PARPi81 due
to decreased ROS-induced DNA damage82. In a breast cancer
mouse model, hypoxic cells were shown to contribute to PARPi
resistance, and targeting tumors with a combination of hypoxia
and PARP inhibitors leads to synergistic toxicity. However, the
clinical trial results are inconsistent, with phase 2 trials of olaparib
and cederinib showing an increased progression free survival83,84

whereas the phase 3 trial failed to confirm benefit85. As a possible
explanation, these studies may be confounded by the pleiotropic
effects of cediranib, which can inhibit both VEGFR and decrease
expression of HR proteins86. Furthermore, the trials were done in
an unselected patient population and the number of patients with
a pre-existing tumor hypoxia signature may have been sufficiently

low as to confound the outcomes analysis. In a number of other
disease contexts, including myocardial ischemia, stroke, and
traumatic brain injury, PARPi have been observed to be protective
against ischemic cell death (reviewed in87–89). Unfortunately, the
mechanism has not yet been established, and it is not known
whether a similar process might be activated in hypoxic tumors
and render them refractory to PARPi treatment. Nevertheless, the
observation that a hypoxia/stem cell signature exists in the
majority of PARPi resistant tumors prior to therapy argues for
additional studies to understand whether hypoxia can induce a
PARPi resistant state, to elucidate underlying mechanisms, and to
determine whether targeting hypoxia will increase the benefit of
PARPi in patients with a pre-existing hypoxia signature.
Markers of high MYC activity were frequently observed in PARPi

sensitive tumors. The relationship between MYC and DNA damage
has been well-documented and controversial. Activated MYC can
induce chromosomal damage90,91 including defects in double-
stranded break repair92,93. Another consequence of activated MYC,
increased proliferation, may enhance sensitivity to PARPi via PARP
trapping, whose toxicity has been shown to be specific to
S-phase94. In contrast, it has also been reported that MYC can

Fig. 3 Pathways correlated with resistance. a This shows the association between Hallmarks pathways and response to talazoparib. Each bar
stands for a pathway, and the height indicates the statistical significance as the -log10 of the adjusted p-value. The pathways that are
associated with sensitivity to treatment are shown in green and those associated with resistance are red. b This contains the GSEA enrichment
plots for pathways most strongly associated with resistance to talazoparib. Pathways that are higher in resistant tumors are in the top row, and
the bottom contains the pathways higher in sensitive tumors. The genes are ranked such that the ones associated with sensitivity are on the
left, and those with resistance are on the right. c This heatmap shows the expression of the most differentially regulated genes (leading edge)
of the MYC Targets V1 pathway (rows) for each of the tumors (columns), organized by response. Warmer colors indicate higher expression, and
cooler colors are lower expression. d These plots show the association of the expression of VEGFA (left) and HIF1A (right) with response. The
mean expression is shown as a red line. p-values (unpaired two-sided Student’s t tests) are shown after comparing patients with no
progression (pCR and RCB-I) against those that progressed (RCB-II and RCB-III). e This plot compares the scores of the hypoxia pathway (x-axis)
against that with a HIF1 transcriptional network (y-axis). The p-value is calculated from a two-sided Pearson’s correlation coefficient test. f This
heatmap shows the expression of the genes in the leading edge of the hypoxia pathway. The heatmap is arranged as in panel c.
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facilitate DNA repair by inducing the expression of genes involved
in HR, including BRCA195, which may lead to PARPi resistance96.
The impact of MYC is likely to be context dependent and the
relationship between MYC activation and DNA repair in the
human tumor environment requires further investigation.
There are several major limitations in this neoadjuvant study of

gBRCA+ tumors. 1) The sample size was limited. We profiled 18
tumors, and only 13 could be used to interrogate the biology of
the cancer cells. A prior study of a larger cohort of ovarian cancer
patients found ABCB1 fusions in 8% of patients and BRCA1/2
reversions in another 5%, suggesting that resistance mechanisms
are heterogeneous and likely to be found at low frequencies97. 2)
We profiled pre-treatment samples and therefore can only detect
intrinsic mechanisms of resistance and sensitivity. Longitudinal

profiling will be needed to identify resistance mechanisms that are
acquired during the course of treatment. The majority of patients
had insufficient tumor at surgery following completion of
talazoparib therapy therefore limiting detailed longitudinal
analysis. 3) Our bulk genomic assays may not have sufficient
sensitivity to identify mechanisms that are present in pre-
treatment samples at low clonality levels, such as subclones with
BRCA reversions27,30. Deep sequencing, single cell sequencing, or
ctDNA profiling may facilitate the identification of genetic or
transcriptomic events that occur subclonally. 4) Our exome
sequencing data may not reveal the vast majority of possible
genomic re-arrangements, leaving the possibility that gene
fusions contributing to PARPi resistance and sensitivity were
missed. 5) We did not interrogate non-coding RNAs, which have

Fig. 4 A stem cell transcriptional program was associated with response. a The gene expression (log2 TPM) of CDH1 is shown on the y-axis.
Each dot is a tumor, grouped according to the response to talazoparib. The red lines indicate mean expression. The p-values (by unpaired two-
sided Student’s t test) are shown for comparisons between patients with pCR vs other patients, as well as a comparison between pCR and
RCB-I, and RCB-II and RCB-III. b The gene expression for CDH1 (x-axis; log2 TPM) and VIM (y-axis; log2 TPM) are shown for tumors colored by
response. c The rows in the heatmap contain the genes in the leading edge of the EMT gene expression signature, and the columns are
samples organized according to response. Warm colors indicate high expression of the genes. d The bars in this plot show the significance (as
-log10 of the false discovery rate) of the top 20 most significant oncogenic pathway (rows). The dotted red line shows the cutoff for a 5% false
discovery rate. e The enrichment plots for the oncogenic pathway that is most significantly associated with response.

- - - - - - - + + + - - +

0 1 2 3RCB

Hypoxia - - - - - - - - + + + - +

Breast Tumor
gBRCA+

a.  b.  

Shieldin Loss - - - - - - - - + ++- -

Sensitive Resistant

EMT / Stem Cell

MYC + + - + - + - - - - - - -

High MYC

Sensitive

High Hypoxia

EMT / Stem Cell

Resistant

Loss of Shieldin

Resistant

Fig. 5 Model. a This table shows each of the tumors in the trial, grouped by RCB status. The tumors predicted to have an activated Hypoxia
pathway, based on the pathway signature and expression of HIF targets, are indicated in the first row with a “+”. The EMT / Stem Cell status is
determined from the expression of the leading edge EMT genes. Shieldin Loss reflects the concomitant loss of copy number and expression of
SHLD2. b In this cohort of gBRCA mutant breast cancer patients, loss of shieldin, high hypoxia signature, or high EMT/Stem Cell signature is
predictive of resistance.
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previously been suggested to mediate resistance98. 6) We
considered only the cancer cells and did not profile the
microenvironment, which can impact the efficacy of PARPi. As
one example, it was recently shown that PARPi leads to DNA
damage that triggers the cGAS/STING pathway, type I interferon
signaling, and then cytotoxic T cell function; resulting in tumor
clearance99–101. Finally, 7) this is an observational study of a single
data set, and follow-up studies will be needed to determine
whether our findings causally lead to resistance, and thus, would
be viable targets for therapy.
In conclusion, our findings demonstrate that a number of

biomarkers for sensitivity to single-agent talazoparib can be
identified in treatment-naïve gBRCA+ samples. This supports
previous findings showing that intrinsic activities in cancer cells
have an impact on the clinical response to PARPi. The markers we
identified provides a potential explanation for the high rates of
relapse seen in patients treated with PARP inhibitors, several of
which exhibited copy number loss of SHLD2. These results predict
that defects in the shieldin complex may be a relatively frequent
mechanism of resistance to single agent PARPi in patients, and if
verified in larger cohorts, may have a role as a biomarker to
exclude patients from therapies that will not be effective. Other
resistant patients exhibited a hypoxia signature. As this manuscript
was under review, a paper was published showing the efficacy of a
combinatorial treatment targeting PARP and hypoxia in a breast
cancer PDX model82, demonstrating the potential for developing
therapeutic strategies to overcome this resistance. Further
mechanistic studies are needed to understand the signaling
networks engaged by these biomarker pathways to select viable
therapeutic targets, and translational studies are needed to
develop clinical tests and treatments to reverse resistance.

METHODS
Patient cohort
The data was derived from a neoadjuvant trial of single agent
talazoparib13. The trial was approved by the institutional review board
under protocol 2014-0045, and each participant provided written informed
consent. Briefly, twenty patients with clinical stage I-III breast cancer and
an identified germline BRCA1 or 2 pathogenic variant were enrolled.
Patients received 6 months of single agent talazoparib starting at a dose of
1 mg orally daily. Surgery was scheduled within 5 weeks of the last dose of
talazoparib. Final pathology was determined by a dedicated breast
pathologist at our institution, and we used residual cancer burden as a
measure of response102.

Genomic DNA, library prep, and capture
Genomic DNA was quantified by Picogreen (Invitrogen) and quality was
accessed using Genomic DNA Tape for the 2200 Tapestation (Agilent). DNA
from each sample (100–500 ng of genomic DNA) was sheared by
sonication with the following conditions: Peak Incident Power 175, Duty
Cycle 20%, Intensity 5, Cycles per Burst 200, and 120 s using Covaris E220
instrument (Covaris). To ensure the proper fragment size, samples were
checked on TapeStation using the DNA High Sensitivity kit (Agilent). The
sheared DNA proceeded to library prep using the KAPA library prep kit
(KAPA) following the “with beads” manufacturer protocol. Briefly, this
protocol consists of 3 enzymatic reactions for end repair, A-tailing and
Adaptor ligation, followed by barcode insertion by PCR using KAPA HiFi
polymerase (6 cycles). PCR primers were removed by using a 1.8x volume
of Agencourt AMPure PCR Purification kit (Agencourt Bioscience Corpora-
tion). At the end of the library prep, samples were analyzed on TapeStation
to verify correct fragment size and to ensure the absence of extra bands.
Samples were quantified using the KAPA qPCR quantification kit.
Equimolar amounts of DNA were pooled for capture (2–6 samples per
pool). We used whole-exome biotin labeled probes from Roche Nimblegen
(Exome V3) and followed the manufacturer’s protocol for the capture step.
Briefly, DNA was pooled (2–6 samples), dried out and after addition of the
capture reagents and probes, samples were incubated at 47 °C on a
thermocycler with a heated lid (57 °C) for 64–74 h. The targeted regions
were recovered using streptavidin beads and the streptavidin-biotin-

probe-target complex was washed and another round of PCR amplification
was performed according to the manufacturer’s protocol. The quality of
each captured sample was analyzed on TapeStation using the DNA High
Sensitivity kit and the enrichment was accessed by qPCR using specific
primers designed by Roche Nimblegen. The cutoff for the enrichment was
50-fold minimum.

Mutation data analysis
The captured libraries were sequenced on a HiSeq 2000 (Illumina Inc., San
Diego, CA, USA) on a version 3 TruSeq paired end flowcell at a cluster density
between 700–1000 K clusters/mm2. Sequencing was performed for 2 × 100
paired-end reads with a 7 nt read for indexes using Cycle Sequencing v3
reagents (Illumina). The resulting BCL files containing the sequence data were
converted into “.fastq.gz” files and individual libraries within the samples
were demultiplexed using CASAVA 1.8.2 with no mismatches.
We called single nucleotide variants (SNVs) using a pipeline103

implemented in the BETSY system104. Starting with the FASTQ files, we
trimmed adapter and low-quality sequence using Trimmomatic105. Next,
we aligned the trimmed reads to human reference assembly hg19 using
BWA106 and flagged duplicated reads using Picard107. We realigned indels
and recalibrated base quality scores using GATK108. Then, we called
somatic variants using a consensus of six callers (MuSE109, MuTect110,
MuTect2, SomaticSniper111, Strelka2112, and VarScan2113). For the Strelka
analysis, we skipped the depth filter and set minPruning= 3 in MuTect2 to
speed up computation114. To confirm the identities of the germline and
tumor samples, we used GATK to call variants on the samples and
confirmed that the tumor samples shared mutations with its cognate
germline. We annotated variants with Annovar115 and SnpEff116, and
filtered for nonsynonymous changes supported by at least 2 callers, 20
reads, and 5% variant allele frequency. We also annotated the mutations
using Variant Effect Prediction117 and selected the most severe conse-
quence per variant. Synonymous, intergenic, intronic and non-coding
transcript mutations were removed.
We estimated copy number profiles using the FACETS algorithm35. We

varied the parameters used for FACETS (critical value from 100–500, nbhd
from 100–500, and nhet from 15–50). Following a manual examination of
the log-ratio and log-odds-ratio plots, we decided to use the models with
parameters critical value 300, nbhd 250, and nhet 30 because they had the
most plausible models across the samples. We also estimated copy
number profiles using Sequenza60 with default parameters and manually
selected the most plausible of the alternative models. Finally, we estimated
tumor purity and ploidy with ABSOLUTE36 with a sigma_p 0.02,
max_sigma_h 0.02, max.non.clonal 0.1, min.ploidy 0.95, and max.ploidy 10.
We performed mutational signature analysis using the DeconstructSigs49

and SigMA48 R packages. We ran DeconstructSigs on the mutations found
by at least 2 callers and supported by at least 20 reads and 5% VAF using
the signatures.nature2013 reference with the exome2genome mapping. In
contrast to the set of mutations above, we did not filter for nonsynon-
ymous changes here. We ran SigMA using the same filtering criteria as
DeconstructSigs on the breast tumor type with the seqcap data option.
We calculated the tumor mutation burden as the number of non-

synonymous mutations per megabase of targeted exome, as determined
from the BED files downloaded from the Roche Nimblegen website. We
calculated the weighted Genome Instability Index118 as the percent of the
genome with either gain or loss of copy number relative to the median
copy number of the sample. This was calculated separately for
chromosomes 1–22 and then averaged so that the score was not biased
by chromosome length.
We calculated the Large-Scale State Transition (LST) and Telomeric

Allelic Imbalance (TAI) scores from the FACETS allele-specific copy number
predictions described above. We implemented the LST scores52 following
bio-protocol (https://doi.org/10.21769/BioProtoc.814). Briefly, we split the
genome into segments with identical copy number profiles (i.e., the same
number of major and minor alleles). Then, we counted the number of
segments that were at least 10 megabases long that were within 3
megabases of another 10 megabase segment with a different copy
number profile. Although the original algorithm smoothed the copy
number profiles of short (<3 megabase) segments, we dropped the short
segments entirely, as this had only a minor impact on the scores.
We calculated TAI scores54. To do this, we looked for regions at the end of

the chromosome where the major and minor alleles had different numbers. If
this imbalance originated from the telomeres and did not extend to the
centromeres (extracted from the UCSC Genome Browser), we increased the TAI
score. We made one alteration to the original algorithm and ignored the
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p-arms of chromosomes 13, 14, 15, and 22. Because these chromosomes were
acrocentric, the p-arms lacked coverage in our whole-exome sequencing
panel, and thus, we were not able to obtain estimates of copy number there.

Gene expression data analysis
We used STAR119 to align RNA-sequencing reads and HTSeq-count120 to
quantify gene-level counts. We performed pathway analysis using a pre-
ranked GSEA implemented in fGSEA121, after ranking the genes by
differential expression statistics from DESeq2122. We used gene sets found
in MSigDB v6.261. We annotated gene sets using GATHER70.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
RNA-seq data described in this study are deposited in the Gene Expression Omnibus
database under accession GSE160568. The raw RNA-Seq and whole-exome
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