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I n t r o d u c t i o n

Ion channels are highly adapted to perform specific 
functions in the cell. To give just one example, voltage- 
gated sodium (Nav) channels have finely tuned kinetic 
properties that allow neurons and other excitable cells 
to generate action potentials of specific shape and 
frequency (Bean, 2007). The properties that enable 
Nav and other channels to perform such complex 
and well-calibrated behavior are encoded in the ki-
netic mechanism, defined as a set of conformational 
and functional states, interconnected by a network of 
allowed state transitions that may depend on ligand 
concentration, membrane potential, or other physical 
variables (Colquhoun and Hawkes, 1995a,b). To under-
stand how ion channels function, one must decrypt the 
kinetic mechanism. The same is true for all proteins, 
from ion channels and receptors to enzymes and molec-
ular motors (Popescu and Auerbach, 2003; Milescu et 
al., 2006; Müllner et al., 2010; Syed et al., 2010).

A kinetic mechanism can be solved by fitting experi-
mental data with a mathematical model. However, de-
cades of ion channel research have shown that kinetic 
mechanisms cannot be fully captured by any single type 
of experiment. Instead, to update or construct a new 
model, one must fit a comprehensive data collection 
(Horn and Lange, 1983; Hawkes et al., 1990, 1992; Van-
denberg and Bezanilla, 1991; Hoshi et al., 1994; Zagotta 
et al., 1994a,b; Schoppa and Sigworth, 1998a,b; Roth-

berg and Magleby, 2000; Milescu et al., 2005), ideally 
generated by multiple experimental paradigms (Van-
denberg and Bezanilla, 1991; Akk et al., 2005; Milescu 
et al., 2008). For example, we know that Nav and other 
channels have four voltage sensors that gate with differ-
ent timing and voltage sensitivity (Bezanilla, 2000; Pan-
tazis et al., 2014). These fundamental aspects cannot be 
easily resolved by single-channel or whole-cell record-
ings alone, but they can be addressed in combination 
with other types of experiments, such as patch-clamp 
fluorometry (Chanda and Bezanilla, 2002; Zaydman et 
al., 2013; Pantazis et al., 2014).

Optimizing a model against multiple types of data is 
difficult in itself. A further complication is that some 
results—quantitative or qualitative—cannot be added 
to the data collection that is used for fitting. The num-
ber of voltage sensors, the existence of open-state block, 
and numerical relationships between parameters due 
to allosterism, etc., are examples of such results. In-
stead, this prior knowledge about the channel must be 
encoded directly into the model. In this way, the model 
will explain the new data but will also remain consistent 
with what is already known.

How do we introduce prior knowledge into a model? 
We present here some strategies for addressing this 
issue. At the most basic level, structural assumptions 
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about the kinetic mechanism can be stated implicitly 
by choosing a specific set of states and connectivity, as 
we explain with an example from the literature (Kuo 
and Bean, 1994). Further, quantitative or qualitative 
assumptions can be introduced by defining a set of 
constraints that the model has to satisfy, while also ex-
plaining the new data. These model constraints can 
be formulated as explicit mathematical relationships 
between rate constants or other model parameters, or 
they can specify the behavior of the model under cer-
tain conditions (Fig. 1).

To implement these ideas, we developed new com-
putational tools with a focus on parameter estima-
tion. First, we build upon an existing method for 
enforcing linear constraints between rate constants 
(Qin et al., 1996; Colquhoun et al., 2004; Milescu 
et al., 2005) and extend it to cover arbitrary linear 
constraints between model parameters, including 
allosteric factors. Furthermore, we provide a new 
formalism for handling both equality and inequality 
relationships. In the companion article (see Navarro 
et al. in this issue), we test a method for implement-
ing behavioral constraints, as well as arbitrary param-
eter relationships, by adding a penalty term to the 
cost function of the fitting algorithm. The theory and 
computational procedures described here can be 
coupled, in principle, to any of the existing methods 
for solving molecular kinetics, for ion channels or 
other proteins. These concepts can be used not only 
to enforce existing knowledge but also to formulate 
and test new hypotheses.

M at e ria   l s  a n d  m e t h o d s

All the mathematical and computational algorithms 
described in this study were implemented and 
tested with the freely available MLab edition of the  
QuB program.

Theoretical background
Kinetic mechanisms.� Ion channel kinetic mechanisms 
are well described by Markov models, which reduce the 
continuum of molecular conformations that can be as-
sumed by the protein to a small set of discrete states that 
can be detected experimentally or inferred statistically 
(Colquhoun and Hawkes, 1995a,b; Colquhoun and Sig-
worth, 1995). These states correspond to various con-
formations of functional and structural elements, such 
as resting or activated voltage sensors, bound or un-
bound ligands, closed or open pore, and inactivated or 
noninactivated channel. Direct transitions are permit-
ted between certain states, and the frequency of these 
transitions is quantified by rate constants, which can be 
functions of ligand concentration, membrane poten-
tial, tension, or other physical variables. The topology 
(or structure) of a kinetic mechanism is defined by the 
set of states and their transition connectivity, including 
information on which rates are ligand dependent, volt-
age dependent, etc.

Here, we assume that all microscopic rate constants 
follow the Eyring formalism (Eq. 1; Eyring, 1935), with 
the implication that complexity in kinetic behavior 
should be explained with more elaborate state mod-

Figure 1. E stimating kinetic mecha-
nisms with prior knowledge. A model 
can be made to fit experimental data 
while also satisfying user-defined con-
straints that establish explicit relation-
ships between model parameters or 
that define specific model behaviors. 
In the absence of constraints, a fitting 
algorithm will search a potentially large 
parameter space to find a solution that 
best explains the data. Adding con-
straints to the model not only enforces 
prior knowledge but also accelerates 
the fitting procedure by narrowing the 
search space and reducing the num-
ber of free parameters. Furthermore, 
constraints can be used as a mecha-
nism for testing hypotheses against ex-
perimental data.
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els, rather than through over-parameterized and ad 
hoc rate constant expressions. Accordingly, voltage- 
dependent rate constants are simple exponential func-
tions of voltage:

	​​ k​ ij​​  = ​ k​ ij​ 0​ × ​e​​ ​k​ ij​ 1​×V​,​� (1)

where kij is the rate constant of the transition from state 
i to state j, and V is the membrane potential. The ​​k​ ij​ 0​​ 
value is the rate constant at zero membrane potential, 
whereas the ​​k​ ij​ 1​​ value is the voltage-sensitivity factor, 
which can be expanded as follows:

	​​ k​ ij​ 1​  = ​​ (​​ ​δ​ ij​​ × ​z​ ij​​ × F​)​​​ / ​​(​​R × T​)​​​,​� (2)

where zij is the electrical charge moving over the frac-
tion δij of the electric field, F is Faraday’s constant, R 
is the gas constant, and T is the absolute temperature. 
For voltage-insensitive rates, ​​k​ ij​ 1​  =  0.​ Rate constants that 
depend on other physical variables, such as membrane 
tension, have similar exponential expressions (Gnana-
sambandam et al., 2017). For state transitions that rep-
resent the binding of a ligand, rate constants have the 
following expression:

	​​ k​ ij​​  = ​ k​ ij​ 0​ × ​​[​​L​]​​​,​� (3)

where ​​k​ ij​ 0​​ is the rate constant at unitary ligand con-
centration [L]. When a model lumps several states to-
gether, some rates become macroscopic and contain a 
statistical factor in their expression (e.g., the transition 
between C1 and C2 in the model shown in Fig. 2 B).

The set of ​​k​ ij​ 0​​ and ​​k​ ij​ 1​​ values are the main parameters 
of the kinetic mechanism. Together, the kinetic param-
eters and the topology of the model fully specify the 
mechanism. In turn, the kinetic mechanism describes 
the operation of the channel within the membrane, 

under stationary conditions or in response to stimuli. 
Markov models, computational algorithms, and soft-
ware have been adapted and developed to extract the 
kinetic mechanism from experimental data (Ball and 
Sansom, 1989; Hawkes et al., 1990; Qin et al., 1996, 
2000a,b; Venkataramanan and Sigworth, 2002; Celen-
tano and Hawkes, 2004; Qin and Li, 2004; Milescu et 
al., 2005; Csanády, 2006; Moffatt, 2007; Stepanyuk et al., 
2011, 2014), with two interrelated aims: to find an appro-
priate topology and to estimate the kinetic parameters.

Formulating the topology of the model.� The first step 
in building a kinetic model is to identify a particular 
topology that defines the structural and functional el-
ements of the channel and their connecting pathways. 
The topology can be used to specify the number of 
voltage sensors, the identity of voltage-sensitive transi-
tions, the number of inactivated states, the presence of 
multiple open states, the existence of allosteric rela-
tionships, etc. The model shown in Fig. 2 B illustrates 
how a topology can be formulated to capture the key 
features of a Nav channel kinetic mechanism, as de-
tailed in the Results. This model was based on a large 
body of knowledge accumulated in the field and, not 
surprisingly, has provided a flexible enough frame-
work that explained voltage-clamp recordings of so-
dium currents in several neuronal preparations (Kuo 
and Bean, 1994; Raman and Bean, 2001; Taddese and 
Bean, 2002; Milescu et al., 2010).

In contrast, when little is known about the channel, 
one must take a purely data-driven approach and build 
a parsimonious topology that explains the data reason-
ably well. Of course, if one wishes a realistic model, the 
Eyring theory and related concepts must still be obeyed. 
Some kinetic properties are intuitive enough and can 
be easily translated into model features (Salari et al., 
2016). For example, whole-cell recordings in which the 

Figure 2. E xpressing prior knowl-
edge via model topology and pa-
rameter relationships. (A) An example 
model that captures the kinetic proper-
ties of neuronal sodium channels (Kuo 
and Bean, 1994; Milescu et al., 2010). 
(B) Various assumptions about the 
structural and functional elements of 
the channel are contained in the struc-
ture of the model (the states and their 
connectivity) and in the quantitative 
relationships between rate constants. 
The parameter constraints resulting 
from these assumptions are explained 
in the text. The α and β quantities are 
voltage-dependent rate constants, 
whereas a and b are multiplicative fac-
tors expressing allosteric relationships. 
State labels denote closed (C), closed 
and inactivated (I), and open (O) states.
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current first rises and then decays require a model with 
one conducting and at least two nonconducting states. 
In general, searching for the right topology can be ap-
proached as an iterative process, where one tests a series 
of models of increasing complexity, adding more and 
more states and connections. For each tested model, 
one must determine whether the topology is compati-
ble with the data. If no parameter values can be found 
that result in a good fit, the topology must be reformu-
lated and the parameters reestimated. Because larger 
models can inherently fit better, one should take into 
account the number of degrees of freedom when rank-
ing models. Thus, unless a larger model improves the 
fit substantially, one should give preference to a model 
with fewer free parameters. The search across topolo-
gies can be terminated when the fit no longer improves.

This model search process is not trivial and relies 
heavily on the experience of the investigator. The 
number of nonequivalent (Kienker, 1989) connectiv-
ity schemes can be prohibitively large, even for models 
with a relatively small state count (Bruno et al., 2005). 
A possible solution is to use a smart optimization algo-
rithm that not only estimates parameters for a given 
topology but also searches efficiently across topologies 
at the same time (Gurkiewicz and Korngreen, 2007; 
Menon et al., 2009). Furthermore, one may be able to 
reduce the searched state space by using some infor-
mation contained in the data. For example, statistical 
analysis of single-channel electrical recordings can pro-
vide reasonable estimates on the number of conduc-
tance levels (through visual inspection or amplitude 
histogram analysis) and the minimum number of ki-
netic states in each conductance level (through dwell-
time histogram analysis; Colquhoun and Hawkes, 1982; 
Hawkes et al., 1990). Other methods can provide more 
direct evidence about the structural conformations and 
transition pathways of the channel, such as the number 
of voltage sensors, the number of inactivated states, or 
the identity of voltage- or ligand-dependent transitions 
(Grosman et al., 2000; Ahern et al., 2016). In principle, 
an automated search across model topologies can in-
corporate this information.

Parameter estimation.� A computational procedure for 
finding the “best” parameters for a proposed model to-
pology combines an algorithm that measures how well 
a given model explains the data with an optimization 
engine that searches the parameter space for the “best” 
solution (Fletcher, 2013). This optimal solution mini-
mizes the error between the data and the prediction of 
the model (e.g., the sum of square errors) or maxi-
mizes a probability function (e.g., the likelihood that 
the experimental data were generated by the model or 
the Bayesian posterior probability; Horn and Lange, 
1983; Hawkes et al., 1990; Qin et al., 1996, 2000a; 
Celentano and Hawkes, 2004; Milescu et al., 2005; 

Csanády, 2006; Moffatt, 2007; Calderhead et al., 2013; 
Stepanyuk et al., 2014; Epstein et al., 2016). Intuitively, 
the first approach can be described as minimizing a 
“cost function,” whereas the second, as maximizing a 
“goodness of fit.” Throughout this study, we will use the 
"cost function" term, but with the understanding that it 
could refer to either minimizing the sum of square er-
rors or, equivalently, minimizing the negative log-likeli-
hood. When one also searches for an appropriate 
topology, the value of the cost function can be used as 
a score to rank the model. Even though the kinetic 
mechanism is fully characterized by the ​​k​ ij​ 0​​ and ​​k​ ij​ 1​​ 
parameters, the experimental data typically depend on 
some other parameters as well, such as the number of 
active ion channels, the single-channel conductance, 
and the ionic concentrations. To extract the kinetic 
mechanism from the data, these other parameters may 
need to be coestimated (Colquhoun et al., 1996; Qin et 
al., 2000b; Milescu et al., 2005).

R e s u lt s

Once a model topology is selected to appropriately ex-
press what is known or hypothesized about the channel, 
thus encoding prior knowledge, the next step is to find 
a set of parameters that explain the data well. However, 
these parameters can also contain prior knowledge. In 
fact, the parameter-estimation procedure itself can be 
designed to enforce prior knowledge, by making it gen-
erate parameter values that are in agreement with a set 
of model constraints. We classify these model constraints 
in two categories: (1) parameter constraints, discussed 
in this study, and (2) behavioral constraints, discussed 
in the companion article (Navarro et al., 2018). A pa-
rameter constraint is formulated as an explicit math-
ematical relationship that involves rate constants or 
other model parameters. An example is the scaling of 
one rate constant to another or restricting the range of 
a parameter to positive values. In contrast, a behavioral 
constraint quantifies the behavior of the model under 
certain conditions, without explicitly referring to rate 
constants or other model parameters. An example is 
enforcing the maximum open probability (PO) reached 
by the channel during a specific voltage-clamp stimu-
lation protocol.

The mathematical and computational procedures 
discussed here for enforcing parameter constraints 
are limited to linear relationships. However, nonlin-
ear relationships can be enforced using the mecha-
nism developed for behavioral constraints, presented 
in the second part of this study (Navarro et al., 2018). 
As illustrated in Fig. 1, linear parameter constraints 
that enforce an equality relationship reduce the di-
mensionality of the parameter space, eliminating 
one dimension for each relationship. In contrast, 
both inequality parameter constraints and behavioral 
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constraints preserve dimensionality but reduce the 
size of the parameter space. To describe it intuitively, 
inequality parameter constraints present the opti-
mizer with a reduced road map, whereas behavioral 
constraints guide the optimizer through toll-free  
roads only.

Implementing prior knowledge with linear 
parameter constraints
In this section, we discuss the implementation of prior 
knowledge via linear parameter constraints. To illustrate 
this concept, we use the Nav channel kinetic mechanism 
shown in Fig. 2 A. We chose this model because it covers 
many of the parameter constraints that our formalism 
can enforce. The model was originally formulated (Kuo 
and Bean, 1994) with several mechanistic assumptions 
in mind, which are reflected in the number of states 
and connections, and in the mathematical relationships 
between various kinetic parameters (Fig. 2 B). These as-
sumptions can be regarded and expressed as parame-
ter constraints.

Model assumptions.� The first assumption is that chan-
nel activation involves four identical and independent 
voltage sensors, and all four must be activated to open 
the pore. Thus, to simplify the kinetic mechanism, all 
closed states with the same number n of resting sen-
sors are lumped into a single compound state. The re-
sult is the five-state activation pathway C1 … C5. The 
frequency of activation transitions for any of the com-
pound states C1 … C5 is equal to n times the frequency 
of the activation transition for a single sensor, where n 
is a statistical factor. The same rule applies to deactiva-
tion transitions. For example, when the channel re-
sides in a closed state that has three resting voltage 
sensors (C2, n = 3), the compound activation rate (k2,3) 
is three times the activation rate of a single sensor (k4,5 
or αm). Thus, if k4,5 and k2,1 are the microscopic transi-
tion rates of a single sensor activating or deactivating, 
respectively, the assumption of identical and indepen-
dent voltage sensors is expressed by the following 
mathematical relationships, where one rate is scaled to 
another by a constant factor:

	​​
​k​ 3,4​​  =  2 × ​k​ 4,5​​,   ​ k​ 2,3​​  =  3 × ​k​ 4,5​​,   ​ k​ 1,2​​  =  4 × ​k​ 4,5​​,​    
​k​ 3,2​​  =  2 × ​k​ 2,1​​,   ​ k​ 4,3​​  =  3 × ​k​ 2,1​​,   ​ k​ 5,4​​  =  4 × ​k​ 2,1​​.

 ​​� (4)

Any deviation from the condition of identical and in-
dependent voltage sensors will require a model with 
a different number of states, connections, and statisti-
cal factors along the activation pathway. In fact, these 
constant multiplication factors (2, 3, and 4) could 
be replaced with unknown cooperativity factors, to 
be determined from the experimental data, similar 
to the inactivation allosteric factors introduced next. 
The same principles apply to ligand-gated ion chan-
nel mechanisms. In this case, the statistical factors can 

be used to describe the relationships between the li-
gand-binding sites.

Another assumption is that the channel can inac-
tivate not only from the open state O6 but also from 
any of the C1 … C5 closed states into the I7 … I12 inac-
tivated states. However, the transition into inactiva-
tion from the closed states depends on the degree of 
activation: as more voltage sensors are activated, the 
C to I transitions become faster, whereas the I to C 
transitions become slower. As envisioned in the orig-
inal model, this property is implemented with the al-
losteric factors a and b. Thus, the rate of inactivation 
from a closed state Cn is equal to the rate of inactiva-
tion from the previous closed state Cn−1, multiplied 
by the a factor. For example, k2,8 = a × k1,7, k3,9 = a × 
k2,8, etc. The opposite is true for the return rates: k8,2 
= b−1 × k7,1, k9,3 = b−1 × k8,2, etc. Taking k1,7 and k7,1 
as the reference microscopic rates, this assumption 
is expressed by the following mathematical relation-
ships, where one rate is scaled to another by an unde-
termined factor:

​​
​k​ 2,8​​  =  a × ​k​ 1,7​​,   ​ k​ 3,9​​  = ​ a​​ 2​ × ​k​ 1,7​​,   ​ k​ 4,10​​  = ​ a​​ 3​ × ​k​ 1,7​​,

​     ​k​ 5,11​​  = ​ a​​ 4​ × ​k​ 1,7​​,   ​ k​ 8,2​​  = ​ b​​ −1​ × ​k​ 7,1​​,   ​ k​ 9,3​​  = ​ b​​ −2​ × ​k​ 7,1​​,​     

​k​ 10,4​​  = ​ b​​ −3​ × ​k​ 7,1​​,   ​ k​ 11,5​​  = ​ b​​ −4​ × ​k​ 7,1​​.

 ​​�   
� (5)

Furthermore, the voltage sensors can also activate when 
the channel is inactivated, along the I7 … I11 pathway, 
but with different kinetics. This is also encoded by the 
allosteric factors a and b, resulting in another set of sim-
ilar mathematical relationships:

​​

​k​ 10,11​​  =  a × ​k​ 4,5​​,    ​ k​ 9,10​​  =  a × ​k​ 3,4​​,   ​ k​ 8,9​​  =  a × ​k​ 2,3​​,

​     ​k​ 7,8​​  =  a × ​k​ 1,2​​,   ​ k​ 8,7​​  = ​ b​​ −1​ × ​k​ 2,1​​,   ​ k​ 9,8​​  = ​ b​​ −1​ × ​k​ 3,2​​,​     
​k​ 10,9​​  = ​ b​​ −1​ × ​k​ 4,3​​,   ​ k​ 11,10​​  = ​ b​​ −1​ × ​k​ 5,4​​.

 ​​�   
� (6)

Overall, this allosteric coupling between activation 
and inactivation can explain the apparently contra-
dictory findings that inactivation appears strongly 
voltage sensitive but only minimal electrical charge 
is detected to move within the channel during inac-
tivation (Armstrong and Bezanilla, 1977). Generally, 
allosteric factors, such as the a and b quantities in 
Eqs. 5 and 6, are unknown and need to be deter-
mined from the data.

Finally, the last assumption is that the channel sat-
isfies the condition of microscopic reversibility, i.e., 
no energy input is required for gating and opening. 
Under this condition, for any reaction loop in the 
model, the clockwise product of rates around the 
loop must equal the counterclockwise product (Song 
and Magleby, 1994; Rothberg and Magleby, 2001; Col-
quhoun et al., 2004). As the model in Fig. 2 A has five 
independent loops, the following mathematical rela-
tionships must hold true:
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	​​

​k​ 1,2​​ × ​k​ 2,8​​ × ​k​ 8,7​​ × ​k​ 7,1​​ =

​  

​k​ 2,1​​ × ​k​ 8,2​​ × ​k​ 7,8​​ × ​k​ 1,7​​​ ​(​​for the  ​C​ 1​​ ​-C​ 2​​ ​-I​ 8​​ ​-I​ 7​​ ​-C​ 1​​  loop​)​​​,

​     

​k​ 2,3​​ × ​k​ 3,9​​ × ​k​ 9,8​​ × ​k​ 8,2​​ =

​  

​k​ 3,2​​ × ​k​ 9,3​​ × ​k​ 8,9​​ × ​k​ 2,8​​​ ​(​​ ​C​ 2​​ ​-C​ 3​​ ​-I​ 9​​ ​-I​ 8​​ ​-C​ 2​​​)​​​,

​    
​k​ 3,4​​ × ​k​ 4,10​​ × ​k​ 10,9​​ × ​k​ 9,3​​ =​  
​k​ 4,3​​ × ​k​ 10,4​​ × ​k​ 9,10​​ × ​k​ 3,9​​​ ​(​​ ​C​ 3​​ ​-C​ 4​​ ​-I​ 10​​ ​-I​ 9​​ ​-C​ 3​​​)​​​,

​    

​k​ 4,5​​ × ​k​ 5,11​​ × ​k​ 11,10​​ × ​k​ 10,4​​ =

​  

​k​ 5,4​​ × ​k​ 11,5​​ × ​k​ 10,11​​ × ​k​ 4,10​​​ ​(​​ ​C​ 4​​ ​-C​ 5​​ ​-I​ 11​​ ​-I​ 10​​ ​-C​ 4​​​)​​​,

​    

​k​ 5,6​​ × ​k​ 6,12​​ × ​k​ 12,11​​ × ​k​ 11,5​​ =

​  

​k​ 6,5​​ × ​k​ 12,6​​ × ​k​ 11,12​​ × ​k​ 5,11​​​ ​(​​ ​C​ 5​​ ​-O​ 6​​ ​-I​ 12​​ ​-I​ 11​​ ​-C​ 5​​​)​​​.

 ​​�  (7)

Voltage- and ligand-dependent rate constants.� Some of 
the mathematical relationships used to express parame-
ter constraints may involve rate constants that are func-
tions of membrane potential. Unless otherwise 
specified, all these mathematical relationships must be 
true for any membrane potential value. For example, 
the scaling relationship ​​k​ 3,4​​  =  2 × ​k​ 4,5​​​ in Eq. 4 can be ex-
panded as follows:

	​​ k​ 3,4​ 0 ​  × exp ​​(​​​k​ 3,4​ 1 ​  × V​)​​​  =  2 × ​k​ 4,5​ 0 ​  × exp ​​(​​​k​ 4,5​ 1 ​  × V​)​​​.​� (8)

A logarithm transformation can be applied to convert 
products into sums:

	​ ln ​​(​​​k​ 3,4​ 0 ​​ )​​​ + ​k​ 3,4​ 1 ​  × V  =  ln ​​(​​2​)​​​ + ln ​​(​​​k​ 4,5​ 0 ​​ )​​​ + ​k​ 4,5​ 1 ​  × V.​� (9)

Rearranging the terms gives the following:

	​ ln ​​(​​​k​ 3,4​ 0 ​​ )​​​ − ln ​​(​​​k​ 4,5​ 0 ​​ )​​​ + V × ​​(​​​k​ 3,4​ 1 ​  − ​k​ 4,5​ 1 ​​ )​​​  =  ln ​​(​​2​)​​​.​� (10)

This relationship must be true when V = 0, in which case 
it simplifies to

	​ ln ​​(​​​k​ 3,4​ 0 ​​ )​​​ − ln ​​(​​​k​ 4,5​ 0 ​​ )​​​  =  ln ​​(​​2​)​​​.​� (11)

Using this result in Eq. 10, we obtain the following:

	​​ k​ 3,4​ 1 ​  − ​k​ 4,5​ 1 ​   =  0.​� (12)

Thus, to enforce a scaling relationship between two 
voltage-dependent rate constants, the two mathemati-
cal relationships above (Eqs. 11 and 12) must be simul-
taneously satisfied. The same reasoning can be applied 
to other types of constraints. For example, after taking 
the logarithm and rearranging the terms, the first loop 
balance constraint in Eq. 7 becomes

	​​

ln ​​(​​ ​k​ 1,2​ 0 ​​ )​​​ − ln ​​(​​ ​k​ 2,1​ 0 ​​ )​​​ + ln ​​(​​ ​k​ 2,8​ 0 ​​ )​​​ − ln ​​(​​ ​k​ 8,2​ 0 ​​ )​​​+

​    ln ​​(​​ ​k​ 8,7​ 0 ​​ )​​​ − ln ​​(​​ ​k​ 7,8​ 0 ​​ )​​​ + ln ​​(​​ ​k​ 7,1​ 0 ​​ )​​​ − ln ​​(​​ ​k​ 1,7​ 0 ​​ )​​​+​    

V × ​​(​​ ​k​ 1,2​ 1 ​  − ​k​ 2,1​ 1 ​  + ​k​ 2,8​ 1 ​  − ​k​ 8,2​ 1 ​  + ​k​ 8,7​ 1 ​  − ​k​ 7,8​ 1 ​  + ​k​ 7,1​ 1 ​  − ​k​ 1,7​ 1 ​​ )​​​  =  0.

​​� (13)

For Eq. 13 to be true, two mathematical relationships 
must be simultaneously satisfied:

	​​

ln ​​(​​​k​ 1,2​ 0 ​​ )​​​ − ln ​​(​​​k​ 2,1​ 0 ​​ )​​​ + ln ​​(​​​k​ 2,8​ 0 ​​ )​​​ − ln ​​(​​​k​ 8,2​ 0 ​​ )​​​+

​    ln ​​(​​​k​ 8,7​ 0 ​​ )​​​ − ln ​​(​​​k​ 7,8​ 0 ​​ )​​​ + ln ​​(​​​k​ 7,1​ 0 ​​ )​​​ − ln ​​(​​​k​ 1,7​ 0 ​​ )​​​  =  0  ​    

and  ​k​ 1,2​ 1 ​  − ​k​ 2,1​ 1 ​  + ​k​ 2,8​ 1 ​  − ​k​ 8,2​ 1 ​  + ​k​ 8,7​ 1 ​  − ​k​ 7,8​ 1 ​  + ​k​ 7,1​ 1 ​  − ​k​ 1,7​ 1 ​   =  0.

​​� (14)

Some kinetic mechanisms involve state transitions asso-
ciated with the binding of a ligand (Grosman et al., 2000; 
Burzomato et al., 2004; Akk et al., 2005). For example, a 
relationship where one ligand-dependent rate constant 
kij is scaled by a constant factor c to another ligand- 
dependent rate constant kkl can be expanded as follows:

	​​
​k​ ij​ 0​ × ​​[​​L​]​​​  =  c × ​k​ kl​ 0 ​ × ​​[​​L​]​​​  ⇒

​   
ln ​​(​​ ​k​ ij​ 0​​)​​​ + ln ​​(​​​​[​​L​]​​​​)​​​  =  ln ​​(​​c​)​​​ + ln ​​(​​ ​k​ kl​ 0 ​​)​​​ + ln ​​(​​​​[​​L​]​​​​)​​​,

​​ 
 
�  
� (15)

with the final solution:

	​ ln ​​(​​​k​ ij​ 0​​)​​​ − ln ​​(​​​k​ kl​ 0 ​​)​​​  =  ln ​​(​​c​)​​​.​� (16)

Relationships involving voltage- or ligand-dependent 
rate constants have some special restrictions that have a 
simple mathematical provenance: (a) if a rate is scaled 
to another rate, their voltage sensitivities must be equal 
(or trivially zero); thus, a voltage-dependent rate can-
not be scaled to a voltage-independent rate, except for 
a single voltage value; (b) if a loop involves only one 
voltage-dependent transition, then the forward and 
backward voltage-sensitivity factors for that transition 
must be equal (or zero); a more typical and useful 
scenario would require at least two voltage-dependent 
transitions in the loop; and (c) a mathematical rela-
tionship that involves ligand-dependent transitions 
cannot be satisfied for all ligand concentrations, unless 
the algebraic sum of all the ln([L]) terms is equal to 
zero. Thus, a ligand-dependent rate cannot be scaled 
to a ligand-independent rate, except for a single con-
centration value. In the case of microscopic revers-
ibility, this condition requires that the clockwise and 
counterclockwise transitions around the loop involve 
the same number of ligand-dependent steps. When 
the channel binds multiple types of ligands, each type 
must satisfy these conditions. Models formulated with-
out taking these precautions are, in principle, physi-
cally unrealistic.

Allosteric, statistical, and other multiplicative factors.� 
Multiplicative factors can be introduced in the rate con-
stant equation to formulate macroscopic rates and to 
express a variety of parameter constraints. One obvious 
application is to implement allosteric model behavior, 
as previously discussed, where the a and b factors multi-
ply the rate constant pre-exponential term ​​k​ ij​ 0​.​ However, 
multiplicative factors can also be introduced within the 
exponential in Eq. 1. So far, we lumped the voltage sen-
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sitivity as a single factor, ​​k​ ij​ 1​,​ but, in fact, we may need to 
consider the other quantities in Eq. 2. For example, one 
may want to introduce explicit temperature depen-
dence for a rate. In this case, ​​k​ ij​ 1​​ can be factorized by the 
following constraint expression:

	​​ k​ ij​ 1​  = ​ a​ k​​ × ​C​ k​​,​� (17)

where ak is a multiplicative factor that stands for δij × zij, 
and Ck is a numerical constant equal to F/RT, as in Eq. 
2. This approach would make it possible to mix data 
collected at different temperatures, in the same way as 
we can already account for different voltages or ligand 
concentrations.

As another example, one may want to enforce a rela-
tionship between the δij and δji values for a given tran-
sition, such as δij = 1 − δji. In this case, assuming that zij 
and zji are known quantities, we would write the follow-
ing constraint expressions:

	​​ k​ ij​ 1​  = ​ a​ k1​​ × ​C​ k​​,   ​ k​ ji​ 1​  = ​ a​ k2​​ × ​C​ k​​,   ​ a​ k1​​  =  1 − ​a​ k2​​,​� (18)

where ak1 and ak2 are multiplicative factors that stand for 
δij and δji, respectively, and Ck is a numerical constant 
equal to zF/RT, where z = zij = zji.

As the multiplicative factors are logarithmically trans-
formed, they are subject to some restrictions. Thus, a 
pre-exponential parameter ​​k​ ij​ 0​​ can only be constrained 
to an unlimited product of multiplicative factors and 
other pre-exponential parameters, each raised to an 
arbitrary power:

	​​ k​ ij​ 0​  =  C × ​∏ k​ ​​ ​​a​ k​​​​ ​C​ k​​​ × ​∏ m,n​ ​​ ​​k​ mn​ 0 ​​​ 
​C​ mn​​

​,​� (19)

where C is a positive numerical constant. Taking the 
logarithm from ​​k​ ij​ 0​​ will convert this product into a linear 
sum. In contrast, an exponential parameter ​​k​ ij​ 1​​ can only 
be constrained to an unlimited sum of multiplicative 
factors and other exponential parameters, each multi-
plied by an arbitrary numerical constant:

	​​ k​ ij​ 1​  =  C + ​∑ k​ ​​ ​C​ k​​ × ​a​ k​​ + ​∑ m,n​ ​​ ​C​ mn​​ × ​k​ mn​ 1 ​ ,​� (20)

where C is an arbitrary constant. As explained fur-
ther, a given multiplicative factor can only be used as 
a pre-exponential-type factor, as in Eq. 19, or as an 
exponential-type factor, as in Eq. 20, but not as both 
simultaneously.

Inequality constraints.� So far, we have only considered 
parameter constraints that are formulated as mathe-
matical equalities. However, prior knowledge may 
also be expressed through inequality parameter con-
straints. First, there is a physical requirement that all 
pre-exponential rate parameters ​​k​ ij​ 0​​ must be greater 
than zero because transition frequencies are positive 

numbers. Likewise, quantities that multiply rate con-
stants, such as the a and b allosteric factors in Eqs. 5 
and 6, must also be restricted to positive values in 
order to keep rates positive. Both of these constraints 
are automatically handled by the logarithm transfor-
mation of variable, as explained further down. In 
contrast, the exponential factors ​​k​ ij​ 1​​ are in principle 
free to take any value in the –∞ to +∞ range, but they 
can also be restricted by a variety of inequality con-
straints. For example, we may want the voltage sensi-
tivity parameter to be greater than zero for 
voltage-sensor activation, and less than zero for  
deactivation:

	​​ k​ ij​ 1​  ≥  0 ​​ (​​activation​)​​​,   ​ k​ ji​ 1​  ≤  0 ​​ (​​deactivation​)​​​.​� (21)

Applying any of these constraints could be a useful 
working hypothesis during the initial stages of formu-
lating a model. Subsequently, these constraints could 
be relaxed. In reality, the forward and backward values 
can both have the same sign: as long as the activation 
value is more positive than the deactivation value (​​k​ ij​ 1​  ≥ ​
k​ ji​ 1​​), the channel will be more activated at more positive 
membrane potentials, as is the case with Nav and other 
voltage-gated channels.

To give another hypothetical example, we may want the 
ratio between two rate constants at a certain membrane 
potential V0 to be smaller than a numerical constant c:

	​​

​k​ ij​​ / ​k​ kl​​  ≤  c  ⇒

​  ​​[​​ ​k​ ij​ 0​ × exp ​​(​​ ​k​ ij​ 1​ × ​V​ 0​​​)​​​​]​​​ / ​​[​​ ​k​ kl​ 0 ​ × exp ​​(​​ ​k​ kl​ 1 ​ × ​V​ 0​​​)​​​​]​​​  ≤  c  ⇒​    

ln ​​(​​ ​k​ ij​ 0​​)​​​ − ln ​​(​​ ​k​ kl​ 0 ​​)​​​ + ​V​ 0​​ × ​​(​​ ​k​ ij​ 1​ − ​k​ kl​ 1 ​​)​​​  ≤  ln ​​(​​c​)​​​.

 ​​�   
� (22)

All of these “≤” or “≥” inequalities can be converted to 
equality relationships by subtracting or adding, respec-
tively, a positive quantity to the right side of the inequal-
ity. For example, in Eq. 22, we can subtract z2, a quantity 
that, by definition, is positive:

	​ ln ​​(​​​k​ ij​ 0​​)​​​ − ln ​​(​​​k​ kl​ 0 ​​)​​​ + ​V​ 0​​ × ​​(​​​k​ ij​ 1​ − ​k​ kl​ 1 ​​)​​​  ≤  ln ​​(​​c​)​​​ − ​z​​ 2​.​� (23)

As long as the inequality condition in Eq. 23 is satisfied 
for z = 0, we can find a value for z that converts the in-
equality into an equality:

	​ ln ​​(​​​k​ ij​ 0​​)​​​ − ln ​​(​​​k​ kl​ 0 ​​)​​​ + ​V​ 0​​ × ​​(​​​k​ ij​ 1​ − ​k​ kl​ 1 ​​)​​​  =  ln ​​(​​c​)​​​ − ​z​​ 2​.​� (24)

If we want the above ratio between two rate constants to 
be smaller than a numerical constant at any voltage V, 
not just at V0, then we have

	​ ln ​​(​​​k​ ij​ 0​​)​​​ − ln ​​(​​​k​ kl​ 0 ​​)​​​ + V × ​​(​​​k​ ij​ 1​ − ​k​ kl​ 1 ​​)​​​  =  ln ​​(​​c​)​​​ − ​z​​ 2​.​� (25)

Because this is an equality, we follow the same logic as 
for equality constraints: the above relationship must 
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also be true when V = 0, and thus, we obtain two simul-
taneous relationships:

	​ ln ​​(​​​k​ ij​ 0​​)​​​ − ln ​​(​​​k​ kl​ 0 ​​)​​​  =  ln ​​(​​c​)​​​ − ​z​​ 2​,   ​ k​ ij​ 1​ − ​k​ kl​ 1 ​  =  0.​� (26)

For "≥" inequalities, we must add z2 to the right side, 
rather than subtract it.

In the jargon of optimization theory, z is called a “slack” 
variable (Fletcher, 2013). With equality constraints, one 
has to find a set of model parameters that satisfy a set of 
relationships. When inequalities are added to the model 
and transformed into equalities using slack variables, 
one has to find both a set of model parameters and a 
set of slack variables that together satisfy the constraint 
relationships. A slack variable is not a true parameter 
of the model, but merely a variable that is temporarily 
used to handle inequality constraints during the search 
for optimum parameters. Very importantly, the quantity 
added or subtracted via slack variables must take posi-
tive values, which is why we use z2 and not z. The reason 
for converting inequality relationships to equalities is to 
have all linear constraints handled by the same linear 
algebra mathematical formalism, as explained further.

Model parameters.� As discussed in the previous section, 
the core parameters of a kinetic model are ​​k​ ij​ 0​​ and ​​k​ ij​ 1​​, 
together with some optional multiplicative factors ak 
that describe allosteric coupling or other properties 
(e.g., the a and b allosteric factors in the model shown 
in Fig. 2 B) or help parameterizing the rate constants in 
more detail. However, other parameters ql may also be 
added to the modeling framework, depending on the 
particular application. These external parameters are 
not necessarily present in any of the rate constant ex-
pressions. Instead, they may describe the data or exper-
imental variables. For example, when fitting macroscopic 
currents, one may also need to estimate the number of 
channels in the record or the single channel conduc-
tance (Milescu et al., 2005). Thus, we define a set K, of 
size NK, which contains all of these model parameters:

	​ K  = ​ {​k​ ij​ 0​, ​k​ ij​ 1​, ​a​ k​​, ​q​ l​​}​.​� (27)

All of these quantities, which we term “rate constant 
parameters” (pre-exponential ​​k​ ij​ 0​​ and exponential ​​k​ ij​ 1​​), 
“multiplicative factors” (ak), and “external parameters” 
(ql), may be involved in the mathematical relationships 
that express parameter constraints, as discussed further.

A general equation for linear parameter constraints.� All 
the mathematical relationships that were used to imple-
ment the assumptions made for the Nav model in 
Fig. 2 A have something in common: regardless of type 
(scaling, microscopic reversibility, etc.), each of these 
equality and inequality parameter constraints result in 
one or two equations involving ​ln ​​(​​​k​ ij​ 0​​)​​​​, ​​k​ ij​ 1​​, ak, and z2, 

each multiplied by a constant. Although not shown in 
these examples, those relationships can also contain ex-
ternal parameters ql. Thus, a general form that covers 
all these examples can be written as follows:

​​
​∑ i,j​ ​​​​[​​ ​C​ ij​ 0​ × ln ​​(​​ ​k​ ij​ 0​​)​​​​]​​​ + ​∑ i,j​ ​​​​(​​ ​C​ ij​ 1​ × ​k​ ij​ 1​​)​​​ + ​∑ k​ ​​​​[​​ ​C​ k​​ × ​f​ k​​​​(​​ ​a​ k​​​)​​​​]​​​+

​     
​∑ l​ ​​​​[​​ ​C​ l​​ × ​f​ l​​​​(​​ ​q​ l​​​)​​​​]​​​  =  C,    ​​(​​equality​)​​​

 ​​�   
� (28)

​​
​∑ i,j​ ​​​​[​​ ​C​ ij​ 0​ × ln ​​(​​ ​k​ ij​ 0​​)​​​​]​​​ + ​∑ i,j​ ​​​​(​​ ​C​ ij​ 1​ × ​k​ ij​ 1​​)​​​ + ​∑ k​ ​​​​[​​ ​C​ k​​ × ​f​ k​​​​(​​ ​a​ k​​​)​​​​]​​​+

​     
​∑ l​ ​​​​[​​ ​C​ l​​ × ​f​ l​​​​(​​ ​q​ l​​​)​​​​]​​​  =  C + ​C​ z​​ × ​z​​ 2​,  ​​ (​​inequality​)​​​

 ​​�   
� (29)

where fk is an invertible function of the multiplicative 
factor ak (e.g., ​​f​ k​​​​(a​ k​​​)​​​  ≡  ln ​​(a​ k​​​)​​​​ or ​​f​ k​​​​(a​ k​​)​​​  ≡ ​ a​ k), and fl is 
an invertible function of the external model parameter 
ql. The ​​C​ ij​ 0​,   ​C​ ij​ 1​,​ Ck, Cl, C, and Cz quantities are numerical 
constants, with Cz = 1 for a “≥” inequality, and Cz = −1 
for a “≤” inequality.

Specific parameter constraints (e.g., scaling one rate 
constant to another) can be obtained from the general 
equation by selecting a subset of ​ln ​​(​​​k​ ij​ 0​​)​​​,   ​k​ ij​ 1​,​ fk(ak), and 
fl(ql) via nonzero multiplication constants ​​C​ ij​ 0​,    ​C​ ij​ 1​,​ Ck, 
or Cl. As discussed throughout the article, a variety of 
useful constraints can be implemented using this mech-
anism, such as making a rate equal to a constant, scal-
ing two rates by a constant factor, scaling two rates by a 
variable factor, constraining the total charge for a set 
of transitions, enforcing microscopic reversibility, con-
straining a reaction loop out of microscopic balance, 
restricting a model parameter to a range, expressing ex-
plicit temperature dependence, etc. Some of these con-
straints will require a single mathematical relationship, 
whereas others will require two. We note that using mul-
tiplicative factors in constraints generally makes sense 
when the same factor is used in multiple relationships. 
Otherwise, these factors can be simply calculated after 
the parameters are estimated.

Converting between model parameters and free param-
eters.� One can easily verify that the model in Fig. 2 B 
was parameterized in such a way as to implicitly satisfy 
most assumptions: identical and independent voltage 
sensors, allosteric coupling of inactivation to activation, 
and microscopic reversibility. For example, the condi-
tion of identical and independent voltage sensors is en-
forced by the 4, 3, 2, 1 or 1, 2, 3, 4 statistical factors 
multiplying the αm or βm quantities, respectively. In 
other words, any values can be assigned to the model 
parameters, ​​α​ m​ 0 ​,   ​α​ m​ 1 ​,​ a, b, etc., and the assumptions will 
be automatically satisfied. There is only one exception: 
the C5–O6–I12–I11–C5 reaction loop is not implicitly bal-
anced. In this case, the balance equation (i.e., αmo × βho 
× βmh × b−4 × αh = βmo × a4 × βh × αmh × αho) is not true by 
definition. Instead, it must be enforced by choosing an 
appropriate set of numerical values for all the parame-
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ters involved. In contrast, all the other loops are auto-
matically balanced (e.g., 4αm × βh × a × βm × b−1 × αh = βm 
× βh × 4αm × a × αh × b−1).

To formulate a parameterization that implicitly satis-
fies all parameter constraints, a commonly used strategy 
is to identify a subset of independent model parameters 
that can be estimated by the optimization engine and 
a subset of dependent parameters that can be simply 
derived from the independent ones. This is exactly how 
the model in Fig. 2 B was formulated. However, finding 
this parameterization is not trivial in some cases (Col-
quhoun et al., 2004). Moreover, it is not clear to us how 
constraints that are defined by inequality relationships 
would be handled by this type of parameterization. A 
potentially easier and certainly more flexible strategy is 
to define the constraints as an invertible transformation 
fc between the set of interdependent model parameters 
K and a set of independent or “free” parameters X:

	​ X  = ​ f​ C​​​​(​​K​)​​​,   K  = ​ f​ C​ -1​​​(​​X​)​​​.​� (30)

Thus, the model is defined by the K parameters, which 
are interdependent and thus cannot take arbitrary val-
ues but only those values that satisfy the user-defined 
parameter constraints. In contrast, the X parameters 
are independent of each other and are “free” to take 
any value in the –∞ to +∞ range. We emphasize that the 
X parameters are not simply a subset of K, as explained 
in the following paragraphs. These free parameters are 
passed to a model-blind optimizer that can search with-
out any constraint in the parameter space defined by 
X, where it finds a solution that best explains the data. 
This optimal solution can be translated from the free 
parameter space back into the model parameter space, 
via the ​​f​ C​ −1​​ transformation.

If we want to implement the linear parameter con-
straints defined by Eq. 28 or 29, how do we define the 
fC and ​​f​ C​ -1​​ transformations that translate the model pa-
rameters K into the free parameters X and vice versa? 
In preparation for this, we need to recognize that the 
left side of the generalized Eq. 28 or 29 is nonlinear 
with respect to ​​k​ ij​ 0​​ and ak, and perhaps to some external 
parameter ql. However, we can make the following in-
vertible transformations of variable:

	​​
​ε​ ij​ 0 ​  =  ln ​​(​​ ​k​ ij​ 0​​)​​​,   ​ k​ ij​ 0​  =  exp ​​(​​ ​ε​ ij​ 0 ​​)​​​, ​  ϕ​ k​​  = ​ f​ k​​​​(​​ ​a​ k​​​)​​​,

​    
​a​ k​​  = ​ f​ k​ -1​​​(​​ ​ϕ​ k​​​)​​​, ​  φ​ l​​  = ​ f​ l​​​​(​​ ​q​ l​​​)​​​,   ​ q​ l​​  = ​ f​ l​ -1​​​(​​ ​φ​ l​​​)​​​.

 ​​�  (31)

If the multiplicative factor ak is an allosteric factor or a 
similar quantity that multiplies a rate constant kij, then 
fk(ak) is ln(ak), which is invertible. If ak is a factor that 
multiplies a voltage-sensitivity parameter ​​k​ ij​ 1​​, then fk(ak) 
is ak, which is obviously invertible as well. Similar logic 
applies to the external parameters ql. For example, if ql 
refers to the number of channels, we can also use the 
logarithm transformation (Milescu et al., 2005). In all 

cases, the logarithm has two desirable effects: it restricts 
the variables to positive values, and it scales the param-
eters to more similar values relative to each other, help-
ing the optimization engine to find the solution.

We can rewrite the generalized Eqs. 28 and 29 with 
these transformations of variable:

​​
​∑ i,j​ ​​​​(​​ ​C​ ij​ 0​ × ​ε​ ij​ 0 ​​)​​​ + ​∑ i,j​ ​​​​(​​ ​C​ ij​ 1​ × ​k​ ij​ 1​​)​​​+

​   
​∑ k​ ​​​​(​​ ​C​ k​​ × ​ϕ​ k​​​)​​​ + ​∑ l​ ​​​​(​​ ​C​ l​​ × ​φ​ l​​​)​​​  =  C ​​ (​​equality​)​​​,

​​� (32)

​​
​∑ i,j​ ​​​​(​​ ​C​ ij​ 0​ × ​ε​ ij​ 0 ​​)​​​ + ​∑ i,j​ ​​​​(​​ ​C​ ij​ 1​ × ​k​ ij​ 1​​)​​​+

​   
​∑ k​ ​​​​(​​ ​C​ k​​ × ​ϕ​ k​​​)​​​ + ​∑ l​ ​​​​(​​ ​C​ l​​ × ​φ​ l​​​)​​​  =  C + ​C​ z​​ × ​z​​ 2​  ​​ (​​inequality​)​​​.

​​�  
� (33)

The left side of these equations is now linear with re-
spect to ​​ε​ ij​ 0 ​,   ​k​ ij​ 1​,​ ϕk, and φl. Next, we define a vector R, of 
dimension NR, with elements that correspond to ​​ε​ ij​ 0 ​,   ​k​ ij​ 1​,​ 
ϕk, and φl. For a more intuitive notation, we refer to an 
element of R as ri, when its type is unspecified, or as ​​r​ ij​ 0​,   ​
r​ ij​ 1​,​ rk, or rl, when we emphasize its identity as a specific 
type of model parameter (​​k​ ij​ 0​,   ​k​ ij​ 1​,​ ak, or ql, respectively). 
R has the same size as K (NR = NK). Thus, a parameter 
constraint is expressed as a linear relationship between 
the elements ri of R, as follows:

	​​ ∑ i​ ​​ ​C​ i​​ × ​r​ i​​  =  C,  ​​ (​​equality​)​​​​� (34)

	​​ ∑ i​ ​​ ​C​ i​​ × ​r​ i​​  =  C + ​C​ z​​ × ​z​​ 2​,  ​​ (​​inequality​)​​​​� (35)

where Ci stands for one of the numerical constants ​​C​ ij​ 0​,   ​
C​ ij​ 1​,​ Ck, or Cl, respectively. Then, assuming that we have 
NC constraint relationships, we can write the general-
ized constraint from Eqs. 34 or 35 in a more compact 
matrix form (Qin et al., 1996; Fletcher, 2013), as follows:

	​ M × R  =  V,​� (36)

where M is a matrix of dimension NC × NR, and V is a 
vector of dimension NC. Each row of M corresponds to 
the numerical constants on the left side of the gener-
alized Eqs. 34 or 35, whereas each element of V rep-
resents the right side of Eqs. 34 or 35:

	​​

​​
⎛
 ⎜ 

⎝
​
…

​ 
​​(​​ ​C​ ij​ 0​​)​​​ 1​​

​ 
​​(​​ ​C​ ij​ 1​​)​​​ 1​​

​ 
…

​ 
​​(​​ ​C​ k​​​)​​​ 1​​

​ 
…

​ 
​​(​​ ​C​ l​​​)​​​ 1​​

​ 
…

​    …​  …​  …​  …​  …​  …​  …​  …​    
…

​ 
​​(​​ ​C​ ij​ 0​​)​​​ ​N​ C​​​​

​ 
​​(​​ ​C​ ij​ 1​​)​​​ ​N​ C​​​​

​ 
…

​ 
​​(​​ ​C​ k​​​)​​​ ​N​ C​​​​

​ 
…

​ 
​​(​​ ​C​ l​​​)​​​ ​N​ C​​​​

​ 
…

​
⎞
 ⎟ 

⎠
​​ 

​(​​M​)​​

​​

​     

×    ​​

⎛

 ⎜ 

⎝

​ 

…

​ 

​ε​ ij​ 0 ​

​ 
​k​ ij​ 1​

​ …​ 
​ϕ​ k​​

​ 

…

​ 

​φ​ l​​

​ 

…

 ​

⎞

 ⎟ 

⎠

​​ 

​(​​R​)​​

​​  =     ​​

⎛
 ⎜ 

⎝
​
​​(​​C​)​​​ 1​​

​ 
or

​ 
​​(​​C + ​C​ z​​ × ​z​​ 2​​)​​​ 1​​

​  ​​  ​​  …​  
​​(​​C​)​​​ ​N​ C​​​​

​ 
or

​ 
​​(​​C + ​C​ z​​ × ​z​​ 2​​)​​​ ​N​ C​​​​

​

⎞
 ⎟ 

⎠
​​ 

​(​​V​)​​

​​.

 ​​�   
� (37)

Thus, each linear relationship between the ​​ε​ ij​ 0 ​,   ​k​ ij​ 1​,​  
ϕk, and φl variables is encoded by row c of matrix M 
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and element c of vector V. Eq. 36 encapsulates, in ma-
trix form, all the linear parameter constraints imposed 
on the model, including both equality and inequal-
ity relationships.

Although they linearize the constraint relationships, 
the transformed model parameters R are still interde-
pendent through the constraint relationships. How do 
we remove the interdependence and convert R into the 
set of free parameters X? Ignoring, for now, that V is not 
a constant vector because it depends (nonlinearly) on 
the optional slack variables z, we can take advantage of 
the linear form of the matrix equation M × R = V and 
express R as a linear function of X (Qin et al., 1996) 
and vice versa:

	​ R  =  A × X + B,​� (38)

	​ X  = ​ A​​ −1​ × R,​� (39)

where the vector X, of dimension NX = NR − NC, con-
tains the independent parameters. Note that Eq. 39 is 
obtained from X = A−1 × (R − B), because A−1 multi-
plied by B is equal to a zero vector. The matrix A, of 
dimension NR × NX, and the vector B, of dimension NR, 
can be determined from M and V using the singular 
value decomposition (Golub and Reinsch, 1970). First, 
M is decomposed as follows:

	​ M  = ​ U​ M​​ × ​S​ M​​ × ​​V​ M​​​​ T​,​� (40)

where UM is an orthogonal matrix of dimension NC × 
NC, VM is an orthogonal matrix of dimension NR × NR, 
and SM is a diagonal matrix of dimension NC × NR that 
contains the singular values of matrix M. Then, A can 
be extracted as a submatrix of VM:

	​​ A​ i=1…​N​ R​​, j=1…​N​ X​​​​  = ​​ V​ M ​​​ i=1…​N​ R​​, j=​N​ C​​…​N​ R​​​​.​� (41)

The inverse of the A matrix, A−1, is similarly obtained 
from ​​​V​ M​​​​ -1​​. Because VM is orthogonal, ​​​V​ M​​​​ -1​​ is simply 
equal to VM transposed (​​​V​ M​​​​ T​​). Then, B can be calcu-
lated as follows:

	​ B  = ​ M​​ +​ × V,​� (42)

where the matrix M+, of dimension NR × NC, is the pseu-
doinverse of M and can be calculated as follows:

	​​ M​​ +​  = ​ V​ M​​ × ​​S​ M​​​​ +​ × ​​U​ M​​​​ T​,​� (43)

where ​​​S​ M​​​​ +​​ is obtained from SM by replacing all nonzero 
diagonal elements (the singular values) with their in-
verse. With the A and B matrices obtained as in Eqs. 41 
and 42, we can now calculate R from K, and then X from 
R, and vice versa.

How do we deal with inequality constraints and slack 
variables? We found a solution that is actually quite 
simple, although, perhaps, not immediately obvious. 
First, we define a vector Z, of dimension NZ equal to 
the number of inequality constraints. This vector con-
tains all the slack variables, one for each inequality con-
straint. Then, we define another vector ​​X ¯ ​​, which is the 
union of X and Z:

	​​ X ¯ ​  =  X ∪ Z.​� (44)

The size of ​​X ¯ ​​ is equal to NX + NZ. The slack variables Z 
are arbitrary and thus independent of each other and 
of the free parameters X. Hence, the elements of ​​X ¯ ​​ are 
also independent of each other and represent the free 
parameters given to the optimizer. Each time the op-
timizer tries a new set of free-parameters ​​X ¯ ​​, the corre-
sponding Z is used to recalculate V (Eq. 37), which, in 
turn, is used to recalculate B (Eq. 42). The A matrix 
remains the same because the coefficient matrix M con-
tains only constants. Thus, we can calculate the trans-
formed model parameters R as follows:

	​​ B​ Z​​  = ​ M​​ +​ × ​V​ Z​​,​� (45)

	​ R  =  A × X + ​B​ Z​​,​� (46)

where Bz and Vz are the B and V quantities calculated 
for a given vector Z.

During optimization, the slack variables in Z are pro-
vided by the optimizer, together with X. However, Z 
must be initialized at the beginning of the optimization 
from a given set of transformed model parameters R 
and the appropriate relationships in Eq. 37. Let zc be 
the slack variable introduced by the inequality relation-
ship defined by row c of the constraint matrix M. Then, 
zc can be calculated with the following equation:

	​​ M​ c​​ × R  = ​ C​ c​​ + ​C​ zc​​ × ​​z​ c​​​​ 2​,​� (47)

where Mc is a vector corresponding to row c of M. This 
equation has the obvious solution:

	​​ z​ c​​  = ​ √ 
__________

  ​(​​ ​ ​M​ c​​ × R − ​C​ c​​ ________ ​C​ zc​​
 ​​ )​​ ​.​� (48)

The two-way conversion between the model parameters 
K and the free parameters ​​X ¯ ​​ is summarized in Fig. 3.

Redundant constraints.� One should take care to prevent 
redundancy and use only the minimum number of 
mathematical relationships that are necessary to imple-
ment the assumptions of the model. Intuitively, a con-
straint relationship is redundant if its intended 
consequence is already enforced by other relationships. 
With our example model, one could use either the scal-
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ing k7,8 = a × k1,2, or the scaling k7,8 = 4 × a × k4,5, but not 
both because that would create an additional relation-
ship between k1,2 and k4,5. Similarly, the condition in 
which the algebraic sum of the voltage sensitivities 
around a reaction loop is equal to zero may already be 
enforced by some rate-scaling relationships and should 

not be duplicated. When in doubt, one could check the 
rank of the M matrix, which will be reduced by redun-
dant constraints.

Redundant constraints may also arise from inequali-
ties. Although tempting, using inequality relationships 
to enforce a range constraint on a model parameter 

Figure 3. T ransformations between model parameters and free parameters. The model is defined by a set of interdependent 
parameters K, whereas prior knowledge is expressed as a set of linear parameter constraints. K contains pre-exponential and expo-
nential kinetic parameters (​​k​ ij​ 0​​ and ​​k​ ij​ 1​​), multiplicative factors (ak), and external parameters (ql). To enable more types of constraints, 
K is transformed into R by applying the logarithm or other functions to some of the parameters in K. The linear constraints are re-
duced via the singular value decomposition to obtain a set of free parameters X. Inequality constraints are handled by a set of slack 
variables Z. The constraints reduce the number of free parameters in X by one for each mathematical relationship, although each 
inequality relationship increases the size of Z by one. An overall set of free parameters ​​X ¯ ​​​​ is formed from X (equality constraints only) 
or from X and Z (equality and inequality constraints). ​​X ¯ ​​ is given to the model-blind optimizer to search for an optimal solution, which 
can be converted back into a set of model parameters K. (A) Conversion from K to ​​X ¯ ​​. (B) Reverse conversion from ​​X ¯ ​​ to K. These 
conversions can be applied to any kinetic mechanism, regardless of the number of states and connections. All the quantities in the 
figure are explained in the main text.
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is not possible, unfortunately, because it would result 
in two equality relationships that are redundant. How-
ever, this limitation can be overcome through the same 
mechanism that handles behavioral constraints (Na-
varro et al., 2018). Furthermore, although inequality 
constraints add slack variables to the overall set of free 
parameters, the total number of equality and inequality 
constraints must still be strictly smaller than the num-
ber of model parameters K.

Calculating the cost function and its gradients.� In a typi-
cal scenario, the cost function F is an explicit function 
of the rate constants kij and of some external 
model parameters ql:

	​ F  =  f​​(​​​k​ ij​​,   ​q​ l​​​)​​​.​� (49)

Typically, F would not depend explicitly on the multi-
plicative factors ak, which are generally used to estab-
lish relationships between other parameters. Because 
the model parameters K can be obtained from the free 
parameters ​​X ¯ ​​, F can also be written as a function of the 
free parameters ​​X ¯ ​​:

	​ F  =  f​​(​​​​x ¯ ​​ k​​​)​​​.​� (50)

Thus, the optimization algorithm can be model blind. 
In other words, even though it eventually generates a set 
of optimum model parameters K*, it actually searches 
for a solution in the space defined by the free param-
eters ​​X ¯ ​​. As it searches for the solution, the optimizer 
requires the cost function F to be calculated for each 
proposed ​​X ¯ ​​. The specific expression of the cost func-
tion F depends on the type of application; it could be a 
sum of square errors, a likelihood, or a Bayesian poste-
rior probability or it could be a mixture of these expres-
sions, when multiple types of data are bundled together 
(e.g., single-channel and whole-cell traces).

The optimizer may also require the gradients of F with 
respect to the free parameters ​​X ¯ ​​, as in the case of gra-
dient descent optimization methods (Fletcher, 2013). 
These gradients can be calculated by numerical approx-
imations, but analytical calculations are more accurate 
and may actually be faster in some instances. To calculate 
the gradient of F with respect to a free parameter ​​​x ¯ ​​ k​​​, we 
have to consider that the rate constants kij are functions 
of ​​k​ ij​ 0​​ and ​​k​ ij​ 1​​. In turn, ​​k​ ij​ 0​​ is a function of ​​ε​ ij​ 0 ​.​ We also have 
to consider that ql is a function of φl. These ​​ε​ ij​ 0 ​,   ​k​ ij​ 1​,​ and 
φl quantities are entries in the R vector and, thus, are ex-
plicit functions of a free parameter ​​​x ¯ ​​ k​​.​ To calculate a gra-
dient, we apply the chain differentiation rule, as follows:

​​

​ ∂ F ___ 
∂ ​​   x ​​ k​​

 ​  = ​ ∑ ​[​ ∂ F ___ 
∂ ​k​ ij​​

 ​ × ​(​ 
∂ ​k​ ij​​ ___ 
∂ ​k​ ij​ 0​

 ​ × ​ 
∂ ​k​ ij​ 0​ ___ 
∂ ​r​ m​​

 ​ × ​ ∂ ​r​ m​​ ___ 
∂ ​​   x ​​ k​​

 ​ + ​ 
∂ ​k​ ij​​ ___ 
∂ ​k​ ij​ 1​

 ​ × ​ 
∂ ​k​ ij​ 1​ ___ 
∂ ​r​ n​​

 ​ × ​ ∂ ​r​ n​​ ___ 
∂ ​​   x ​​ k​​

 ​)​]​​  
i,j

​ ​

​     

+ ​∑ l​ ​​​[​ ∂ F ___ 
∂ ​q​ l​​

 ​ × ​ 
∂ ​q​ l​​ ___ 
∂ ​r​ p​​

 ​ × ​ 
∂ ​r​ p​​ ___ 
∂ ​​   x ​​ k​​

 ​]​.

  ​​�  
� (51)

In Eq. 51, rm, rn, and rp are the elements of the R vec-
tor that correspond to ​​ε​ ij​ 0 ​,   ​k​ ij​ 1​,​ and φl, respectively. The 
∂F/∂kij and ∂F/∂ql quantities depend on the specific 
application, e.g., the maximum interval likelihood 
(Qin et al., 1996) or the maximum point likelihood 
of single-channel data (Qin et al., 2000a) or the max-
imum likelihood of macroscopic currents (Milescu et 
al., 2005). The other partial derivatives can be calcu-
lated as follows:

	​​ 
∂ ​k​ ij​​ ___ 
∂ ​k​ ij​ 0​

 ​  = ​ 
​k​ ij​​ __ 
​k​ ij​ 0​

 ​,   ​ 
∂ ​k​ ij​ 0​ ___ 
∂ ​r​ m​​

 ​  = ​ k​ ij​ 0​,   ​ 
∂ ​k​ ij​​ ___ 
∂ ​k​ ij​ 1​

 ​  = ​ k​ ij​​ × V,   ​ 
∂ ​k​ ij​ 1​ ___ 
∂ ​r​ n​​

 ​  =  1.​� (52)

The ∂ql/∂rp partial derivative depends on the specific 
transformation between ql and φl, as illustrated in Eq. 
53 for the logarithm and identity transformations:

	​​
​ 
∂ ​q​ l​​ ___ 
∂ ​r​ p​​

 ​  = ​ q​ l​​   if  ​φ​ l​​  =  ln​(​q​ l​​)​,
​   

​ 
∂ ​q​ l​​ ___ 
∂ ​r​ p​​

 ​  =  1  if  ​φ​ l​​  = ​ q​ l​​.
 ​​�  (53)

Finally, the partial derivative of any ri with respect to 
any ​​​x ¯ ​​ k​​​ takes the following form:

	​​

​ ∂ ​r​ i​​ ___ 
∂ ​​   x ​​ k​​

 ​  = ​ a​ i,k​​       if  ​​   x ​​ k​​  ∈  X,

​  ​ ∂ ​r​ i​​ ___ 
∂ ​​   x ​​ k​​

 ​  =  2 × ​m​ i,c​ + ​ × ​​   x ​​ k​​       if  ​​   x ​​ k​​  ∈  Z and “≥”,​    

​ ∂ ​r​ i​​ ___ 
∂ ​​   x ​​ k​​

 ​  =  2 × ​m​ i,c​ + ​ × ​​   x ​​ k​​       if  ​​   x ​​ k​​  ∈  Z and “≤”.

​​� (54)

where ai,k and ​​m​ i,c​ + ​​ are elements in the A and M+ ma-
trices, respectively. In the last two expressions of Eq. 
54, the c subscript is the index of the inequality con-
straint relationship that uses ​​​x ¯ ​​ k​​​ as the slack variable (the 
index in V; Eq. 45).

Using all these quantities, the overall analytical deriv-
ative of F with respect to ​​​x ¯ ​​ k​​​ becomes

	​​

​ ∂ F ___ 
∂ ​​   x ​​ k​​

 ​  = ​ ∑ ij​ ​​​[​ ∂ F ___ 
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⎪
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⎪
 

⎭
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​​� (55)

Eq. 55 is for the case of ​​φ​ l​​  =  ln​(​q​ l​​)​​. The subscripts m, n, 
and p used for the a and m+ quantities are equal to the 
indices in the R vector that correspond to ​​ε​ ij​ 0 ​,    ​k​ ij​ 1​,​ and 
φl, respectively.
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Calculating the error of the estimates.� When estimat-
ing the parameters of a model, it is important to have 
a measure of confidence in those estimates. The vari-
ance of a free parameter estimate measures the curva-
ture of the cost function with respect to that parameter. 
Intuitively, the variance tells us how much the calcu-
lated prediction of the model will change when the 
value of a free parameter ​​​x ̄ ​​ k​​​ is changed by a small 
amount. We emphasize that this change must be inter-
preted in the context of the specific data used in the 
analysis. Thus, parameters estimated with a large vari-
ance are generally poorly determined because of in-
sufficient data, whereas a small variance denotes a 
well-defined parameter.

One could calculate the variance of a free param-
eter estimate, ​Var​​(​​ ​​   x ​​ k​​​)​​​,​ from the second-order partial 
derivative of the cost function or could use the vari-
ance provided by some optimization engines, as in 
the case of the Davidon-Fletcher-Powell optimizer 
(Fletcher, 2013). However, when using the parameter 
constraints described here, the free parameters ​​X ¯ ​​ must 
be converted back to model parameters K, and some 
transformation must be applied to the variance. Thus, 
the variance of a model parameter, Var(ki), can be cal-
culated using the following approximation (Qin et al., 
2000a; Milescu et al., 2005):

	​ Var​​(​​ ​k​ i​​​)​​​  = ​ ∑ p​ ​​​[Var​​(​​ ​​   x ​​ p​​​)​​​ × ​​(​ ∂ ​k​ i​​ ___ 
∂ ​​   x ​​ p​​

 ​)​​​ 
2

​]​,​� (56)

where ​​​x ¯ ​​ p​​​ is a free parameter in ​​X ¯ ​.​ To calculate the vari-
ance for each type of model parameter (​​k​ ij​ 0​,   ​k​ ij​ 1​,​ ak, and 
ql), we use the chain differentiation rule. For rate con-
stant parameters ​​k​ ij​ 0​  and  ​k​ ij​ 1​​, we obtain the following:

	​​
Var​​(​​ ​k​ ij​ 0​​)​​​  = ​ ∑ p​ ​​​[Var​​(​​ ​​   x ​​ p​​​)​​​ × ​​(​k​ ij​ 0​ × ​ 

∂ ​r​ ij​ 0​ ___ 
∂ ​​   x ​​ p​​

 ​)​​​ 
2

​]​,
​    

Var​​(​​ ​k​ ij​ 1​​)​​​  = ​ ∑ p​ ​​​[Var​​(​​ ​​   x ​​ p​​​)​​​ × ​​(​ 
∂ ​r​ ij​ 1​ ___ 
∂ ​​   x ​​ p​​

 ​)​​​ 
2

​]​.

 ​​�  (57)

For pre-exponential and exponential multiplicative fac-
tors ak, we have the following expressions:

	​​

Var​​(​​ ​a​ k​​​)​​​  = ​ ∑ p​ ​​​[Var​​(​​ ​​   x ​​ p​​​)​​​ × ​​(​a​ k​​ × ​ ∂ ​r​ k​​ ___ 
∂ ​​   x ​​ p​​

 ​)​​​ 
2

​]​

​    
if  ​a​ k​​  is pre-exponential;

​  
Var​​(​​ ​a​ k​​​)​​​  = ​ ∑ p​ ​​​[Var​​(​​ ​​   x ​​ p​​​)​​​ × ​​(​ ∂ ​r​ k​​ ___ 

∂ ​​   x ​​ p​​
 ​)​​​ 

2

​]​
​   

if  ​a​ k​​  is exponential.

 ​​�   
� (58)

Finally, for external parameters ql, the expression 
depends on the transformation function. For the 
logarithm and the identity function, we have the follow-
ing expressions:

	​​

Var​​(​​ ​q​ l​​​)​​​  = ​ ∑ p​ ​​​[Var​​(​​ ​​   x ​​ p​​​)​​​ × ​​(​q​ l​​ × ​ ∂ ​r​ l​​ ___ 
∂ ​​   x ​​ p​​

 ​)​​​ 
2

​]​

​    
for logarithm transformation;

​   
Var​​(​​ ​q​ l​​​)​​​  = ​ ∑ p​ ​​​[Var​​(​​ ​​   x ​​ p​​​)​​​ × ​​(​ ∂ ​r​ l​​ ___ 

∂ ​​   x ​​ p​​
 ​)​​​ 

2

​]​
​   

for identity transformation.

 ​​�  (59)

In Eqs. 56, 57, 58, and 59, the partial derivative of r (​​r​ ij​ 0​,   
 ​r​ ij​ 1​,​ rk, and rl) with respect to ​​​x ¯ ​​ p​​​ is calculated as in Eq. 
54, depending on whether ​​​x ¯ ​​ p​​​ is an element of X or a 
slack variable in Z.

Di  s c u s s i o n

Enforcing prior knowledge when fitting new data is 
not trivial, and one reason is that prior knowledge may 
take different forms. For example, it can be a linear 
mathematical relationship between two sequential, 
ligand-binding transitions or it can describe the dy-
namics of the channel during complex episodes of 
action-potential firing. The first example could be eas-
ily handled through model parameterization: the in-
dependent parameters are identified by the user and 
passed on to a search engine, whereas the remaining 
(dependent) parameters are simply derived from the 
first set, whenever necessary. However, a more elegant 
and flexible solution, in our opinion, is the method 
of reduction (Fletcher, 2013), first applied to kinetic 
modeling algorithms some 20 years ago (Qin et al., 
1996, 2000a; Milescu et al., 2005). However, even the 
reduction method, despite its reach, is not the univer-
sal solution to enforcing prior knowledge. Although 
very powerful, this method is limited to constraints that 
can be formulated as explicit linear equality relation-
ships between model parameters. Thus, it cannot han-
dle inequalities, nonlinear relationships, and implicit 
constraints that describe a model property or behavior, 
such as the maximum open state occupancy during an 
action potential.

In this two-part study, we proposed a comprehen-
sive set of mathematical and computational tools that 
address all these limitations and greatly expand the 
range of prior knowledge that can be enforced. First, 
as described in this article, we enhanced the reduction 
method to handle both equality and inequality linear 
parameter constraints. Furthermore, we expanded the 
range of parameters that can be constrained to include 
not only rate constant parameters but also allosteric and 
other similar factors and external parameters that de-
scribe the data or the experiment. Any relationship be-
tween these parameters can now be enforced, as long as 
it is linear. Second, as described in the companion arti-
cle (Navarro et al., 2018), any other types of model con-
straints, such as range constraints, nonlinear parameter 
relationships, or model properties and behavior, are 
handled by applying a penalty to the cost function. To-
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gether, the reduction method and the penalty method 
can handle virtually any type of model constraint that is 
likely to be encountered in the field.

The constraining methods described here and in 
the companion article are available through the freely 
available QuB software, as maintained by our labora-
tory. These methods are also easy to implement by 
interested readers. The only high-level mathematical 
operation involved is the singular value decomposi-
tion, which is readily available from many free, linear 
algebra packages. As illustrated in Fig. 3, the code can 
be implemented as a pair of functions: one that con-
verts a set of interdependent model parameters into 
a set of free parameters, and a second function that 
performs the reverse operation. The first function is 
called only once, when the optimization is started, to 
initialize the free parameters from the model param-
eters. Any optimization package has one user-custom-
izable callback function that is called each time the 
search engine needs the cost function for a given set 
of parameters. The function that converts free param-
eters into model parameters can be inserted at the 
beginning of this callback function. For interested 
users, a step-by-step numerical example is given in the 
companion article.
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