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SCOPING REVIEW

Uses of mathematical modeling to estimate 
the impact of mass drug administration 
of antibiotics on antimicrobial resistance 
within and between communities
Scott W. Olesen*    

Abstract 

Background:  Antibiotics are a key part of modern healthcare, but their use has downsides, including selecting for 
antibiotic resistance, both in the individuals treated with antibiotics and in the community at large. When evaluating 
the benefits and costs of mass administration of azithromycin to reduce childhood mortality, effects of antibiotic use 
on antibiotic resistance are important but difficult to measure, especially when evaluating resistance that “spills over” 
from antibiotic-treated individuals to other members of their community. The aim of this scoping review was to iden-
tify how the existing literature on antibiotic resistance modeling could be better leveraged to understand the effect 
of mass drug administration (MDA) on antibiotic resistance.

Main text:  Mathematical models of antibiotic use and resistance may be useful for estimating the expected effects 
of different MDA implementations on different populations, as well as aiding interpretation of existing data and guid-
ing future experimental design. Here, strengths and limitations of models of antibiotic resistance are reviewed, and 
possible applications of those models in the context of mass drug administration with azithromycin are discussed.

Conclusions:  Statistical models of antibiotic use and resistance may provide robust and relevant estimates of the 
possible effects of MDA on resistance. Mechanistic models of resistance, while able to more precisely estimate the 
effects of different implementations of MDA on resistance, may require more data from MDA trials to be accurately 
parameterized.

Keywords:  Mass drug administration, Azithromycin, Antibiotic resistance, Mathematical model

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Mass drug administration (MDA) is the blanket treat-
ment with anti-infectives of most people, or a select 
age group, in a target population like a settlement or an 
administrative region. MDA has been used for decades 
for control of parasites such as helminths and for control 
of bacteria such as Chlamydia trachomatis [1]. In 2020, 

based on results from a few key interventional trials [2–
4], the World Health Organization made a recommenda-
tion that “consideration be given” to using azithromycin 
MDA to prevent child mortality, without targeting a spe-
cific pathogen, but only in a narrow context. First, MDA 
should only be used in sub-Saharan African settings with 
certain minimum infant mortality rates. Second, mortal-
ity rates, adverse effects of MDA, and antibiotic resist-
ance must be continuously monitored as MDA is used. 
Finally, other child survival interventions must be in 
place in addition to MDA. In these circumstances, the 
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recommended treatment is 2 azithromycin doses per 
year only for children aged 1–11 months [5].

Like any medical treatment, MDA has costs and ben-
efits. Factors like the monetary cost of treatment and the 
risk of side effects must be weighed against the treat-
ment’s therapeutic benefit [6, 7]. In the case of infectious 
diseases, costs and benefits must be weighed at the level 
of populations as well as at the level of individuals. For 
example, treating a disease in an individual may create 
a population-level benefit by preventing onward disease 
transmission or by even eliminating a disease altogether 
[8]. On the other hand, antibiotic therapy like MDA-
azithromycin can promote antibiotic resistance among 
bacteria in treated individuals, which in turn could “spill 
over” into untreated individuals [9, 10]. Thus, a com-
prehensive cost-benefit analysis of MDA-azithromy-
cin requires quantifying the degree to which MDA will 
promote antibiotic resistance in the treated individuals, 
within their community, and across other communities.

Ideally, clinical trials could fully characterize the effect 
of MDA-azithromycin on individual- and population-
level antibiotic resistance. In practice, because of the 
complexity of bacterial transmission dynamics and the 
finite resources that can be devoted to clinical trials, 
there will be policy-relevant questions about the effect of 
MDA on resistance that cannot be directly addressed by 
empirical data [11, 12]. Fortunately, mathematical mod-
els can help bridge the gap between available empirical 
data and operational policy questions [13–15]. For exam-
ple, empirical studies had measured the rate at which 
individuals re-acquired C. trachomatis after MDA had 
presumably cleared the pathogen from them. Math-
ematical modeling was then used to infer the minimum 
frequency of MDA to eliminate C. trachomatis carriage 
across a wide population [16, 17]. Although the relation-
ship between antibiotic use, such as MDA-azithromycin, 
and antibiotic resistance is likely more complex than the 
relationship between drug use and disease elimination, 
models of antibiotic resistance can be similarly employed 
to link available empirical data with policy questions.

Methods
The goal of this scoping review was to identify how the 
existing literature on antibiotic resistance modeling could 
be better leveraged to understand the effect of MDA 
on antibiotic resistance. Data for this review were ini-
tially identified through two searches of PubMed. The 
first search used the terms “antibiotic resistance” and 
“model[ing]”. The second search used “mass drug admin-
istration” and “antibiotic.” This search provided an ini-
tial set of studies relevant to the topic. References from 
the initially identified studies were also reviewed and 
included in this review if relevant. Only articles published 

in English were included. This review did not limit the 
included articles based on year of publication.

Results
Predicting population‑level antibiotic resistance 
from antibiotic use
Hundreds of empirical studies have measured the asso-
ciation between antibiotic use and resistance. In a 2014 
meta-analysis [18], 67% of 243 studies antibiotic use and 
resistance showed a positive association between use and 
resistance. 73% of studies analyzed the association at the 
level of the individual (rather than the region or coun-
try), 75% were conducted in Europe or the US, and the 
vast majority studied Streptococcus, Staphylococcus, or 
enteric bacteria like Escherichia coli. However, despite 
this substantial body of research, we still lack a definitive 
understanding of the relationship between an individual’s 
antibiotic use and the rates of antibiotic resistance in the 
wider population [14]. This gap is due at least in part to 
the complex epidemiology of population-level antibiotic 
use and resistance.

First, population-level resistance is not just the aggre-
gate of individual-level resistance selected for by those 
individuals’ use of antibiotics. Instead, there is a com-
plex interplay between individual-level antibiotic use 
and the transmission of susceptible and resistant bac-
teria [10, 19]. Resistance can “spill over” from treated 
individuals to their family members [20], and there is 
evidence for quantifiable spillover at larger scales [9, 10, 
14]. For example, spillover may be crucial to patterns of 
β-lactam resistance in S. pneumoniae, the pathogen and 
antibiotic class most studied in population-level studies 
of antibiotic use and resistance [18, 21]. The treatment 
of children with acute otitis media using penicillins has 
been observed to select for β-lactam resistance among S. 
pneumoniae that cause pneumonia in older adults [22]. 
However, even in this well-studied case, the relation-
ship between antibiotic use in one population and rates 
of resistance in another are poorly quantified. Although 
spillover plays some role following MDA, the quantita-
tive magnitude of this effect is poorly understood and 
likely varies by geographic scale [9], by pathogen, and by 
antibiotic class [18, 23]. Better quantification of spillover 
could be critical to understanding the effects of MDA, as 
interactions between the MDA-treated population and 
a control population could lead MDA clinical trials to 
underestimate the effect of MDA on resistance [9].

Second, antibiotic resistance is not itself a pathogen; 
it is a feature of some members of a bacterial species. 
In some cases, when an antibiotic-resistant pathogen 
has minimal competition from the antibiotic-suscepti-
ble strains of the same species, conceptualizing “resist-
ance” as a standalone pathogen is effective. For example, 
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Donker et  al. [24] evaluated the relevance of different 
geographical scales for the spread of carbapenem-resist-
ant Enterobacteriaceae in the United Kingdom without 
explicitly accounting for any carbapenem-susceptible 
strains. More generally, however, competition between 
resistant and susceptible strains of the same bacterial 
species is likely critical to successful modeling of the 
association between antibiotic use and resistance [14].

Competition can occur within the human host, and 
recent models of resistance have demonstrated how this 
within-host competition can help explain a key feature 
of antibiotic resistance epidemiology, namely, the dura-
ble co-existence of antibiotic-resistance and -susceptible 
strains of the same bacterial species [25]. Competition 
also occurs between hosts: susceptibility and resistance 
both spill over between populations, with important 
implications for MDA [26]. For example, rates of mac-
rolide resistance among S. pneumoniae and E. coli carried 
by recipients of MDA-azithromycin increase substan-
tially after treatment [1, 27, 28] but then appear to wane 
in the succeeding months [29, 30]. Although this waning 
could be partly due to intra-individual effects, popula-
tion-level effects likely play an important role: suscepti-
ble strains in untreated individuals can be transmitted to 
antibiotic-treated individuals [19, 31].

Third, use of one antibiotic can select for resistance to 
other antibiotics, because the same resistance mecha-
nism provides resistance to those other antibiotics (i.e., 
cross-resistance) or because one genetic element can 
include multiple genes that provide resistance against 
multiple antibiotics (i.e., co-resistance) [27, 32]. More 
broadly, the use on one antibiotic can select for resist-
ance to another antibiotic simply because a single bacte-
rial strain is resistant to both antibiotics, even if the two 
resistance mechanisms are not genetically linked (i.e., co-
selection) [33, 34].

Finally, all the foregoing phenomena —spillover, com-
petition between susceptible and resistant strains, and 
co-selection—are likely highly contextual, depending on 
patterns of between-host transmission, heterogeneous 
patterns of background antibiotic use [35], and the preva-
lence and relative fitness of the susceptible and resistant 
strains circulating in and around the treated community 
[14]. There is no guarantee that conclusions drawn from 
data collected in one context will be applicable in another 
context, especially when what precisely defines a distinct 
“context” remains unresolved.

Statistical models of antibiotic use and resistance
The saying goes: all models are wrong, but some are 
useful. A clearly “wrong” but parsimonious and poten-
tially useful approach to modeling the complex relation-
ship between antibiotic use and resistance is to infer the 

likely effects of a change in antibiotic use, such as MDA-
azithromycin, using cross-sectional patterns of popula-
tion-level antibiotic use and resistance (Fig.  1). In other 
words, in the absence of a complete understanding of the 
precise dynamics that relate population-level antibiotic 
use and resistance, one approach is to assume that the 
use-resistance associations observed in other contexts 
already incorporate these complexities [36] and then use 
those quantitative associations to predict the effects of 
MDA.

To illustrate this approach, compare MDA-azithromy-
cin with outpatient azithromycin use in the US. Azithro-
mycin use among American children aged 0‒2  years 
amounts to approximately 1 dose per year.1 Total US 
population-wide azithromycin use is approximately 
700 doses per 1000 population per year.2 Thus, if MDA-
azithromycin were instituted in the US on top of exist-
ing antibiotic use, then rates of azithromycin use among 
American children aged 0‒1 would triple, but total US 
azithromycin use would increase by less than 10%.3 For 
comparison, rates of population-wide macrolide use 
vary twofold across US states [23] and more than tenfold 

Fig. 1  Conceptual schematic of a simple statistical model of 
antibiotic use and resistance. Empirical rates of population-level 
antibiotic use and resistance (points) are used to train a linear 
regression (line). Given a hypothetical increase in antibiotic use, the fit 
line can be used to predict the resulting change in population-level 
resistance

1  In 2011, children under 20  years old received 183 azithromycin prescrip-
tions per 1000 population (75). Children under 2 received 48% more pre-
scriptions than the average for all children aged 0‒20, and a typical course of 
azithromycin is 3 or 5 days (23), yielding 813 or 1354 annual doses per 1000 
children aged 0‒2.
2  In 2011, Americans received 174 azithromycin prescriptions per 1000 
population (75). Assuming 3 or 5 doses per prescription, this is 522 or 870 
doses per 1000 population per year.
3  If 4% of the population is under 1 year and MDA covers 80% of those chil-
dren, then 2 doses per child per year amounts to 64 doses per 1000 overall 
population per year, compared to the baseline of 700 doses per 1000 popula-
tion per year.
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across European countries [37]. Thus, as a first approxi-
mation, the differences in macrolide resistance rates 
among US states and European countries might serve 
as an upper bound for the increase in population-level 
resistance that could be caused by MDA-azithromycin.

A conceptually similar but more quantitatively rigor-
ous approach would be to fit a linear or quasibinomial 
regression to cross-sectional data about antibiotic use 
and resistance across US states or European countries. 
The regression model could then be used to estimate how 
a change in the input antibiotic use rate would affect the 
output antibiotic resistance rate [38] (Fig.  1). Statistical 
models need not be simple. However, generally speaking, 
given an input data set of measured rates of antibiotic use 
and resistance, and given an assumed mathematical rela-
tionship between use and resistance, a statistical mode-
ling approach can find the parameters that best describe 
that mathematical relationship for that data set [39].

Statistical modeling has at least three fundamental 
limitations. First, it assumes that the processes that relate 
inter-country or inter-state differences in antibiotic use 
to differences in resistance are the same processes that 
govern how a perturbation in antibiotic use, such as 
MDA-azithromycin, would affect antibiotic rates [40]. In 
other words, the observed ecological use-resistance asso-
ciations are assumed to be causal.

Second, statistical models can only attribute differences 
in resistance to differences in use or to other population-
level covariates such as socioeconomic factors [38]. Sta-
tistical models are not designed to evaluate complex, 
mechanistic counterfactuals, such as whether different 
contact patterns could lead to different rates of antibiotic 
resistance in different subpopulations. Statistical mod-
els also cannot account for biological factors, unrelated 
to antibiotic use, that could drive changes in the preva-
lence of resistance [40]. The effects of these biological 
factors can manifest as secular trends in disease activity 
or resistance prevalence that appear unrelated with secu-
lar trends in antibiotic use. For example, secular trends 
in the prevalence of trachoma have been suggested as 
explanations for differences in the effect of MDA on C. 
trachomatis carriage across clinical trials [8, 29]. At the 
level of cities or countries, secular trends in antibiotic 
resistance can be on the order of 5 percentage points of 
collected isolates per year [41–43]. Smaller communities, 
like those targeted by MDA, might display different, and 
perhaps more rapid, dynamics that would likely not be 
accounted for in a straightforward statistical model.

Finally, a statistical model can only be built for anti-
biotics and pathogens for which there are pre-existing 
data. While the effects of azithromycin use on macrolide 
resistance among S. pneumoniae and E. coli are fairly well 
studied [1, 18, 27, 28], the effect of azithromycin use on 

resistance in other pathogens is poorly documented [44]. 
Comparing use-resistance associations across pathogens 
and antibiotics [21, 23, 45] may help fill in some gaps, but 
this approach is now only speculative.

The illustration above, comparing MDA-azithromycin 
with US azithromycin use, has many other weaknesses 
that could likely be ameliorated with more sophisti-
cated statistical models. As one example, the crude 
model above only considers a single pathogen and anti-
biotic. A more careful approach would account for, or at 
least evaluate, the effect of the use of multiple antibiot-
ics [34, 46, 47]. As a second example, the crude model 
does not account for the proportion of the population 
that is already receiving MDA-azithromycin as treatment 
for other pathogens like trachoma and so overestimates 
the increase in antibiotic use that would result from 
implementation MDA-azithromycin to reduce all-cause 
mortality.

Mechanistic models of antibiotic use and resistance
Statistical models are likely useful for roughly estimating 
the absolute quantitative effect that MDA-azithromycin 
would have on population-level antibiotic resistance, but 
they cannot evaluate mechanistic questions or counter-
factuals. Mechanistic models, on the other hand, make 
assumptions about the underlying dynamics that relate 
use and resistance. For example, a model might assume 
that a host can be colonized by only one strain of a bacte-
rial species, either susceptible or resistant, while another 
model might assume that a host can be colonized by mul-
tiple strains at the same time. In either case, the model 
must specify factors like how the host immune system or 
antibiotic treatment will affect the colonizing bacteria.

The most familiar mechanistic model of infectious dis-
ease is the classic susceptible-infected-recovered (SIR) 
model. A simple mechanistic model of antibiotic use and 
resistance is a susceptible-infected model, with two dif-
ferent infected compartments, one representing infec-
tion with the susceptible bacterial strain and the other 
representing the resistance strain (Fig.  2). Conceptually 
related but more complex mechanistic models have been 
used for decades to explore the link between antibiotic 
use and resistance [48, 49]. Through time, these models 
have developed greater theoretical soundness [25, 50] 
and greater complexity, including metapopulations rep-
resenting geographic populations [51], age groups [52], 
and non-human environmental and animal compart-
ments [53].

Mechanistic models could be adapted to evaluate 
the effect of antibiotic use in one population on resist-
ance in another population [9] and then used for multi-
ple study purposes. First, they could aid interpretation 
of MDA clinical trial data. For example, mechanistic 
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models could identify factors that quantitatively explain 
the apparently disparate results in the MORDOR I study, 
in which MDA-azithromycin appeared to be more effec-
tive in reducing mortality in the Niger study population, 
compared to the populations in Malawi and Tanzania [3]. 
Second, mechanistic models could aid future experimen-
tal design by assessing what trial designs and sample sizes 
[54] would most efficiently gather information about the 
effect of MDA on resistance. Third, mechanistic models 
could be used to estimate the effects of different MDA 
implementations, such as comparing blanket treatment 
of all children in an age group versus targeting smaller 
“core” groups [17], or to explore the effect of repeated 
treatments on efficacy and resistance [55]. Finally, mod-
els could help estimate how other interventions, such as 
improvements in water, sanitation, and hygiene, would 
modulate MDA’s effects on antibiotic resistance.

Mechanistic models of MDA-azithromycin would 
likely include three classes of hosts: first, the children 
treated with MDA; second, those children’s close con-
tacts, such as family members and untreated children; 
and third, one or more further removed populations, 
such as other members of a settlement or the population 
of a larger administrative region (Fig.  3). Depending on 
the specificity required from the model, it may be impor-
tant to further subdivide these compartments to account 
for differing patterns of transmission and immunity [52]. 
When modeling resistance among bacteria with envi-
ronmental transmission routes, such as E. coli, it may be 
important to model environmental compartments, such 
as water sources [53]. While a greater number of host 
classes and environmental compartments allows for a 
more fine-grained assessment of the effects of resistance, 
more complex models are more difficult to parameter-
ize and more likely to be mis-specified. Greater precision 
does not necessarily entail greater accuracy.

Contemporary models differ in their representation of 
the modeled bacteria (Fig. 3). Some models include just 
two strains of the same species, one susceptible and one 
resistant [25]; others track multiple sensitive and resist-
ant strains, corresponding, for example, to S. pneumo-
niae serotypes [52, 56, 57]. In some models, a host can be 

colonized by only one strain, although there is increasing 
recognition of the importance of within-host competi-
tion between sensitive and resistant strains [14, 25]. More 
sophisticated bacterial dynamics, such as horizontal gene 
transfer, are beyond the scope of most contemporary 
modeling [14].

Mechanistic models of disease transmission are typi-
cally agent-based [52, 58] or compartmental [25, 53, 57, 
59]. Agent-based models track individual people and the 
interactions between them, simulating bacterial trans-
mission and changes in host colonization status. Com-
partmental models, on the other hand, track only each 
combination of host class and bacterial strain and assume 
that the individuals in each host class behave identically. 
While agent-based models allow for arbitrarily complex 
interaction networks and can straightforwardly simulate 
stochastic disease transmission trajectories, compart-
mental models are usually deterministic and more ana-
lytically tractable. For the purposes of modeling spillover 
resulting from MDA, compartmental modeling may be 
sufficient, for two reasons. First, the relevant transmis-
sion networks to be modeled might not be known to suf-
ficient detail to merit the complexity of an agent-based 
approach. Second, uncertainty in model results may be 
due more to uncertainty in the input parameters rather 
than stochasticity in transmission chains. Thus, sensitiv-
ity analyses using deterministic models may be sufficient 
to faithfully characterize the possible range of model 

Fig. 2  Simple mechanistic model of antibiotic use and resistance 
in a single population. Uncolonized individuals (X) can become 
colonized by the sensitive bacterial strain (S) or by the resistant strain 
(R). Sensitive- and resistant-colonized individuals can naturally clear 
colonization, for example, via host immunity. Antibiotic use leads 
to more rapid clearance among susceptible-colonized individuals. 
Compare Fig. 3A from Lipsitch et al. [50]

Fig. 3  Conceptual schematic for a mechanistic model of mass 
drug administration. There are three host classes, representing the 
mass drug administration-treated children, their families, and the 
broader community. Members of each host class move between 
four colonization states: uncolonized (X), colonized by the sensitive 
bacterial strain (S), colonized by the resistant strain (R) or co-colonized 
(SR). Colonization dynamics in each host class can affect dynamics 
in other classes: children frequently exchange bacteria with their 
families (thick arrow) but less often with the broader community (thin 
arrow)
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results, obviating the need to model stochastic disease 
trajectories with agent-based models.

Every process in a mechanistic model must be accom-
panied by a quantitative parameter, and models of antibi-
otic use and resistance for MDA will have many classes 
of parameters (Table  1). In many cases, the selection of 
parameter values can be informed by empirical data. 
Contact rates between different populations have been 
estimated in industrialized countries using surveys, com-
muting flows, and contact tracing [60–62], which can 
provide at least a rough estimate of the same patterns 
in settings where MDA may be implemented. Antibiotic 
use rates and vital dynamics could be estimated using 
local surveys [3]. Initial conditions could be informed by 
pre-MDA measurements of the prevalence of resistance 
in targeted communities. Bacterial clearance rates have 
been estimated for certain bacteria, especially S. pneu-
moniae [63–65]. In practice, however, these data are not 
sufficiently precise to confidently fix model parameters. 
Instead, models are typically fit to pre-existing antibi-
otic use and resistance data using Bayesian methods like 
Markov chain Monte Carlo [25, 57].

To help quantify population-level effects of MDA, 
future MDA studies would measure rates of pathogen 
carriage and resistance to relevant antibiotics among 
individuals who are in the treated community but who 
are not treated themselves [5]. Ideally, these studies 
would also collect genotypic and phenotypic informa-
tion on pathogen isolates, such as full antibiotic suscep-
tibility profiles [66], multilocus sequence typing, or even 
whole genome sequences. In combination with linked 
host metadata, such as treatment status, age, family rela-
tionships, and location of residence, these pathogen data 
would further aid modeling of pathogen carriage and 
transmission specifically in settings where MDA is rel-
evant [67, 68]. In practice, this kind of data collection is 

not feasible for every study, even in well-resourced set-
tings. Modelers and clinical trialists should collaborate to 
identify the most resource-efficient approaches for col-
lecting data that can address the most critical knowledge 
gaps about the effect of MDA on resistance.

Mechanistic modeling has important limitations. Pop-
ulation-level dynamics of resistance are complex, and 
models of resistance are not reliably predictive [14]. For 
MDA, the number of model parameters is likely large rel-
ative to the number of independent sampling units (i.e., 
MDA-treated populations) with data available for study. 
Without assurance that the model structure accurately 
reflects the underlying dynamics of bacterial transmis-
sion and competition, or that the parameter values are 
faithful to the setting to be modeled, mechanistic models’ 
quantitative predictions should be regarded with healthy 
skepticism. Instead, mechanistic models should be used 
as conceptual tools to “help us systematically examine the 
implications of various assumptions about a highly non-
linear process that is hard to predict using only intuition” 
[69].

Limitations
It is worth noting that even in well-resourced settings like 
the US or Europe, the costs and benefits of antibiotic use 
have not been rigorously quantified. In general, antibi-
otic use is considered inappropriate when less intensive 
antibiotic therapy —a lower dose of antibiotics, a shorter 
regimen, a more narrow-spectrum antibiotic, an antibi-
otic less likely to select for problematic antibiotic resist-
ance, or even no antibiotic at all— is expected to have 
the same clinical benefit [70–72]. If an individual patient 
will benefit from more antibiotics or stronger antibiotics, 
then those antibiotics’ effects on population-level antibi-
otic resistance are considered acceptable. This fact does 
not mean that a rigorous cost-benefit framework should 

Table 1  Parameters likely required for mechanistic modeling of mass drug administration using bacterial transmission mechanics.

The identity of these parameters and their notation was drawn from recent mechanistic models of use and resistance [25, 52, 58]

Parameter class Number of parameters Notes

Transmission rates (β) N within-class and N-choose-2 between-class, 
where N is the number of host classes

Values depend on both host contact rates and probabilities of 
bacterial transmission per contact

Antibiotic use rates (τ) 1 per antibiotic and host class More parameters are required if antibiotic use is explicitly time 
varying

Clearance rates (u) 1 per bacterial strain Background processes of immunity or competition are assumed to 
clear bacteria from hosts

Resistance costs (c) 1 or 2 per resistant bacterial strain Resistant strains are assumed to have lower transmission rates or 
higher clearance rates, relative to susceptible strains

Co-colonization parameters Varies depending on co-colonization mechanisms E.g., the model in Davies et al. [25] requires a co-colonization 
efficiency (k)

Initial conditions 1 per bacterial strain and host class Starting prevalence of each strain

Vital dynamics Varies depending on demographic model Birth rates, migration rates, etc
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not guide policy decisions about MDA-azithromycin, nor 
does it mean that we should not leverage all available data 
and methodologies, including modeling, to best estimate 
MDA’s benefits and costs. It only means that this rigorous 
evaluation will be a challenging and novel endeavor.

Conclusions
There are many unknowns about the degree to which 
MDA selects for resistance, in whom, and at what 
cost. Future clinical studies can address some of these 
knowledge gaps. However, MDA studies cannot feasi-
bly address the risk of resistance for every subgroup of 
patients [11, 12]. Mathematical modeling can help fill 
gaps in our knowledge using well-founded assumptions, 
especially if models are developed in coordination with 
decision-makers [73] and guided by well-formed experi-
mental design options or authentic policy questions.

Abbreviation
MDA: Mass drug administration.
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