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Abstract

Background: Recent studies have identified myocyte enhancer factor 2C (MEF2C) as cooperating oncogene in acute
myeloid leukemia (AML) and suggested a contribution to the aggressive nature of at least some subtypes of AML,
raising the possibility that MEF2C could serve as marker of poor-risk AML and, therefore, have prognostic significance.

Methods: To test this hypothesis, we retrospectively quantified MEF2C expression in pretreatment bone marrow
specimens in participants of the AAML0531 trial by reverse-transcriptase polymerase chain reaction and correlated
expression levels with disease characteristics and clinical outcome.

Results: In all 751 available patient specimens, MEF2C messenger RNA (mRNA) was detectable and varied >3000-fold
relative to β-glucuronidase. Patients with the highest relative MEF2C expression (4th quartile) less likely achieved a
complete remission after one course of chemotherapy than the other patients (67 vs. 78 %, P = 0.005). They also had an
inferior overall survival (P = 0.014; at 5 years 55 ± 8 vs. 67 ± 4 %), inferior event-free survival (P < 0.001; at 5 years 38 ± 7
vs. 54 ± 4 %), and higher relapse risk than patients within the lower 3 quartiles of MEF2C expression (P < 0.001; at
5 years 53 ± 9 vs. 35 ± 5 %). These differences were accounted for by lower prevalence of cytogenetically/molecularly
defined low-risk disease (16 vs. 46 %, P < 0.001) and higher prevalence of standard-risk disease (68 vs. 42 %, P < 0.001) in
patients with high MEF2C expression, suggesting that MEF2C cooperates with additional pathogenic abnormalities.

Conclusions: High MEF2C expression identifies a subset of AML patients with adverse-risk disease features and poor
outcome. With confirmation that high MEF2C mRNA expression leads to overexpression of MEF2C protein, these
findings provide the rationale for therapeutic targeting of MEF2C transcriptional activation in AML.
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Background
Myocyte enhancer factor 2 (MEF2) proteins, composed
of four family members in vertebrates, are transcription
factors that were initially studied in the control of muscle
development [1]. In particular, gene deletion studies in
mice identified essential functions of MEF2C in cardiac
myogenesis and right ventricular development [2]. How-
ever, subsequent studies have indicated that MEF2C plays
a much broader biological role and is involved in the
function and generation of tissues other than cardiac
and skeletal muscle, including bone development and
osteoclast-mediated bone resorption, neuronal develop-
ment, and craniofacial and melanocyte development [3].
Increasing evidence also suggests an important role of

MEF2C in the normal hematopoietic system, particularly
for the production of immature and mature lymphoid
cells and as a modulator of the cell fate decision between
monocyte and granulocyte differentiation [3–6]. This is
indicated by genetic studies in mice showing that Mef2c
deficiency is associated with reduced levels of monocytes
in response to cytokines [4] as well as profound defects
in the production of B cells, T cells, natural killer cells,
and common lymphoid progenitor cells, as well as en-
hanced myeloid output [5]. In turn, constitutive expres-
sion of Mef2c in the bone marrow results in increased
monopoiesis at the expense of granulopoiesis [4]. In
human acute myeloid leukemia (AML) cell line models,
1,25-dihydroxyvitamin D3 induces monocytic differen-
tiation and CD14 expression, an effect that is mediated
through activation of MEF2C signaling via regulation of
CCAAT-/enhancer-binding protein alpha (CEBPA) [6].
Consistent with these central functions, MEF2C has
been found to be aberrantly expressed in subsets of T
cell acute lymphoblastic leukemia (T-ALL) and in early
thymocyte precursor (ETP) T-ALL in particular, an ag-
gressive leukemia that tends to be refractory to chemo-
therapy and shares genetic features with AML [7–10].
In AML, MEF2C has been found to be overexpressed
in distinct molecular subsets of adult onset AML, in-
cluding mixed lineage leukemia (MLL) gene-rearranged
and ectropic virus integration site 1 (EVI1)-overexpressing
leukemias [11]. Models of both MLL and EVI1 leukemias
have been, and continue to be, instrumental in our under-
standing of fundamental principles of leukemogenesis
and the identification of pathways that confer tumor
aggressiveness and resistance to chemotherapy [12–21].
Functional studies using mouse leukemia models dem-
onstrate that Mef2c is a potent oncogene, causing fully
penetrant AML in cooperation with SOX4 [11, 22, 23].
In addition, Mef2c is required for the growth of mouse
leukemias induced by MLL-AF9 [11].
Together, these studies suggest that MEF2C participates

in key molecular mechanisms of AML pathogenesis and
could serve as a marker of poor-risk AML and, therefore,

have prognostic significance. Here, we tested this hy-
pothesis by retrospectively quantifying MEF2C expres-
sion in pretreatment bone marrow specimens and by
associating MEF2C expression level with disease char-
acteristics and outcome in participants of the Children’s
Oncology Group (COG) AML protocol, AAML0531
(NCT00372593). AAML0531 was a multicenter, random-
ized phase 3 study, which found that the addition of gem-
tuzumab ozogamicin to intensive chemotherapy improved
the event-free survival (EFS) through reduction of the
relapse risk (RR) relative to intensive chemotherapy
alone in patients aged <30 years with newly diagnosed
de novo non-APL AML, excluding those with bone mar-
row failure syndromes, juvenile myelomonocytic
leukemia, or Down syndrome (if ≤3 years of age) between
2006 and 2010 [24].

Results
Identification of MEF2C expression as predictive
biomarker in participants of AAML0531
Among the 1022 eligible patients enrolled in AAML0531,
980 (96 %) consented to have diagnostic bone marrow
specimens banked for future cancer research. At the time
this research was conducted, RNA was available from 765
patients. Fourteen samples were excluded because of inad-
equate RNA as determined by low β-glucuronidase (GUSB)
expression (Ct > 33.09). The remaining 751 patients (77 %)
were used for quantitation of MEF2C expression levels.
In all of these specimens, MEF2C mRNA was detect-
able and varied >3000-fold relative to GUSB mRNA
(0.0091–29.1272 [median 0.7978]; Fig. 1).

Association between MEF2C expression and clinical
outcome
Studying the relationship between MEF2C expression and
clinical outcome, we initially analyzed patient outcomes
per quartile of MEF2C expression and noticed that the
188 patients with the highest relative MEF2C expression
(4th quartile, corresponding to an expression of ≥1.66
relative to GUSB) fared worse than the 563 patients in the
1st, 2nd, or 3rd quartiles of MEF2C expression, respect-
ively, with little difference between the first 3 quartiles.
We therefore subsequently compared patients with the
highest relative MEF2C expression (4th quartile) to pa-
tients with lower expression (1st to 3rd quartile).
Analyzing responses to initial chemotherapy, we found

that patients with high relative MEF2C expression were
statistically significantly less likely to have achieved a
complete remission (CR) after one course of chemotherapy
than patients with lower MEF2C expression (67 vs.
78 %, P = 0.005) and tended to be more likely to have flow
cytometrically detectable minimal residual disease (MRD)
at the end of the first induction course (33 vs. 27 %,
P = 0.132). Some patients with high MEF2C expression
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were able to achieve remission with re-induction therapy,
and the proportion of patients with high MEF2C expres-
sion in CR after two courses of induction chemotherapy
approached that of patients with low MEF2C expression
(86 vs. 90 %, P = 0.102). We subsequently evaluated how
MEF2C expression related to parameters of long-term
outcome and found that patients with the highest MEF2C
expression had an inferior overall survival (OS; P = 0.014;
at 5 years 55 ± 8 vs. 67 ± 4 %), inferior EFS (P < 0.001; at
5 years 38 ± 7 vs. 54 ± 4 %), and higher RR than the pa-
tients within the lower 3 quartiles of MEF2C expression
(P < 0.001; at 5 years 53 ± 9 vs. 35 ± 5 %; Table 1 and
Fig. 2a–c). Of note, exploratory multiple cutpoint analyses
for OS and EFS indicated that the most statistically signifi-
cant results were centered around the Q4 cutpoint region,
supporting our approach of comparing patients with the
highest quartile of relative MEF2C expression with those
having lower relative MEF2C expression (data not shown).
We next performed subgroup analyses to investigate

the association between MEF2C expression and outcome
in specific risk groups; these studies were of exploratory
nature since our ability to perform these analyses was
relatively limited given the sample size of the individual
risk groups. As summarized in Table 1, the association be-
tween high MEF2C expression and increased risk of
relapse and, consequently, lower EFS was particularly

apparent in the subset of cytogenetically/molecularly de-
fined low-risk patients, whereas no strong trend was seen
in patients with standard-risk or high-risk patients.

Association between MEF2C expression and
characteristics of study population
To investigate associations between relative MEF2C ex-
pression and demographics, baseline laboratory findings,
and pretreatment characteristics of the study cohort, we
compared patients with high MEF2C expression (4th
quartile) with those having low MEF2C expression (1st
to 3rd quartile). As summarized in Table 2, patients with
high MEF2C expression were younger (P < 0.001) and
more likely presented with hepatomegaly (P = 0.006) or
splenomegaly (P < 0.001). They also had a slightly but
statistically significantly higher percentage of bone mar-
row blast at diagnosis. In contrast, there was no statisti-
cally significant difference in gender distribution, white
blood cell (WBC) count, or hemoglobin between patients
with high and low MEF2C expression. Importantly, how-
ever, MEF2C expression was strongly associated with
cytogenetic and molecular abnormalities. Specifically, pa-
tients with high MEF2C expression less likely had CBF
translocations (inv(16): P = 0.007 and t(8;21): P < 0.001)
or normal karyotype AML (P < 0.001); conversely, they
were more likely to have leukemias with monosomy 7

A

C

B

Fig. 1 MEF2C expression in AAML0531. Quantitative expression of MEF2C relative to beta glucuronidase (GUSB) in diagnostic bone marrow specimens
from the 751 patients who were included in this study. a Relative MEF2C expression across the entire study cohort. b Distribution of relative MEF2C
expression across quartiles of MEF2C expression. c Distribution of relative MEF2C expression across individual cytogenetic categories
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(P < 0.001) and abnormalities involving 11q23 (P < 0.001).
Furthermore, patients with high MEF2C less likely had a
FLT3/ITD (P = 0.018) or a mutation in either NPM1 (P =
0.010) or CEBPA (P = 0.002). Consistently, patients with
high MEF2C expression less likely had low-risk disease (16
vs. 46 %, P < 0.001) and more likely had standard-risk dis-
ease (68 vs. 42 %, P < 0.001) than those with lower MEF2C
expression (Table 2).

MEF2C expression as an independent predictive factor
Finally, we evaluated the potential role of MEF2C
expression as an independent predictor of OS, EFS, and
RR in regression models (Table 3). Given the strong as-
sociation between disease risk and MEF2C expression,
one might attribute the worse outcome for patients with
high MEF2C expression to the lower prevalence of leu-
kemias with more favorable prognoses in this subgroup.
Indeed, after adjustment for disease risk, age, FAB cat-
egory, and treatment arm, high MEF2C expression was
no longer statistically significantly associated with inferior
OS (HR = 0.99 [0.72–1.36], P = 0.929), inferior EFS (HR =
1.14 [0.86–1.49], P = 0.365), or higher RR (HR = 1.32
[0.91–1.92], P = 0.137; Table 3).

Discussion
Recent studies have highlighted a possible role of
MEF2C in the molecular pathogenesis and therapy re-
sponse of AML [3]. Using over 750 pretreatment bone
marrow specimens from pediatric patients enrolled in a

recent cooperative group phase 3 trial, ours is the first
study to quantify MEF2C mRNA abundance by RT-PCR
and comprehensively examine the relationship between
MEF2C expression and disease characteristics as well as
treatment outcome in pediatric AML. The findings from
these investigations support three main conclusions.
First, MEF2C is widely expressed in pediatric AML, with
relative levels that vary considerably (>3000-fold) across
bone marrows of patients with active disease. Second,
high MEF2C expression is associated with adverse treat-
ment outcome in pediatric AML. Specifically, in our co-
hort, patients with the highest relative MEF2C expression
(4th quartile) less likely achieved a CR after one course of
chemotherapy than the other patients; they also had an
inferior OS and EFS and higher RR than patients within
the lower 3 quartiles of MEF2C expression. And third,
high MEF2C expression is associated with several adverse-
risk features. Specifically, in participants of AAML0531,
high relative expression of MEF2C was associated with a
lower prevalence of cytogenetically/molecularly defined
low-risk disease and higher prevalence of standard-risk
disease, largely because of a lower prevalence of CBF leu-
kemias or mutations in NPM1 or CEBPA and a higher
prevalence of leukemias with monosomy 7 or abnormal-
ities involving 11q23. Conversely, high relative expression
of MEF2C was associated with some better risk features,
particularly a lower prevalence of FLT3/ITD (10 vs. 18 %;
Table 2). Still, the associations between adverse cytogen-
etic or molecular disease risk features with high MEF2C

Table 1 Comparison of treatment responses of patients with low (Q1–3) vs. high (Q4) MEF2C expression

Outcome at 5 years Relative MEF2C expression P value*

Low (Q1–3) High (Q4) Hazard ratioa 95 % confidence interval

All patients n = 563 n = 188

OS 67 ± 4 % 55 ± 8 % 1.385 1.07–1.80 0.014

EFS 54 ± 4 % 38 ± 7 % 1.510 1.21–1.88 <0.001

RR 35 ± 5 % 53 ± 9 % 1.813 1.36–2.42 <0.001

Low-risk patients n = 255 n = 29

OS 81 ± 5 % 76 ± 20 % 1.433 0.43–4.82 0.561

EFS 69 ± 6 % 51 ± 20 % 1.597 0.90–2.82 0.104

RR 23 ± 6 % 49 ± 20 % 2.290 1.26–4.17 0.011

Standard-risk patients n = 230 n = 123

OS 55 ± 7 % 55 ± 9 % 0.992 0.71–1.38 0.961

EFS 42 ± 7 % 38 ± 9 % 1.143 0.86–1.52 0.356

RR 49 ± 8 % 55 ± 11 % 1.270 0.88–1.83 0.201

High-risk patients n = 69 n = 30

OS 52 ± 12 % 37 ± 10 % 1.452 0.81–2.59 0.204

EFS 31 ± 11 % 29 ± 17 % 1.155 0.70–1.92 0.576

RR 46 ± 16 % 47 ± 27 % 1.381 0.59–3.22 0.446

*Log-rank P value
aEstimates from Weibull parametric models
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expression dominated and largely accounted for the asso-
ciation between MEF2C expression and outcome. In fact,
after multivariable adjustment, MEF2C expression was
not apparently associated with outcome. As MEF2C ex-
pression does not provide prognostic information that is
independent of established risk factors, MEF2C may not
be particularly useful as a response biomarker. None-
theless, high MEF2C expression was found to be associ-
ated with inferior efficacy of curative-intent, intensive
AML chemotherapy. These data may, ultimately, provide
a strong rationale for therapeutic targeting of MEF2C
transcriptional activation in this disease.
Because of the genetic, molecular, and immunophe-

notypic heterogeneity of human AML, identification of
pharmacologic drugs suitable for reasonably large sub-
sets of patients has remained challenging. Therefore,
unraveling signaling aberrancies shared by many of the
leukemias could be useful for the development of risk-
directed, mechanism-based therapies. Our data suggest
the possibility that targeting MEF2C-induced signaling
could serve as one such strategy. Very recent studies

have identified MEF2C as a key factor in regulating sup-
pressor of cytokine signaling-2 (SOCS2) in normal and
malignant hematopoiesis and indicated that the MEF2C/
SOCS2 regulatory network might confer leukemic stem-
ness features to a neoplastic hematopoietic clone [25].
Consistent with a close relationship between MEF2C
and SOCS2, we [26] and subsequently others [25] have
provided evidence that high SOCS2 expression is associ-
ated with poor survival in AML. Studies in T-ALL and
colon cancer cells have indicated that MEF2C may in-
hibit BCL2-regulated apoptosis and can function as a
regulator of cell proliferation [7, 27]. A similar mechanism
of apoptosis resistance induced by MEF2C in AML cells
may explain the apparent association between MEF2C
overexpression and failure of AML chemotherapy. Further
experimental studies will be required to elucidate the
mechanisms of MEF2C-induced leukemogenesis and ef-
fective therapeutic strategies to block them.
It is a strength of our analysis that we included a large

number of diagnostic specimens from patients treated
homogeneously on a recent cooperative group trial,

Fig. 2 Clinical outcome in patients with high and low MEF2C expression in AAML0531. Estimates of the probability of OS (a), EFS (b), and RR (c)
in patients with high (Q4) vs. low (Q1–3) relative MEF2C expression
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thereby increasing the precision of the outcome esti-
mates. On the other hand, our studies have some limita-
tions that need to be acknowledged. First, despite the
use of over 750 specimens, our study was not large
enough to allow for extensive multivariate adjustments.
Because of the sample size of the individual risk groups,

our ability to perform subset analyses was similarly lim-
ited. Second, since unsorted bone marrow specimens
were used for our studies, differences in MEF2C abun-
dance between specimens may not necessarily reflect
differences in AML blasts but, rather, other (i.e., non-
leukemic) cells or varying compositions of less mature

Table 2 Comparison of baseline characteristics of patients with low (Q1–3) vs. high (Q4) MEF2C expression

Patient characteristics Relative MEF2C expression P value

Low (Q1–3) High (Q4)

n = 563 n = 188

Median age, years (range) 10.55 (0.01–29.8) 6.9 (0.06–19.8) <0.001

Male sex, n (%) 279 (50 %) 95 (51 %) 0.817

WBC (×103/μL), median (range) 30.7 (0.2–827.2) 20.9 (0.5–519.0) 0.160

Median bone marrow blasts, % 67.5 (0–100) 71 (3–100) 0.038

Platelet count (×103/μL), median (range) 48 (4–556) 48 (1–11,177) 0.484

Hemoglobin (g/dL), median (range) 8.1 (2.3–17.0) 8.1 (1.8–17.0) 0.684

Cytogenetics, n (%)

Normal 142 (26 %) 21 (12 %) <0.001

t(8;21)(q22;q22) 101 (18 %) 10 (6 %) <0.001

inv(16)/t(16;16)(p13.1;q22) 78 (14 %) 12 (7 %) 0.007

t(9;11)(p22;q23) or other abn 11q23 87 (16 %) 67 (37 %) <0.001

t(6;9)(p23;q34) 10 (2 %) 1 (1 %) 0.309

Monosomy 7 3 (1 %) 11 (6 %) <0.001

Del7q 4 (1 %) 2 (1 %) 0.642

−5/5q− 6 (2 %) 4 (2 %) 0.275

Trisomy 8 28 (5 %) 19 (10 %) 0.011

Other 89 (16 %) 34 (19 %) 0.428

Unknown 15 7

Risk group, n (%)

Standard 230 (42 %) 123 (68 %) <0.001

Low 255 (46 %) 29 (16 %) <0.001

High 69 (12 %) 30 (16 %) 0.170

Unknown 9 6

Molecular alterations, %

FLT3/ITD 18 % 10 % 0.018

NPM1 mutation 9 % 3 % 0.010

CEBPA mutation 7 % 1 % 0.002

WT1 mutation 6 % 5 % 0.688

Hepatomegaly, % 25 % 36 % 0.006

Splenomegaly, % 25 % 39 % <0.001

Extramedullary disease, % 15 % 11 % 0.196

CNS disease, % 6 % 9 % 0.239

Chloroma, % 15 % 12 % 0.496

Treatment arm, n (%) 0.689

Arm A—no GO 281 (50 %) 97 (52 %)

Arm B—with GO 282 (50 %) 91 (48 %)

Laszlo et al. Journal of Hematology & Oncology  (2015) 8:115 Page 6 of 10



and more mature AML cells. Gene expression studies in
human material indicate that higher MEF2C mRNA
levels are found in less mature hematopoietic cells, in-
cluding LSC populations [28, 29]. Additional studies will
be required for the identification of the exact cellular or-
igins of the greatly variable amounts of MEF2C and
more detailed analyses of relative expression levels along
the cellular differentiation path of AML cells. Third, we
only had cryopreserved specimens available for our ana-
lyses. Future studies will be necessary to determine to
what degree, if any, MEF2C expression changes in the
cryopreservation process. And fourth, we were unable to
formally study whether high MEF2C mRNA expression
leads to high MEF2C protein expression, a relationship
that would provide a strong rationale for therapeutic tar-
geting of MEF2C transcriptional activation in AML.
However, preliminary data from ongoing laboratory
studies indeed suggest that dysregulated MEF2C tran-
scription results in MEF2C protein overexpression and
confers enhanced AML cell survival (A. Kentsis, per-
sonal communication). If clinically exploitable strategies
to counteract MEF2C signaling were developed, it is

conceivable that MEF2C expression could become a
biomarker of interest for successful drug development
[30], e.g., to identify the subsets of patients most suit-
able for MEF2C-directed therapy.

Conclusions
Our data indicate that high MEF2C expression identi-
fies a subset of pediatric and adolescent AML patients
with adverse-risk disease features and, consequently,
significantly increased risk for primary treatment
failure, relapse, and poor leukemia-free and overall
survival. With confirmation that high MEF2C mRNA
expression leads to overexpression of MEF2C protein,
these findings provide the rationale for therapeutic
targeting of MEF2C transcriptional activation in
AML.

Methods
Patient samples
Cryopreserved pretreatment (“diagnostic”) specimens
from patients enrolled in AAML0531 who consented to
the biology studies and had bone marrow samples were

Table 3 Univariate and multivariate regression models of OS, EFS, and RR

OS EFS RR

n HR 95 % CI P value n HR 95 % CI P value n HR 95 % CI P value

Univariable model

MEF2C Expression

Low (Q1–3) 563 1 563 1 430 1

High (Q4) 188 1.385 1.07–1.80 0.014 188 1.510 1.21–1.88 <0.001 126 1.813 1.36–2.42 <0.001

Disease riska

Standard-risk 353 1 353 1 254 1

Low-risk 284 0.351 0.26–0.48 <0.001 284 0.440 0.34–0.56 <0.001 234 0.410 0.30–0.56 <0.001

High-risk 99 1.234 0.90–1.69 0.193 99 1.377 1.05–1.81 0.022 57 0.886 0.59–1.34 0.567

FAB Class

Not M0 624 1 624 1 471 1

M0 19 2.847 1.62–5.00 <0.001 19 2.192 1.33–3.63 0.002 11 2.641 1.33–5.24 0.006

Multivariable modelb

MEF2C Expression

Low (Q1–3) 477 1 477 1 371 1

High (Q4) 152 0.986 0.72–1.36 0.929 152 1.135 0.86–1.49 0.365 101 1.324 0.91–1.92 0.137

Disease riska

Standard-risk 292 1 292 1 213 1

Low-risk 252 0.330 0.23–0.48 <0.001 252 0.419 0.31–0.56 <0.001 210 0.422 0.30–0.59 <0.001

High-risk 85 1.251 0.85–1.78 0.214 85 1.275 0.90–1.75 0.180 49 0.872 0.56–1.36 0.549

FAB Class

Not M0 610 1 610 1 461 1

M0 19 1.981 1.09–3.59 0.024 19 2.382 1.05–5.42 0.038 11 1.646 0.78–3.45 0.187
aSee “Methods” section for definition of cytogenetic/molecular disease risk
bModels were also adjusted for treatment arm, FAB category (M0 vs. no-M0), and age
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available and were included in this study. The patient
and disease (cytogenetic/molecular) characteristics of
the subset of AAML0531 patients studied in this analysis
were relatively comparable to patients not studied in this
analysis. However, there were some differences in disease
characteristics (i.e., higher proportion of patients with
inv(16)/t(16;16) [P = 0.007] and low-risk disease [P <
0.001]) as well as better short-term outcomes (i.e., CR rate
after one course of therapy [P = 0.005] albeit not rate of
MRD [P = 0.132]), but OS was similar (P = 0.52) and EFS
was only slightly better (P = 0.04).

Risk stratification
A combination of cytogenetic and molecular abnormal-
ities was used to stratify participants into risk groups. A
patient was considered low-risk if a chromosomal abnor-
mality/mutation was present in core binding factors (CBF;
t(8;21) or inv(16)/t(16;16)), nucleophosmin (NPM1) (unless
a FLT3/internal tandem duplication (ITD) mutation with
high allelic ratio [≥0.4] was also present), or CEBPA; for
CEBPA, both single and double mutations were consid-
ered favorable [31]. Patients were classified as high-risk if
they had monosomy 5 or deletion of 5q (−5/5q−), mono-
somy 7 (−7), or FLT3/ITD with high allelic ratio (0.4 or
higher). All other patients with data sufficient for classifi-
cation were considered standard-risk.

Detection and quantification of minimal residual disease
(MRD)
Residual AML was quantified in bone marrow aspirates
collected at the end of the first induction course by mul-
tiparameter flow cytometry using a “different-from-nor-
mal” approach as previously described [32].

Quantification of MEF2C expression in unsorted AML
specimens
Total RNA from unsorted diagnostic AML specimens
was extracted with the AllPrep DNA/RNA Mini Kit
using the QIAcube automated system (Qiagen, Valencia,
CA). After quantification with a microvolume spectro-
photometer (NanoDrop; Thermo Scientific, Wilmington,
DE), 10 ng of total RNA was subjected to quantitative
reverse-transcriptase polymerase chain reaction (qRT-
PCR; 7900 Real-Time PCR System; Applied Biosystems;
Foster City, CA) using TaqMan primers per manufac-
turer’s instructions to determine expression of MEF2C
and, for normalization, the housekeeping gene, GUSB.
Primer probe sets were as follows: MEF2C was designed
to amplify sequence at the junction of exons 6 and 7,
and GUSB was designed to amplify sequence at the junc-
tion of exons 8 and 9 (Hs00231149_m1 and Hs00939627_
m1, respectively; Applied Biosystems). Patient samples
were run in duplicate, and the ΔΔCT method quantified

as 2(−ΔΔCT) [33, 34] was used to determine the expression
levels of MEF2C relative to GUSB.

Statistical analysis
Data from AAML0531 were current as of December 31,
2013. The median (range) of follow-up for patients alive
at last contact was 4.3 (0.02–7.1) years. The Kaplan-
Meier method [35] was used to estimate OS (defined as
time from study entry to death) and EFS (time from
study entry until failure to achieve CR during induction,
relapse, or death). RR was calculated by cumulative inci-
dence methods defined as time from the end of induc-
tion I for patients in CR to relapse or death where
deaths without a relapse were considered competing
events [36]. Patients who withdrew from therapy due to
relapse, persistent central nervous system (CNS) disease,
or refractory disease with >20 % bone marrow blasts by
the end of induction I were defined as induction I fail-
ures. The significance of predictor variables was tested
with the log-rank statistic for OS and EFS and with
Gray’s statistic for RR. All estimates are reported with
two times the Greenwood standard errors. Children lost
to follow-up were censored at their date of last known
contact. Cox proportional hazards models [37] were
used to estimate the hazard ratio (HR) for defined
groups of patients in univariate and multivariate analyses
of OS and EFS. Analyses of univariable OS for low-risk
patients and multivariable EFS for all patients violated
the proportional hazards assumption, and therefore, a
parametric cure regression model was used to estimate
the HR. Competing risk regression models were used to
estimate HRs for univariate and multivariate analyses of
RR. The chi-square test was used to test the significance
of observed differences in proportions, and Fisher’s exact
test was used when data were sparse. Differences in me-
dians were compared by the Mann-Whitney or Wil-
coxon signed-rank tests as appropriate. A P value <0.05
was considered statistically significant.
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