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Abstract: A method for infrared and cameras sensor fusion, applied to indoor positioning in
intelligent spaces, is proposed in this work. The fused position is obtained with a maximum likelihood
estimator from infrared and camera independent observations. Specific models are proposed for
variance propagation from infrared and camera observations (phase shifts and image respectively) to
their respective position estimates and to the final fused estimation. Model simulations are compared
with real measurements in a setup designed to validate the system. The difference between theoretical
prediction and real measurements is between 0.4 cm (fusion) and 2.5 cm (camera), within a 95%
confidence margin. The positioning precision is in the cm level (sub-cm level can be achieved at most
tested positions) in a 4× 3 m locating cell with 5 infrared detectors on the ceiling and one single
camera, at distances from target up to 5 m and 7 m respectively. Due to the low cost system design
and the results observed, the system is expected to be feasible and scalable to large real spaces.

Keywords: infrared sensors; cameras; indoor positioning; sensor fusion

1. Introduction

The framework of this proposal is positioning in indoor Intelligent Spaces. These kinds of Local
Positioning Spaces (LPSs) are complex environments in which several sensors collect information,
multiple agents share resources and position and navigation of mobile units appear as main tasks [1,2].
Under such complex conditions, having sensors with complementary capacities is necessary to fulfill
all requirements satisfactorily.

At the end of this section we include a table (Table 1) with a comprehensive summary of the indoor
positioning outlook presented in this introduction, according to accuracy and cost features, together
with a description of the applications and some comments on their main strengths and weaknesses.

Depending on the application goals, a rough, but useful, classification may divide the indoor
positioning systems in non-precise systems (from some tens of cm to 1 m level) or precise ones
(1 to 10 cm). The former are typically human-centered applications in which m-level or room-level
accuracy may be enough to fulfill the requirements (for example, localization of people or objects
in office buildings). They are usually user-oriented applications based on portable technologies as
mobile phones [3], Inertial Measurement Units (IMUs), etc. [4], or indoor local networks (WiFi, Zigbee,
Bluetooth) [5]. They exploit the benefits of having an available infrastructure in the environment
reducing, consequently, costs and sensor design effort at the expense of reaching lower precision than
an ad-hoc sensorial positioning system, as the networks are originally conceived for communication
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purposes. They usually operate using Received Signal Strength (RSS) signals [6] to directly obtain
distance estimations upon signal level measurements, or fingerprinting-based approaches relying on
previously acquired radiomaps [5].

On the other side, in industrial environments, positioning systems for autonomous agents
must be precise and robust. A cm-level positioning accuracy is needed when, for instance,
an Automated Guided Vehicle (AGV) must perform different tasks such as carrying heavy loads inside
a manufacturing plant [7,8]. In these spaces, the localization system (sensors and processing units) is
very often deployed in the environment and needs careful specific design. Precise positioning of AGVs
(and autonomous agents in general) is more visible today in industrial environments (for example,
a manufacturing plant) than in civil ones (airports, hospitals, large malls, etc.) because they are more
controlled spaces. In the second ones, due to human safety reasons together with the fact of being
much more unpredictable spaces, their introduction is much slower. Unlike outdoor localization where
Global Navigation Satellite Systems (GNSS) have imposed themselves, there is no dominant technology.
Ultrasound (US) [8], cameras [9] and radio frequency (RF) [10,11], which also comprises Ultra Wide
Band (UWB) technologies [12,13], and infrared (IR) have been mainly used so far. Alternatives with
IR have the disadvantage of being directional, but they are very interesting when high precision is
required in a channel without interference. All of them have strengths and weaknesses depending
on the environmental conditions, the type of application and the performance required. They face
several problems common to any LPS (occlusions, multipath, multiple users, etc.). Regarding the
measuring principle, they mostly work with Time Of Flight (TOF) [12,14] measurements, which can in
turn be Time Of Arrival (TOA) and Time Difference of Arrival (TDOA), Angle Of Arrival (AOA) [11],
or RSS [15], as addressed in the next paragraphs and Table 1.

In this context, the interest of this proposal focuses in precise localization systems with two types
of sensors for positioning a mobile agent: IR sensors and cameras. IR sensors are, as mentioned,
an interesting option if precise localization and interference free channel is needed, providing secure
communication capabilities. On the other hand, cameras are widely used in many applications
(such as detection, identification, etc.), including indoor positioning applications [16]. In the type
of environments mentioned above, low cost systems may be a need for scalability extension of the
solution proposed to larger spaces. IR and camera solutions can meet this requirement, although IR
need accurate ad-hoc design to deal with the very strong tradeoff between coverage (devices field
of view), precision (Signal-to-noise ratio (SNR) achieved), real time response (integration time or
filtering restriction) and cost [17]. The coexistence of IR sensors and cameras in a complex intelligent
space can be very convenient. From the cooperative point of view cameras may carry out detection
and identification of people, mobile robots or objects, environment modeling and also positioning.
An IR system can perform localization and act as communication channel too [18]. Furthermore, if the
sensors do not just cooperate but data fusion is carried out, the localization system improves with
respect to two important aspects: first, the precision of the fused results is higher compared to the IR
and camera ones, i.e., the variances of the position estimation obtained from fusion are lower than the
variances of both sensors working independently [19]. Second, the fused position estimation presents
high robustness because in case any of the sensors delivers low quality measurements (high dispersion
due to bad measurement conditions or sensor failure), the fused variance keeps below both sensor
variances, as close to the lowest one as the other. This second aspect is a key advantage for feasible
and robust positioning during navigation.
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Camera-based indoor localization systems work either with natural landmarks or artificial ones,
the former being more widely used recently. This kind of approach requires ad-hoc offline processes to
collect information about the environment and be stored in large databases [3,20–22]. The artificial
landmark approach implies a more invasive strategy but, on the other hand, does not require a priori
environmental knowledge [23,24]. With respect to the camera location, it is usually placed onboard
the mobile agent [3,20–23], being a less common practice deploying the cameras in the environment
infrastructure (which match better the conception of an intelligent space) [16,25]. Most works report a
sub-meter precision like in [20,21], or in [3], where an online homography (same strategy as the one in
our proposal) is used. Higher precisions are also achievable, as in [22], where a margin between 5 cm
and 13 cm is reached with natural landmarks. A comprehensive review where different approaches
and their features and performance can be found in [26]. In many works different sensors are used in a
cooperative (not fusion) way, as in [20] with a camera and a Laser Imaging Detection and Ranging
(LIDAR) or in [27] with camera and odometry, both for robot navigation applications, or [24] where
ArUco markers [28] (widely known encoded markers, also used in this work) and an IMU cooperate
for a drone navigation and landing application. There is no dominant approach in fusion of cameras
with other sensors in positioning and navigation applications. In [6], a human localization system is
proposed based on fusion of RF and IR pyroelectric sensors, with signal strength (RSS) measurements,
is proposed. In [29], a fusion approach with inertial measurement units (IMUs) and Kalman filter
for navigation purposes is shown. In [30] a fusion application with a similar approach as the one
we present in this paper, combining the observations with covariance-matrix weights and running
Monte Carlo simulations to test models and further comparison with real measurements is shown.
An Interesting approach [31] where motion sensors and Bluetooth Low Energy (BLE) beacon are fused
by means of a weighted sum.

Focusing on IR solutions, there are no dominant approaches in indoor localization systems either.
They can be addressed in two ways: with collimated sources (mainly laser) performing a spatial
sweep [32], or with static devices with open emission and opening angles as high as possible both
in emission and reception [17,33]. In the first case, a high SNR is collected at the detectors but there
is also greater optomechanical complexity requiring a precise scanning system [34,35], a structured
environment (IR reflectors in known positions, with very precise alignment) and notably higher cost,
in addition to demanding greater maintenance effort. With the second approach, which is the one
used in the IR subsystem presented here, receivers collect lower SNR (hence engaging precision) but
the system covers wider angle at lower cost. It implies a big design challenge to deal with this severe
tradeoff. All these features (coverage, number of receivers needed, accuracy and cost) are key aspects
towards scalability of a locating system to large spaces.

In the emerging context of Visible Light Communication (VLC) which tackles localization and
communications making use of the same optical channel, the positioning systems exploit the IR device
infrastructure as seen in [33] with TDOA measurements, or in [15] where the authors report precisions
in the sub cm level with RSS, although both works provide only simulation results. Ref. [11] is another
power-based approach plus AOA detection with three photodiodes, achieving precisions of 2 cm
in a realistic setup. The precisions achieved in these works are valid in a measuring range up to
approximately 2 m. Regarding IR and other sensors working together, many solutions are approached
from a point of view of sensor cooperation or joint operation rather than, strictly considered, sensor
fusion. In [36] passive IR reflectors are deployed in the ceiling while a camera boarded on a robot
analyzes the scene under on/off IR controlled illumination, so that the joint performance is based on the
comparison between both states’ joint response. A precision between 1 and 5 cm is achieved in a robot
navigation application. In [37] a collaborative approach using a camera and an IR distance scanner is
used for joint estimation of the robot pose, where the camera provides accurate orientation information
from visual features while the IR sensor enhances the speed of the overall solution. While [36,37] are the
most similar approaches to our proposal, given the use of IR and camera-based localization in a robotics
context, both rely on significantly different approaches (detection of actively illuminated landmarks and
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SLAM, Simultaneous Localization and Mapping) and architecture (self-localization systems on-board
of a mobile unit). Their main challenges and achieved performance are therefore hard to compare to
the proposal described in this paper, as will be seen next. Another VLC application for positioning
with three Light-Emitting Diodes (LEDs) and a fast camera, with fast code (from LEDs) processing,
achieving precisions better than 10 cm in a 40 m2 area, can be found in [38]. A similar application to
the latter, although making use of a mobile phone camera, is proposed in [39], showing decimeter
level precisions. Many positioning systems are based on RSS measurements [15], or AOA [11,34],
but precise optical telemetry is usually based on phase measurements [40].

Summarizing such a complex scenario with so high heterogeneity in the solutions proposed,
we can ascertain that cm-level precision (below 10 cm) is quite difficult to achieve, not only in prepared
experimental setups typically referred in the literature but, and specially, under realistic conditions
in real environments. Home applications can cope with m-level and room-level accuracies while
industrial ones may need (robust) performance down to 1 cm and need accurate ad-hoc solutions.
Additionally, low cost solutions are very interesting in industry as, in many cases, large spaces must
be covered (needing a high number of resources and devices for this purpose). The system we present
here is intended to aim at meeting these requirements.

In this context, our proposal is a localization system developed with a phase-shift IR localization
subsystem, composed of five receivers acting as anchors and an emitter acting as target, fused with a
camera localization one, with a maximum likelihood (ML) approach. IR and camera models are
developed and used for variance propagation to the final position estimation. Additive White
Gaussian Noise (AWGN) hypothesis is supposed for the IR and camera observations in these models.
For this, IR measurements must be mostly multipath (MP) free, which can be reasonably assumed in
sufficiently large scenarios with low reflectivity of walls and ceiling, or by implementing MP mitigation
techniques [41] or oriented sensors (as in [42] in an IR communications framework). The IR positioning
system, with cm level precision, was successfully developed and shown in the past, and a model
that relates the variances of position estimate to the target position was derived. The novelty lies
in the development of another model to deduce observation variances and further propagation to
camera position estimate by means of an homography, so that it can be used in the fused final position
estimate. The novelty also lies in the fused sensor system itself as a measuring unit, which performs
robustly delivering precisions in the cm level, and at the same time matches the models stated. To our
knowledge there are no precise positioning systems with data fusion of a phase-shift IR system,
developed ad-hoc with wide angle simple devices (IR LED emitter and photodiodes) and a single low
cost camera detecting passive landmarks, performing with cm-level in ranges of 5 to 7 m.

In Section 2 the method description is presented. The IR sensor, camera and fusion estimation
models are included in Sections 3–5 respectively, and evaluated with Monte Carlo simulations. Results
on a real setup and the comparison with simulations to validate theoretical prediction from the models
are presented in Section 6. A summary of key concepts derived from results discussion is included in
the final conclusions in Section 7.
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Table 1. Indoor positioning review. Cost: Low (L), Low-Medium (L-M), Medium (M), Medium-High (M-H) and High (H).

Ref. Application Acc. Technology Cost Pros. Cons.

Jun [7] Autonomous robots 1 cm US TOF + RF link for sync M Accurate Small (validated) coverage

Jung [33] Not mentioned 1 cm Optical, TDOA M Accurate Only simulation

Raharijaona [11] Autonomous robots 2 cm Optical, AOA, CDMA M Accurate Needs dense lighting
infrastructure

Wang [34] H-speed indoor
communications 2.5 cm Optical, AOA + RSS M More accurate than standard

VLC based Ad-hoc receiver

Zhang [15] Not mentioned 5 cm Optical, RSS L Accurate Only simulation

Lee [36] Augmented reality 1–5 cm Vision, ad-hoc IR reflecting landmarks L-M Independent of illumination Poor validation

Sani [24] Nav. and
landing drone 6 cm Cooperation Cam + IMU. ArUco

markers + PnP, IMU + Kalman Filter L Works without cam Controlled from ground station

Zhu [43] Not specified <10 cm
Pseudolites. GNSS-like ranging
(code/phase tracking) + complex
correction algorithm

M-H Accurate Only simulation results

Yun-Ting [32] Autonomous robots <10 cm 2D laser scanning + feature matching
with map M No infrastructure needed Requires previous acquisition

and classification of map features

Kumar [35] UAVs <10 cm 2 × 2D laser scanners + IMU
(for heading estimation). SLAM M No infrastructure needed Cost

Paredes [14] UAV <10 cm US TOF (CDMA) + TOF camera for
initialization M-H Accurate, fast Expensive

Kuo [39] LBS 10 cm Vision + optical (AOA from leds on
camera, ID from leds with CDMA) L

Position + orientation. Low
cost, good validation, smart use
of camera for demodulating

Not clear how dense the
infrastructure should be

Nakazawa [38] LBS, human
navigation 10 cm Vision + optical (AOA from leds on

camera, ID from leds with CDMA) M Good trade-off accuracy VS
range Ad-hoc receiver

Garcia [12] Loc. in complex
environments 10 cm UWB TOF + SW multipath mitigation M Good scalability Nodes are expensive

Tiemann [13] UAVs 10 cm UWB TOF + SW multipath mitigation M Good scalability Nodes are expensive
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Table 1. Cont.

Ref. Application Acc. Technology Cost Pros. Cons.

Montero [22] Robots localization 5–13 cm Phone cam, Landmark + Fern descriptor L Non invasive Synthetics data

Alatise [29] Autonomous robots 5–14 cm Cam(SURF + RANSAC) + IMU.
Fusion(EKF) M Accurate Field of view is limited

Pizarro [16] Autonomous robots <20 cm Reconstruction (structure-from-motion) +
odometry M Non-supervised method No multiple robots tested

Xin [44] Not specified <20 cm

Pseudolites. GNSS-like ranging
(code/phase tracking) + ambiguity
resolution of carrier phase for enhanced
accuracy

M-H Good trade-off accuracy vs
range

Requires independent
initialization

Xu [27] Autonomous robots < 25 cm Cooperation. Edges of regular ceiling +
Hough + LMS + RANSAC + Odometry M Non invasive Cumulative errors

Losada [25] Autonomous robots <30 cm Multi-camera sensor. Background model +
Generalized Principal Components Analysis M-H Localization of multiple

mobile robots No real time performance

Lee [37] Autonomous robots <35 cm Vision (natural landmarks) + IR ranging L Robustness Only simulation

Xu [20] Autonomous robots <40 cm Cooperation. Cam + CNN (coarse loc.),
LIDAR (fine loc.) H Recovery from localization

failures Pre-trained Network

Duraisamy [30] Autonomous driving <0.6 m Fusion stereo cam + Radar + Lidar.
Weighted sum of the covariances H Tested in real traffic condition Fusion accuracy dependent on

the sensor inputs

Luo [6] Robot/human
localization 0.6 m Fusion multi WiFi PIR + Cramér–Rao

Bound + triangulation(RSSI) L Integrated wireless and PIR
sensor (WPIR)

Requires at least three sensor
nodes

Chen [21] Robot/human
localization 0.25–1 m RGB-D cam + CNN (coarse loc.),

ORB-Features (fine loc.) M Indoor and outdoor Needs geotagged images

Guan [3] Human localization <1 m Phone cam, Landmark + SURF (offline.),
SURF + Match + Homography (online) L Reduces latency Needs offline image database

Mohebbi [31] Loc. for multiple
occupants 1.8 m Motion sensors + BLE beacon, fusion using

a weighted sum L Recognizes activities Low accuracy
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2. Method Description

A block level description of the strategy proposed is depicted in Figure 1. We consider a basic
locating cell (BLC) where a target (a mobile robot) is to be positioned. This BLC is covered by an infrared
positioning set (IR set hereafter) composed of several IR detectors and one single camera sharing the
locating area. In this arrangement, the position X of the target T , defined as X = (x, y, zT)

T , is to be
obtained. This target is an IR emitter for the IR sensor and a passive landmark for the camera. It lies in
a plane with fixed (and known) height zT , hence positioning is a 2D problem where the coordinates
x, y of T in such plane are sought. After the IR and camera processing blocks, two position estimates,
X̂IR and X̂c, are obtained from the IR and camera sensors respectively. X̂IR is attained by hyperbolic
trilateration from differences of distances [45] and X̂c is obtained by projecting the camera image
plane onto the scene plane by means of a homography transformation. We assume both estimates
are affected by bi-dimensional zero-mean Gaussian uncertainties, represented by their respective
covariance matrices ∑IR, ∑c. A fusion stage with a maximum likelihood (ML) approach is carried out
yielding a final estimate X̂F with expected lower uncertainty values than the original IR and camera
ones. The information about the final precision is contained in the resulting covariance matrix ∑F ,
which is addressed in Section 5.

Figure 1. Block diagram description of the method.

A deep explanation of the IR positioning system (developed in the past) can be read in [17,45].
Some relevant aspects are recalled herein though, for better understanding of the proposal. In Figure 1,
the IR BLC is composed of N + 1 receivers acting as anchors (Ai), one of them as common reference (Ar),
being Ai and Ar the coordinate vectors Ai = (xi, yi, z0)

T and AR = (xr , yr , z0)
T , with z-coordinate

fixed and known, equal to z0. The coordinates of T are achieved by hyperbolic trilateration (HT)
from the differences of distance measurements r̃ir, from T to each one of the anchors Ai (i = 1...N)
and from T to Ar. These r̃ir are obtained from differential-phase of arrival (DPOA) measurements,
φ̃ir, between Ai and Ar [17]. Nevertheless, the quantities r̃ir will be named as observations hereafter
as only a constant factor is needed to convert φ̃ir into r̃ir. Every observation r̃ir is assumed to have
additive white Gaussian noise (AWGN) with variance σ2

ir. The x,y variances of the position IR estimate
(which are terms of ∑IR) result from the propagation of σ2

ir through the HT algorithm. This process,
addressed in the next section, involves a set of positioning equations solved by non-linear least squares
(NLLS) plus a Newton-Gauss recursive algorithm [46]. Note that considering the error as unbiased
AWGN means there are no remaining systematic or other biasing error contributions (cancelled
after error correction and calibration, or considered negligible compared with random contributions).
This includes multipath (MP) errors, which means working in an MP free environment (large open
spaces with low wall reflectivity or else, MP cancellation capabilities [41,47] or working with orientable
detectors [42]).

On the other hand, the camera captures the scene and the center of a landmark placed on T
is detected yielding its coordinates in the BLC locating plane (in the scene) after image processing
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(landmark identification and center detection algorithm) and further projection from the camera image
plane to the scene. As already mentioned, this is carried out by means of a homography so that a
bijective correspondence between the image plane and the scene plane makes it possible to express
the real world coordinates as a function of pixel coordinates in the image plane (and reciprocally).
The homography is applied to the rectified image after camera calibration.

Once the estimates X̂IR and X̂c are known, after an ML fusion procedure we obtain X̂F as

X̂F = W1 · X̂IR + W2 · X̂c (1)

where the weights W1 and W2 depend on the IR and camera covariance terms, which in turn also
depend on the x,y coordinates of T . Detailed models for the X̂IR and X̂c estimates and their respective
covariance matrices ∑IR, ∑c have been derived. We aim at two goals with these models: on the one
hand, the models are the key theoretical basis to obtain the final fused estimation, as the covariance
matrices acting as weights are obtained from said models. On the other hand, they are a very useful
tool for the designer of the positioning system as low level parameters can be easily tuned and allow
for evaluating the effect on precision, from sensor observation level to final fused estimation of position.
It is also convenient to describe here the set of errors used to quantify the uncertainty of the position
estimate, either delivered by simulation or by real measurements, and either referred to IR, camera or
fusion. Considering an ellipse of N position estimations, the error metrics used are:

1. Errors in x,y axes: for every position in the test grid, the uncertainty in the x and y axis is assessed
by the standard deviation in x or y respectively. This information is contained in the covariance
matrix. This applies to Monte Carlo simulations or real measurements.

2. Maximum and minimum elliptical errors: the eigenvalues of the covariance matrix are the
squares of the lengths of the 1-sigma confidence ellipsoid axis, and can be easily computed by a
singular-value decomposition (SVD) of this covariance matrix. Hence, given a generic covariance
matrix Σθ of a set of observations in R2 with coordinates x,y, after this SVD decomposition the
two eigenvalues λ1, λ2 are obtained in a matrix Σ

′
θ . This matrices have the form:

Σθ =

[
σ2

x σxy

σyx σ2
y

]
; Σ

′
θ =

[
λ1 0
0 λ2

]
=

[
σ2

1 0
0 σ2

2

]
(2)

The deviations with respect to these axes provide more spatial information about the uncertainty
in each position. We will refer to these deviations as elliptical deviations, or elliptical errors.
The complete spatial information of the confidence ellipsoid would include also the rotation angle
of its axis with respect to, for instance, x axis. This is also easily computed, if needed, through
the aforementioned SVD decomposition. In our case, the axis length is enough to assess the
dimensions of the uncertainty ellipsoid and its level of circularity.

The criterion for considering one of them depends on the specific uncertainty description
requirements as will be addressed along the paper as needed. The results delivered by Monte Carlo
simulations, running the models aforementioned, will be compared with real measurements in a
real setup.

3. Infrared Estimation Model

We developed an IR sensor in the past with cm-level precision in MP-free environments or with
MP mitigation capabilities [45]. Three receivers (anchors) at least must be seen by the IR emitter
(target) so that trilateration is possible. More receivers are usually used to increase precision as real
measurements are always spoiled by additive noise. A 3× 3 m IR BLC composed of five receivers was
proposed in [17] so that three, four or five can be used in different configurations as needed (one of
them being the common reference). For scalability purposes, this 5-anchor BLC must be linked with
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other BLCs and high level strategies must be defined too. Nevertheless, this question fell out of the
scope of that work and is not considered here either.

In Figure 2 the IR link elements are depicted, summarizing the basic parameters involved in
a DPOA measuring unit. Therefore, just the emitter placed at T and one of the receivers located at
Ai together with the reference Ar are depicted, followed by an I/Q demodulator. As introduced in
Section 2, and explained in detail in [17] the observation φ̃ir is the DPOAir (phase difference between
target T and receivers Ai and Ar respectively), directly obtained at the output of each I/Q demodulator.
Regarding the IR model parameters (which encompasses radiometric, devices and electronics ones),
the link T-Ar is the same as any of the other T-Ai, as all receivers, including the reference one,
are implemented with the same devices.

Figure 2. Infrared link representing a generic anchor Ai (receiver) and the target T (emitter) in the
IR-BLC. Ar is the common reference in the basic locating cell (BLC).

It is assumed that φ̃ir ∼ N
(

φir, σ2
φir

)
, where φir is the DPOA true value. The corresponding

observed differential range r̃ir is directly obtained as r̃ir =
c

2π f φ̃ir and we also assume r̃ir ∼ N
(
dir, σ2

ir
)
,

where dir is the distance-difference true value (i.e., dir = ||T − Ai|| − ||T − Ar ||, and ||·|| represents
the 2-norm operator). In order to derive an IR model for the measurements, we consider r̃ir defined
as r̃ir = r̃i − r̃r, being r̃i ∼ N

(
di, σ2

i
)
, di the true value of the distance between T and Ai, and σ2

i the
variance of r̃i (related to one single anchor Ai). This also applies to r̃r (with i = r). The variance term σ2

i
can be modeled as a function of X and the IR measuring-system parameters, as will be shown further.
This way, considering r̃i and r̃r as uncorrelated variables, we can compute σir as:

σir =
√

σ2
i + σ2

r (3)

Note that while r̃ir are real observations from the measuring system (the I/Q demodulator directly
delivers a phase-difference DPOAir), r̃i and r̃r are virtual single-anchor observations, defined to derive
the model.

As demonstrated in [48], the variance σ2
i can be expressed as the inverse of the signal to noise

ratio at every anchor (SNRi), and can be modelled as follows

σ2
i =

γ

SNRi
= KIR · d

4
i (4)
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where the factor γ is proved to be γ = 1 [48], di is the Euclidean distance (true value) between Ai and
T , and KIR is a constant encompassing all parameters of the IR system (including devices, electronics,
noise and geometry), as follows:

KIR =

(
Pe · As · R · GA · KF · KI/Q · H2

η · BWN

)−1

(5)

All parameters appearing in (5) are known: Pe is the IR emitted power per solid angle unit, As and
R are the photodiode sensitive area and responsivity respectively, GA is the i-v converter gain, KF is the
filter gain (after i-v stage), KI/Q is the I/Q demodulator gain (ideally unity gain) and H is the receiver’s
height (measured from the emitter z-coordinate). The terms in the denominator, η and BWN , are the
noise power spectral density and noise bandwidth respectively. Consequently, the quantity in the
denominator is the total noise power which, once the receiver parameters are fixed, is constant [17].
The distance di in (4) is

di =

√
(x− xi)

2 + (y− yi)
2 + (z0 − zT)

2 (6)

also valid for dr making i = r. The relation in (4) is a very useful tool as it allows for expressing the
variance terms as a function of the coordinates of distance di, hence as a function of the coordinates x, y
of the sought target T (given that the coordinates of Ai are constant) and fixed parameters grouped
together in a single constant. Therefore, (4) and (5) establish the link between the random contributions
in the observations and the coordinates X of the target. The covariance matrix of the observations r̃ir is

ΣIR =


σ2

11 σ2
12 · · · σ2

1N
σ2

21 σ2
22

...
. . .

σ2
N1 · · · σ2

NN

 =


σ2

1 + σ2
r σ2

r · · · σ2
r

σ2
r σ2

2 + σ2
r

...
. . .

σ2
r · · · σ2

N + σ2
r

 (7)

where every term σ2
ii in the diagonal represents the variance σ2

ir term defined in (3) of the observation
r̃ir. The covariance matrix is not diagonal, as the dr distance term is present in all the r̃ir terms. As said,
the covariance matrix modelled this way links the position of the target in the navigation space with
the uncertainty in the observations. Every diagonal term is computed as in (3) using the relation in (4),
where di and dr directly depend on the target coordinates through (6). The non-diagonal terms are
directly deduced as a function of dr from expressions (4) to (6) with i = r.

The position X of the target is achieved by hyperbolic trilateration. From N observations r̃ir we
can write

r̃ir = (di − dr) + nir (i = 1, ...N) (8)

where nir is an AWGN contribution with variance σ2
ir. This is:√

(x− xi)
2 + (y− yi)

2 + (z0 − zT)
2 −

√
(x− xr)

2 + (y− yr)
2 + (z0 − zT)

2 = r̃ir − nir (i = 1, ...N) (9)

An estimate for X = (x, y)T can be typically obtained by nonlinear (unweighted) least squares
(NLLS) as follows:

X̂IR = arg
X

(
min

(
N

∑
i=1

ε2
i

))
= arg

X

(
min

(
εT ε
))

(10)

where ε is an N × 1 column vector formed by the N residuals εi (noise terms in (9)), i.e.,:

εi =

(√
(x− xi)2 + (y− yi)2 + (zT − z0)2 −

√
(x− xr)2 + (y− yr)2 + (zT − z0)2

)
− r̃ir (11)
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which are the Gaussian uncertainty terms in the measurement of r̃ir. (10) can also be typically solved
iteratively with a Newton-Gauss algorithm, yielding a recursive solution:

X̂IRk+1 = X̂IRk +
(

JT
ε Jε

)−1
JT

ε ε (12)

The N × 2 matrix Jε in (12) is the Jacobian of ε with respect to variables x and y (z is constant,
as mentioned), with terms

Jε i1 =
x− xi

di
− x− xr

dr
; Jεi2

=
y− yi

di
− y− yr

dr
(13)

where di and dr are computed as in (6). The covariance matrix of the NLLS estimator in (12) is
then [49,50].

∑ X̂IR
=
(

JT
ε ∑ −1

X̂IR
Jε

)−1
(14)

computed at each x, y coordinates. The IR estimate obtained in (12) and the covariance matrix in (14)
will be used in the final fusion estimate, in the form of (1). Note that the covariances in (7) are
not obtained from experimental measurements but from the expressions derived from the IR model.
Besides providing the weights in the fusion estimate, this covariance matrix can be also used for off-line
simulations in order to evaluate the results under different configurations prior to real performance.

In Figure 3 the simulation results of the model explained for realistic conditions are displayed.
As shown, in Figure 3a the whole considered test grid is depicted, with a 3× 3 m IR set with 5 anchors
placed at 2.7 m height (four in the corners and one in the center as common reference) covering a
synthetic 4× 3 m BLC. The additional area out of the IR set can be useful for transitions between
BLCs or just for widening the area covered by one IR set, although with less precision (in the extra
area out of the IR set the dispersion of the estimations increases). A set of 63 positions with 0.5 m
separation between consecutive ones has been tested, with 100 realizations at each position. One of
the locations is zoomed so that the observations cloud can be seen. The elliptical errors are evaluated
at every position upon the observation ellipse (as the one zoomed). The IR link features in this
simulation are: emitting power (Pe) 75 mW/sr, detector area (As) 100 mm2, responsivity (R) 0.64,
i-v gain factor (GA) 33× 103, filter gain (KF) and I/Q demodulator gain (KI/Q ) are both unity factor,
noise power spectral density (η) 1.34× 10−11 W/Hz and noise equivalent bandwidth (BWN) 30π/2 Hz.
These are the values for the parameters appearing in (5) with the geometrical parameter H set to 2.7 m.
In Figure 3b the values of these errors along the whole test cell are displayed (indexed starting at
the left-bottom corner of the grid and growing in columns up to the upper right corner). As shown,
under the conditions aforementioned, less dispersion is observed in the central area. The uncertainty
in x, y axis are in a margin between 1 cm and 2.3 cm and between 0.9 cm and 2.1 cm values for σx

and σy respectively. The 68% confidence ellipse is defined by axis with σ values between 1.15 cm and
2.2 cm and between 0.7 cm and 2 cm (a 95% confidence ellipse would be defined by two times these
σ values). The closeness of the deviations in the ellipse axis compared to x, y is due to the central
geometry derived from choosing the reference anchor in the center and using the five anchors in the
BLC. More ellipticity would be observed in choosing another reference anchor or using less anchors in
the BLC.
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(a) IR Test Grid
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Figure 3. IR errors. Red markers indicate anchor projections on grid plane (red square is reference).

The IR set defines an area enclosed by the perimeter defined by the four vertices at the external
anchors. This is useful for modular scaling of a larger positioning environment. Nevertheless, as can
be seen in the figure, a larger area (BLC) can be covered by the same anchor deployment. This may be
quite convenient when scaling the LPS as said, for locating the mobile robot when navigating between
consecutive BLCs. It allows for different high level design strategies making it possible, for instance,
to separate the anchors as much as possible if cost reduction is a need (at the cost of lower precision).
This applies also for the camera coverage as will be seen. However, the design strategy of a larger space
linking several BLCs lies out of the scope of this paper. Finally, any other configuration in which any
of the parameters is changed (photodiode sensitive area, emitted power, etc) can be easily evaluated.
The real tests reported in the results section are carried out with similar values as the ones synthetically
generated in Figure 3.

4. Camera Estimation Model

The camera is placed in the BLC at fixed co-ordinates and not necessarily at the same height as
the IR anchors. It may lay out of the polygon formed by the IR receivers and, although in this work
both sensors are tested with the same (target) test-position grid, it might cover, if needed, a different
target-positioning area than the IR sensors (the fusion would be, nevertheless, carried out in the
intersection of both areas). Let us distinguish the four procedures that take place for proper camera
performance in the LPS.
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• Calibration: it is carried out, customarily, by means of a calibration pattern, in order to obtain the
intrinsic and extrinsic camera parameters. Once these parameters are known, the coordinates of
the detected target from the scene can be obtained in the image. Calibration has a big impact on
errors in the final positioning. In any case, this is a standard stage in any camera-based landmark
recognition application.

• Homography parameters computation: a homography is established between the image and
scene planes (as already mentioned, the scene is also a plane of known height). It is a reciprocal
transformation from image to scene. The coefficients of the matrix H for such transformation
are obtained by means of specific encoded markers (named H-markers hereafter). This process
(with low computational and time cost) allows for having a bijective relation between camera
and navigation planes. This way, positioning can be easily carried out with one single camera.
As explained in Section 2, the uncertainty in the image capture is propagated to uncertainty in the
position in the scene through H. For setup characterization purposes, we have carried out this
process off line but, in real performance, it can normally be implemented on line.

• Target detection (Projection): a landmark placed on the target is detected by image processing so
that the position of the target is obtained in the image plane in pixel coordinates. For simplicity,
we will refer hereafter to projection when considering the projection path from image to scene (with
matrix H) and to back projection in the opposite sense (scene to image, with H−1), as represented
in Figure 4.

• Back projection: the back projection stage projects the position of T scene to the camera image by
means of the inverse homography matrix H−1 matrix. Back projection is used for simulation of
the camera estimation model.

In Figure 4 the true position of the landmark is represented by the coordinate vector X (same as
for IR sensor) and the captured position in the camera plane is Xt

p(xp, yp) where xp and yp are the x, y
coordinates in such camera plane in pixelic units (index p stands for pixelic hereafter). A homography
can be defined between the scene and camera planes, so that the relation between the coordinates of
the landmark in the scene, Xt(x, y), and Xt

p(xp, yp) in the image can be written as (15):

Camera Plane (image)

Scene

(x
p
,y

p
)

(x,y)  Landmark

H
3x3

H
3x3

-1

projectionback projection

Figure 4. Camera sensor: homography relation between scene and image.

sx
sy
s

 = H

xp

yp

1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33


xp

yp

1

 (15)

In (15) H is the homography transformation matrix, the terms hij of which are specific for every
scene and camera planes (hence camera location) and must be obtained accordingly. The homography
matrix is a 3× 3 matrix but with 8 DoF (degrees of freedom) because it is generally normalized with
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h33 = 1 or h2
11 + h2

12 + h2
13 + h2

21 + h2
22 + h2

23 + h2
31 + h2

32 + h2
33 = 1 since the planar homography relates

the transformation between two planes with a scale factor s [51]. This way, the coordinates in the scene
are obtained as follows:


x =

sx
s

y =
sy
s

→


x =

h11xp + h12yp + h13

h31xp + h32yp + h33

y =
h21xp + h22yp + h23

h31xp + h32yp + h33

(16)

Let us define the 2-variables function FH defined by (16) so that X = FH(Xp). Given pixelic
variances σ2

xp and σ2
yp and considering the camera observations with behavior xp ∼ N(xp, σ2

xp) and
yp ∼ N(yp, σ2

yp), the jacobian of FH(JFH ) for further variance propagation is:

JFH =


∂x
∂xp

∂x
∂yp

∂y
∂xp

∂y
∂yp

 =

 h11 · D− h31 · F1

D2
h12 · D− h32 · F1

D2
h21 · D− h31 · F2

D2
h22 · D− h32 · F2

D2

 (17)

where the terms F1, F2 and D are computed as:
F1 = h11xp + h12yp + h13

F2 = h21xp + h22yp + h23

D = h31xp + h32yp + h33

(18)

Given (xp, yp), pixelic coordinates of the captured landmark, yielding a corresponding position
estimation X̂c, the covariance matrix of the camera estimation of position is:

ΣX̂p
= JFH · Σp · JT

FH
(19)

Obtained from the covariance matrix of the camera observations Σp

Σp =

(
σ2

xp 0
0 σ2

yp

)
(20)

and the jacobian described in (17). It is noteworthy to remark here that in addition to the
projection-homography (camera to scene) described in (15), it is also necessary to work with the
back projection (scene to camera), defined by Xp = FH−1(X), for evaluation of the method through
simulation. To do so, synthetic true positions of the target in the grid are generated and back projected
to the camera plane by means of H−1. Next, in the camera image, synthetic realizations with a
bidimensional Gaussian distribution are also generated, with center in the true positions back projected
to the image plane before. This cloud of image points is then projected to the scene by means of H.
This Monte Carlo simulation allows evaluation of errors in the scene given certain known values
of pixelic errors and knowledge of H matrix. It must be noted that the H matrix depends on the
camera location and, therefore, it must be obtained specifically for such a location. In Figure 5 the same
test-grid as the IR one of previous section (a 4× 3 m rectangular cell with 63 positions separated 0.5 m
each other) is evaluated running a simulation as explained in the previous paragraph. The camera,
represented by a green square in the figure, is set at an arbitrary position at 3 m high with respect to
the horizontal plane. Operating with a single camera it may be interesting to cover a wide angle for
inexpensive scalability to large areas, at the cost of more distortion (on the contrary, a camera placed in
the center experiences less distortion, but less coverage too).

Supposing realistic uncertainty values σxp and σyp equal to 5 pixels (they could also be different
from each other) and the following real H coefficients (h11 = 2.9 × 10−2; h12 = −9.9 × 10−1;
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h13 = 1.1 × 103; h21 = 9.9 × 10−1; h22 = 3.3 × 10−2; h23 = −1.7 × 10−3; h31 = 1.2 × 10−5;
h32 = −1.7 × 10−5; h33 = 8.3 × 10−1), the precision of the position in the scene can be seen in
Figure 5: the deviation in x, y axis are between 0.46 cm and 0.7 cm and between 0.47 cm and 0.65 cm
values respectively, being the 68% confidence ellipse within margins of 0.5 cm and 0.66 cm and between
0.4 cm and 0.65 cm (ellipse axis respectively).

(a) maximum elliptical deviation, location A
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(b) minimum elliptical deviation, location A

Figure 5. Camera errors (x,y and elliptical deviations), green square represents camera projection on
grid plane.

Note the decrease in the deviations as the test positions get closer to the camera. Other tests may
be run in the same manner with the camera in any other location (yielding another matrix H).

5. Fusion of Camera and IR Sensors

The fusion estimation X̂F is reached by a maximum likelihood (ML) approach [19],
i.e., maximizing, with respect to X, the joint probability of having X̂IR and X̂c estimates given a
true position X. This is, given that both estimates are independent of each other:

X̂F = arg
X
[max(p(X̂IR, X̂c|X)] = arg

X
[max(p(X̂IR|X) · p(X̂c|X)] (21)

The IR and camera estimates are X̂IR ∼ N(X, ΣIR) and X̂c ∼ N(X, Σc)respectively, where X is
the true position of T and ΣIR, Σc are the IR and camera covariance matrixes defined by (12) to (14)
and (19) to (20), respectively. Consequently, X̂IR is described by:

X̂IR =
1

√
2π|ΣIR|

1
2

e−
1
2 (X̂IR−X)TΣIR

−1(X̂IR−X) (22)

and X̂c:

X̂c =
1

√
2π|Σc|

1
2

e−
1
2 (X̂c−X)TΣc

−1(X̂c−X) (23)

Introducing (22) and (23) in (21), it follows that X̂F is found as:

X̂F = arg
X
[min((X̂IR − X)TΣIR

−1(X̂IR − X) + (X̂c − X)TΣc
−1(X̂c − X))] (24)

Yielding the fusion estimate, computed as follows:

X̂F = (ΣIR
−1 + Σc

−1) · (ΣIR
−1X̂IR + Σc

−1X̂c) (25)
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Regarding covariance X-dependence, note the approach followed herein in reaching (25): the joint
probability is maximized in (21) with respect to X, considering covariances as constant. Covariances
depend on the position X as seen in the derivation of IR and camera models in previous sections.
However, to simplify the optimization process, a good tradeoff to find the solution is solving the ML
problem as stated in (21) to (25), where X is the optimization variable, and compute the IR and camera
covariance matrixes in 25, defined as in (7) to (14) and (17) to (20) respectively, using the position
estimation delivered either by the IR sensor or by the camera sensor. The criterion for choosing one of
both can be defined as needed depending on the application. By default, if no other requirement is
set, the one with minimum variance (estimated at X with each respective model) is chosen. In static
conditions this would be a good solution; in dynamic (navigation) conditions, we can compute the
fusion-position X[k] by using the covariance matrixes from X[k− 1]. If the position update velocity is
high enough this is also a good fast real-time solution. The results of fusion simulations are depicted in
Figure 6. In this figure, the tests reproduce the conditions of the respective IR and camera simulations
shown in the previous two sections. The standard deviations in the x, y axis, together with the
maximum and minimum variances (68% confidence ellipse axis) are displayed for camera, IR and
fusion results. As expected, the deviations delivered by the fusion estimate are lower than any of the
two single sensors. The more one of the deviations (IR or camera) increases, the more fusion variance
approaches the lowest one.
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Figure 6. Fusion simulation errors.



Sensors 2019, 19, 2519 17 of 30

6. Results

In this section, a set of results obtained from real measurements conducted in a real basic locating
(BLC) to assess the sensors performance and the models derived, is shown. First, IR and camera
results are shown independently in Sections 6.2 and 6.3 respectively. The fusion results are addressed
next in Section 6.4. Two approaches are considered to determine the camera observation variances
that appear in the fusion estimation. One of them is closer to the theoretical description, based on
unbiased Gaussian uncertainty of the observations and the other one consists in defining a new
standard deviation upon the real measurements (which are not purely unbiased). The latter differs
more from the theoretical assumptions but approaches better the real behavior and allows for having a
practical design tool with the same theoretical basics derived in previous sections.

The section starts with the description of the setup used for tests. Results from measurements
are shown next and finally, a comparative analysis between measurement results and theoretical
prediction is included.

In order to facilitate a faster knowledge of the results behavior we include some tables in the
different sections as explained next. In Sections 6.2 and 6.3 (IR and camera respectively): a summary of
the precision (defined upon standard deviation) in the BLC, together with two indicators to have a
better view of the behavior (shape) of the estimation clouds, are presented in a table. These indicators
are defined in Section 6.2 (IR) and further used in Section 6.3 (camera) too. In Section 6.4 (results of
fusion, also compared with IR and camera) the summarizing table is focused on the precision levels,
representing the elliptical deviations explained in Section 2.

6.1. Setup

The setup is depicted in Figure 7. A 4× 3 m rectangular BLC is covered by a set of five IR anchors
deployed in a 3× 3 m square inside the BLC (four at the corners and one in the center) at 2.7 m
height and one single camera, placed at 3 m height. The 3× 3 m IR set covers the full 4× 3 m BLC,
so that the area out of the IR set can be considered as a transition zone between different BLCs in an
eventual larger space. The test grid is composed of 63 (9× 7) test positions separated 50 cm each other.
At every position in the grid an IR emitter and a landmark are placed, acting as targets. An amount of
200 observations have been taken (phase shifts with IR and images with camera) yielding 200 IR and
camera position estimations respectively and 200 fusion estimations. In addition, five illumination
controlled levels where included in the tests, at every test-position and every camera location (therefore,
in fact, the total number of camera images at every grid position is 200× 4). Although the IR anchors
could be flexibly chosen (keeping a minimum of three, necessary for trilateration), we work here with
the full 5-IR anchor set with the reference in the center. The camera has been placed at four different
locations in order to analyze the tradeoff between covered area (by the camera) and precision. We will
show here the deviations obtained at these four positions and, next, detailed results are focused on the
camera at two of these locations, A and B, (shown in Figure 7), which represent two extremes regarding
such precision versus coverage tradeoff. The devices are selected to fulfill low cost requirements
while fulfilling performance conditions. All features of the test bench are summarized in Table 2,
including devices, BLC configuration and test conditions (notation and configuration indexes or labels
corresponding to those in Figure 7). The IR system works with an IRED as emitter (and in turn
positioning target) and a photodiode as receiver (in turn positioning anchors), as indicated in the table.
All electronic circuits, including the stages for signal conditioning and phase measuring had already
been specifically designed for this purpose in past projects. The camera is also an inexpensive one with
the sensor shown in the table and a Raspberry Pi 3 Model B as processing unit. The landmarks used
for target detection are also shown in Figure 7.

The IR measurements and positioning system performance had already been developed and
shown in the past [45]. The camera data was collected for fusion purposes, which constitutes the core
of the results presented in this paper.
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Table 2. Setup characteristics.

IR System Camera BLC and Test Conditions

Emitter IRED: SFH 4231 (OSRAM) Sensor IMX 219 PQ CMOS (Sony) Dimensions 4× 3 m

Emitted Power (Pe) 100 mW/sr Resolution 3280× 2464 Test-Grid (X1 to X63) 9× 7 target positions in
50 cm grid steps

Emitted signal IMDD IR signal
modulated at 4 MHz Transfer rate 10 fps IR-anchors

5 anchors in 3× 3 IR
deployment (4 at corners,
reference in the center)

Detector Photodiode:
PIN100-11-31-221 (API) Lens 1/4′′, 24× 25× 9 mm Camera Locations 4 locations (CL1 to CL4)

Sensitive Area (As) 5 mm2 HW Raspberry Pi 3 Model B H-markers positions 16 ArUco markers

Responsivity (R) 0.65 A/W Algorithm Corner detection (Shi-Tomasi)
plus centroid search

Number of observations
per position 200

i-v conversion
gain (GA) 33× 103 V/A Landmark Xi

illumination conditions
for camera 4 illumination levels

BP filter gain (KF)
and I/Q gain (KI/Q) 1 (V/V) 13× 13 cm

H-markers (ArUco)

Noise Power 6× 10−14 V2/Hz

Noise eq. BW 30× π/2 Hz
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Figure 7. Setup for measurements.

6.2. Infrared Measurements

The IR real measurements, under the conditions described in Table 2, deliver the positioning
errors displayed in Figure 8. In this case the configuration with higher precision has been chosen
(five receivers with reference in the center). Other possible configurations might need less resources
(lower number of anchors and/or more separated) and, hence, implying lower costs at the expense of
less precision too. As can be seen, for this IR setup the elliptical deviations are between 0.75 cm and
1.75 cm. The maximum and minimum elliptical deviation values are close to each other (and also close
to the x and y deviations) due to the symmetry and circularity of the geometry defined by the IR set
chosen) as can be seen in Table 3.

An indicator to assess the shape of the estimation clouds and to have a better geometrical view of
the results are introduced here: a dissimilarity index (DI) which will be useful to quantify, in percentage,
the level of closeness of the different standard-deviation of the results shown in Figure 8. We first
define the DI for two arbitrary matrices M and N of same dimensions:

DI =
‖M − N‖F
‖M‖F

· 100 (26)

which can vary from 0% (identical matrices) to ∞. In (26) ‖‖F is the Frobenius norm, also applicable
to one dimension vectors. We use (26) to compare, in pairs, the standard deviations in the original
x, y axis, σx, σy, with the elliptical ones defined in Section 2. For this, a 63× 1 vector containing the
values of σ at each position is built (one vector for each of the four axis), being M in (26) either the
σx vector or the σy one. Note that ‖‖F is equal to the classical Euclidean ‖‖2 norm if applied to a
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vector. We nevertheless introduce the general definition for matrices as it would have a wider range of
application, if needed, in other works (e.g., if all the covariance matrices are wished to be compared).
Here, it is more convenient to see how close the axis deviations are from each other independently.
In addition, note that a DI equal to 0% in both axis would mean that both deviation pairs are identical
(i.e., the ellipse is oriented in the x, y original axis). In this case we would not be able to ascertain the
circularity of the estimation cloud. Hence, as complementary information, we also define a circularity
index (CI) as:

CI =
λimin

λimax

· 100 (27)

where λimin and λimax are, respectively, the minimum and maximum value of the eigenvalues pair
{λ1, λ2} appearing in (2). This index is evaluated at every position in the BLC grid. In Table 3 the
CI average in the CBL is included (note that CI itself could be enough to ascertain the ellipticity of
the estimations but both CI and DI defined provide more detailed information about the estimations’
shape and behavior). In this table, the elliptical deviation 2σ values in the major and minor axis are
also included. Namely the maximum (worse case) and average values in the whole CBL are shown.
The 2σ values are chosen as they define the 95% confidence ellipsoid.
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Figure 8. Infrared sensor positioning errors.

Table 3. Infrared. Estimation-clouds shape and measurements precision.

Shape Indicators Dispersion Indicators (95% Confidence Ellipsoid)

DIx DIy CI max
BLC

(2σellipmax) 2σellipmax
max
BLC

(2σellipmin) 2σellipmin

7.2% 5.7% 86.2% 3.5 cm 2.8 cm 3.4 cm 2.5 cm

6.3. Camera Measurements

In Figure 9 the position estimations in the CBL obtained from the camera observations at
locations A and B are shown (CL2 and CL4 in Figure 7, respectively). The whole grid can be seen,
with 200 estimations at every test position. As expected, in location A, the dispersion of the estimation
clouds is lower because the camera is closer to the target. However, from location A the whole grid is
not covered by the camera field of view and some test positions fall in blind areas. On the contrary,
from location B the full BLC is covered by the camera, though dispersion is higher (less precision
than in location A). In any case, as will be discussed in the next paragraph, and shown in Figure 10
and Table 4, at either of the camera locations A or B, the dispersion of the estimations increases as the
distance from target to camera increases (this happens in the left-up direction from A and left direction
from B).
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Figure 9. Test-grid and camera estimations view.
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In order to have a comprehensive view of the camera performance, in Figure 10 the standard
deviations for all camera locations (not only A and B, but all locations 1 to 4) at every test position
are depicted. The four standard deviation values defined in Section 2 are displayed (x, y deviations
and elliptical ones). As can be seen, the elliptical deviations are in a range between 0.1 cm and 1.7 cm,
increasing as the camera is more separate from the targets (progressively from locations 1 to 4) being
similar at locations 1 and 2 as can be seen in Table 4. This would define 2σ ( 95%) confidence ellipsoids
with axis between 0.2 cm and 3.4 cm. In addition, the x, y deviation values increasingly differ from
each other, and from the elliptical ones too, from locations 1 to 4. Due to the more distortion as
the camera gets further from the grid towards location 4, the estimation clouds get more elliptical.
The discontinuities in the graphs at locations 1 and 2 correspond to blind grid positions not covered by
the camera. In the same manner as explained in previous Section 6.2 (IR measurements) the Table 4
summarizes the information about estimation-clouds’ shape and measurements precision.

Table 4. Camera. Estimation-clouds shape and measurements precision.

Shape Indicators Dispersion Indicators (95% Confidence Ellipsoid)

Cam.
Locations DIx DIy CI max

BLC
(2σellipmax) 2σellipmax

max
BLC

(2σellipmin) 2σellipmin

1 47.5% 30.6% 50.8% 1.3 cm 0.7 cm 0.7 cm 0.5 cm
2 (A) 38.6% 26.8% 60.1% 2.3 cm 0.9 cm 1.5 cm 0.7 cm

3 49.9% 18.9% 45.3% 2.7 cm 1.4 cm 1.0 cm 0.8 cm
4 (B) 31.8% 7.1% 43.9% 3.4 cm 1.6 cm 1.4 cm 0.9 cm

Next, in order to obtain specific information about pixelic deviations, which are needed to
compute the fusion estimate according to the method derived in previous sections, the whole set of
collected data is represented in Table 5. It contains the standard deviation values, in pixelic units,
in the image x, y axis for each of the camera locations. In the table, the information is summarized
showing the maximum and minimum values in the grid, as well as the average of such deviations
(for all illuminations).

Table 5. Pixelic sigmas.

Cam. Locations min(σxp) σxp max(σxp) min(σyp) σyp max(σyp)

1 1.859 3.013 4.023 1.854 2.375 4.788
2 (A) 0.738 3.021 4.066 1.472 3.104 4.491

3 1.055 2.628 3.636 1.162 2.004 5.560
4 (B) 0.625 2.550 4.146 1.272 2.573 3.870

Focusing on locations A and B, the maximum pixelic deviations in the x, y image axes are:
σxp = 4.1, σyp = 4.5, at A, and σxp = 4.1, σyp = 3.9 at B. It must be taken into account, in order not
to misunderstand the table information, that a higher pixelic deviation does not necessarily mean a
higher distance deviation in the scene (resolution worsens as camera-target distance increases). In fact,
as seen in Figure 10, deviations in location 4 (labeled as B) are clearly higher than in location 2 (labeled
as A), while the pixelic deviations are similar in both cases. In the next section we will introduce these
values of pixelic deviations in the expressions in (19) to obtain the variance of X̂c and compute the
fusion estimate as in (24). The choice of deviation values is a key point, as discussed further. The terms
of H needed in (19) to propagate pixelic variance with the function FH , are obtained from an off-line
characterization process to define an homography from point correspondences between the ArUco
markers and image [28]. It must be remarked here that in Table 5 only the standard deviations are
displayed, hence any systematic or any other biased error is not reflected there. This topic will be
addressed in the fusion results section as, actually, a higher error is obtained from camera results due
to such type of errors.
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6.4. Fusion Results

In Figure 11 the fusion errors in test-positions, obtained from the real measurements referred in
the two previous points with the 5-anchor IR set and the camera in locations A and B are depicted,
together with IR and camera ones. For easier figure reading only elliptical errors are displayed,
as the information is more useful than x, y ones, because they provide the maximum deviations in the
uncertainty ellipsoid axis (enough to define the dimensions of the 68% confidence elliptical area of
the estimation). Thus, the elliptical standard deviations of camera, IR and fusion position estimate
are shown as maximum and minimum deviations in a figure each. The abscissa axis of the figure
represents the positions in the grid as stated in the setup in Figure 7. At every test position in the
ground truth, the fusion estimation of such position is obtained as in (25), being the IR and camera
position estimations in (25) obtained from the real measurements. The covariance matrixes in (25) are
computed, also at every position, using the IR and camera models for variance propagation (from
measurements to position estimate) as explained in their respective previous sections. These variances
require the position coordinates to be computed. The position estimation obtained from the camera is
used for this (the IR estimate, or the one with lowest variance, could be used too). Let us remember that,
concerning the IR and camera variances, the former are obtained by means of an analytical expression
derived from the IR model, while the latter are empirically inferred from the camera observations
(afterwards the propagation to the covariance matrix of the camera position estimate is carried out by
the analytical model). The choice of the pixelic deviation value to use in the fusion estimate must keep
a balance between representing the real performance while being useful from the practical point of
view. We follow a conservative criterion and choose the highest deviation values in Table 5: σxp = 4.1,
σyp = 4.5, at A, and σxp = 4.1, σyp = 3.9 at B.

As can be seen, camera uncertainty (between some mm and 1.8 cm) is, in most positions,
lower than IR one and the fusion deviations are much closer to the camera ones. The gaps in the traces
in position A correspond to blind positions, as explained before.

Note that the fusion variance is slightly higher than the camera one at some points (namely, a little
worse in the minimum elliptical direction, displayed in the image on the right). This is because the
values of σxp and σyp chosen were the highest in all the grid, according to Table 5. Therefore, in many
grid positions the variance is over dimensioned (as if working with a virtual distribution with worse
variance in (25) at many positions). Proceeding in the opposite way, i.e., choosing the lowest values
would lead to apparently better, but unrealistic, results as it would now overestimate the behavior at
many points grids. The theoretical model predicts a fusion variance with lower values than the other
two (IR and camera), but there is a differences between the model stated and the real behavior: in the
model-based simulations two values of σxp and σyp were supposed to be the same for all the images,
hence the propagation to the position met this condition. The real behavior shows different σxp and σyp

at different positions. However, setting specific values at each position is not practical as, unlike the
IR sensor, there is not a fully analytical model to express the variance as a function of target position.
Selecting the value of the highest variance values along the whole grid is a good solution for the whole
scene. Apart from this, the selection of σxp and σyp described before would match a theoretical model
for unbiased Gaussian distribution of observations. However, the camera position estimates show a
bias, as displayed in Figure 12, which is not taken into account by the previous approach. The values
of the bias can be in the order of the deviations considered and, therefore, the total error assigned to
camera observations is underestimated by the pure unbiased Gaussian assumption. Moreover, this bias
is different at every grid-position (and camera location one too) with no systematic pattern, or at least
it is not easy to model as it is highly dependent on environment parameters, geometrical configuration
and image processing algorithm. Consequently, in order to take into account this contribution to
error, now, the bias will be assimilated into the inferred σxp and σyp model parameters. Following
again a conservative criterion, the highest values are determined from data represented in Figure 12.
This deviates the model (AWGN assumption) from the real error performance (biased distribution)
but this way the model is much more tractable. Aiming at having a simple procedure based on the
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model, two unique values σxp and σyp are selected from the information represented in Figure 12,
for the whole grid and for all camera locations as well. As mentioned, this approach allows for having
a useful model while matching the results satisfactorily, as shown next.
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Figure 11. Elliptic deviations of IR, camera and fusion estimations from real measurements at locations
A (top) and B (bottom). Left: maximum elliptical deviation; right: minimum elliptical deviation.

Figure 13 shows the results of IR, camera and fusion. The camera error has been redefined and
displayed according to the discussion in the previous paragraph in a mixed manner, fitting better the
real behavior: in the figure, the bias has been added to the deviation depicted in previous figures.
On the other hand, the fusion variance, resulting from the choice of pixelic deviations as explained in the
previous paragraph is below both IR and camera variances in most positions. Furthermore, comparing
these results with simulation ones (shown in Figure 14), obtained as explained in Sections 3–5 with
the model parameters set to the real values and σxp , σyp chosen as explained, it can be seen that the
(2σ) difference in the fusion (between measurements and model predictions) are within a difference
of 0.4 cm considering the whole grid (see Table 6 and 7). The camera real behavior shows higher
fluctuations than the model ones, while still remaining within a margin of 2.5 cm (mainly due to two
points; on average keeps below 0.3 cm).

In summary, the model allows for having a simulation tool that facilitates testing the positioning
space considered within a margin below 1 cm. Regarding precision achieved in target positioning,
the whole system performs within a 95% (2σ) confidence error ellipse of 2.5 cm, enhanced with the
strong robustness provided by fusion, compared with any of the two sensors working independently.
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Figure 12. Pixelic errors in target detection at each position, all illumnation range.
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Figure 13. Errors for IR, camera (includes bias) and fusion estimations from real measurements
at locations A (top) and B (bottom). Left: maximum elliptical deviation; right: minimum
elliptical deviation.
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Table 6. Summary of precision for IR, camera and fusion (real measurements).

IR Camera Fusion

Cam.
Locations

max
BLC

(2σellipmax) 2σellipmax
max
BLC

(2σellipmax) 2σellipmax
max
BLC

(2σellipmax) 2σellipmax

2 (A) 4.7 cm 2.4 cm 4.9 cm 1.7 cm 1.9 cm 1.0 cm
4 (B) 4.7 cm 2.4 cm 6.7 cm 2.7 cm 2.5 cm 1.4 cm
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Figure 14. Simulation errors for IR, camera and fusion estimations, emulating locations A (top) and B
(bottom). Left: maximum elliptical deviation; right: minimum elliptical deviation.

Table 7. Summary of precision for IR, camera and fusion (simulation).

IR Camera Fusion

Cam.
Locations

max
BLC

(2σellipmax) 2σellipmax
max
BLC

(2σellipmax) 2σellipmax
max
BLC

(2σellipmax) 2σellipmax

2 (A) 3.7 cm 2.7 cm 3.2 cm 1.8 cm 2.3 cm 1.4 cm
4 (B) 3.7 cm 2.7 cm 4.2 cm 2.4 cm 2.5 cm 1.6 cm

7. Conclusions

We have successfully developed an indoor positioning system with fusion of IR sensors and
cameras (5 IR sensors and one camera). The achievable precision is in the cm level (maximum of
2.5 cm, 1.4 cm on average, within 95% confidence ellipse) in localization areas of 3× 4 m, with IR
sensors in a 3× 3 m cell and a camera in possible locations up to a distance of 7 m from the target.



Sensors 2019, 19, 2519 27 of 30

It has been tested with measurements in a real setup, validating both the system performance and also
the proposed models for variance propagation from IR and camera observations to the resulting fused
position. Model and measurement fusion results agree within a margin of 0.4 cm (2.5 cm for camera,
1 cm for infrared), allowing for the models to be used as a valuable positioning systems simulation
tool. Regarding positioning precision itself, while camera and IR ones (95% confidence margin),
may rise up to 4.7 cm and 6.7 cm respectively, fusion improves precision reducing the deviations to
1.9 cm. On average, IR and camera present 2σ values of 2.5 cm and 2.7 cm; fusion lowers it to 1.4 cm.
This means approximately a 48% precision improvement on average (in the maximum deviations
it rises to about 72%). An average improvement of almost 50% may be quite convenient in some
applications. Moreover, as important as precision performance, the sensor fusion strategy provides the
system with high robustness as, in case one sensor fails or its performance worsens, the fused position
precision gets closer to the other one. The system also works under changing illumination. The camera
performs satisfactorily with very low illumination levels and also with floor brightness (high artificial
illumination conditions). Furthermore, IR and camera provide complementary behavior with respect
to light conditions, as in dark conditions the camera might not see the scene but the IR system would
perform correctly, while under high illumination levels the IR receivers could saturate but the camera
would still capture the landmarks. The last two features pointed out add robustness and reliability
to the system. The proposal shows promising perspectives in terms of scalability to large real spaces
because the system developed offers wide coverage with a small number of low cost devices (less than
five IR anchors is also valid) and high precision features, with the camera enhancing the decrease
of IR precision beyond 5 m. Locating areas are expected to be notably enlarged without increasing
the number of devices, although further tests are necessary for proper assessment. This could be
attained by placing the camera at longer distances and by improvement of the IR precision (increasing
sensitive area, frequency and emitted power is feasible). From the low level point of view, this will
imply a challenging design effort to balance the distance between devices so as to keep cost as low as
possible and still have acceptable coverage and precision (increasing the distance will reduce SNR).
Careful selection of new devices with higher working frequency (which also enhances precision) and
wider field of view, without engaging the response time, is a key aspect in this low level tradeoff.
With respect to response time requirements (under real time navigation conditions), a more restrictive
signal filtering (IR) and resolution increase (camera) would increase SNR (precision) but would make
the system slower. Considering all these aspects, the final system should also be tackled together with
the aid of odometry (which can also be tackled with a fusion approach). Finally, we have proposed a
BLC with five receivers but the minimum localization unit needs three, although precision worsens.
If the precision requirements relax the number of receivers could be lower (not necessarily the fusion
precision, unless the camera worsens too).

From the theoretical point of view, the IR model for variance propagation is completely analytical
and matches real results very closely at every target position in unbiased scenarios, i.e., mainly
multipath free (or MP canceled). The camera one is semi-empirical, the variance of observations being
deduced from the measurements. A completely analytical model for the camera is not easy to define
as some stages are not accessible as to link variance with position (mainly the detection algorithm).
Nevertheless, unlike the IR system, the determination of the pixelic variances, in order to obtain
the H matrix of the model, is very easily achieved with one single picture-burst of the whole scene
(with IR, this would need a large amount of measurements, successively at every position in the grid).
Moreover, although this task has been carried out offline, under real navigation performance, it could
be easily carried out online. In summary, a good tradeoff solution has been found for determining the
variance of the camera observations, which represents within 1 cm the real behavior in the whole grid.
The camera bias is very position-dependent and not easy to model, but it has also been successfully
integrated in the procedure. Regarding IR, as said, AWGN assumption requires multipath free scenario
what requires cancelation techniques. Otherwise, multipath errors can grow up to the m level in
unfriendly (though common) scenarios.
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A next challenge is improving the model for the camera, by going further in the analytical
link between variance and target position. In addition, it will be important to tackle the problem
from an estimator-based approach, addressing the approximations assumed here with respect to the
position-depending variances in the ML solution, and investigating the camera bias and IR multipath
contribution to integrate them in the models. Finally, exploring sensor cooperation capabilities together
with data fusion will be interesting when applied to real applications.
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