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Abstract: Parkinson’s disease (PD) is a chronic neurodegenerative disorder associated with dopamine
neuron loss and motor dysfunction. Neuroprotective agents that prevent dopamine neuron death
hold great promise for slowing the disease’s progression. The activation of cannabinoid (CB) re-
ceptors has shown neuroprotective effects in preclinical models of neurodegenerative disease, trau-
matic brain injury, and stroke, and may provide neuroprotection against PD. Here, we report that
the selective CB2 agonist GW842166x exerted protective effects against the 6-hydroxydopamine
(6-OHDA)-induced loss of dopamine neurons and its associated motor function deficits in mice, as
shown by an improvement in balance beam walking, pole, grip strength, rotarod, and amphetamine-
induced rotation tests. The neuroprotective effects of GW842166x were prevented by the CB2 receptor
antagonist AM630, suggesting a CB2-dependent mechanism. To investigate potential mechanisms
for the neuroprotective effects of GW842166x, we performed electrophysiological recordings from
substantia nigra pars compacta (SNc) dopamine neurons in ex vivo midbrain slices prepared from
drug-naïve mice. We found that the bath application of GW842166x led to a decrease in action
potential firing, likely due to a decrease in hyperpolarization-activated currents (Ih) and a shift of the
half-activation potential (V1/2) of Ih to a more hyperpolarized level. Taken together, the CB2 agonist
GW842166x may reduce the vulnerability of dopamine neurons to 6-OHDA by decreasing the action
potential firing of these neurons and the associated calcium load.

Keywords: Parkinson’s disease; 6-OHDA; GW842166x; dopamine neuron; motor function; Ih;
cannabinoid type 2 receptor; substantia nigra pars compacta; neuroprotection

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder associated with
motor dysfunction and neuropsychiatric symptoms, primarily characterized by the age-
dependent loss of dopaminergic projections in the nigrostriatal pathway [1,2]. The classical
motor symptoms of PD include bradykinesia, resting tremors, rigidity, and postural insta-
bility [2,3]. These symptoms arise from the progressive loss of dopamine neurons in the
substantia nigra pars compacta (SNc) and the reduction in dopamine release in the stria-
tum. The dopamine precursor levodopa and dopamine receptor agonists are commonly
prescribed treatments for PD [4,5]. Although dopamine replacement therapies relieve
symptoms of PD after their manifestation, they do not slow the continued degeneration of
dopamine neurons and, ultimately, produce adverse effects such as dyskinesia and com-
pulsive behavior that limit their therapeutic utility [6]. Thus, the identification of neuropro-
tective agents that can prevent or slow the death of dopamine neurons holds great promise
for slowing disease progression and reducing the risk of onset in vulnerable individuals.
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Emerging evidence suggests that the activation of cannabinoid (CB) receptors may
contribute to neuroprotection against stroke and neurodegenerative diseases, including
PD [7]. The endocannabinoid (eCB) ligand 2-arachidonoylglycerol (2-AG) is degraded pri-
marily by monoacylglycerol lipase (MAGL), and the selective MAGL inhibitor JZL184 has
exhibited neuroprotective effects in mouse models of Alzheimer’s disease [8] and PD [9].
Preclinical studies have shown that the non-selective CB1/CB2 agonists WIN-55,212-2
and HU-210 improved PD-associated deficits in motor function [10–12] and increased
the survival of SNc dopamine neurons in multiple PD models, including the 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) model [10,13,14]. Randomized, double-blind,
placebo-controlled clinical trials indicated that nabilone, a dual CB1/CB2 agonist, reduced
dyskinesia [15,16] and painful dystonia in PD patients [17]. However, the CB1 agonism
produces psychoactive effects and may pose a risk of abuse and dependence, whereas
selective CB2 agonists lack psychoactivity [18]. CB2 receptors are expressed in midbrain
dopamine neurons [19–21]. The CB2 gene expression is significantly increased in the SN of
PD postmortem brain samples [22]. β-Caryophyllene (BCP), a naturally occurring selective
CB2 receptor agonist, attenuated dopamine neuron loss in a rotenone-induced rat model of
PD through its anti-inflammatory and antioxidant activities [23]. The selective CB2 agonists
JWH-133 and AM1241 attenuated MPTP-induced degeneration of dopamine neurons and
axonal terminals [23,24]. The present study was undertaken to test whether the novel
CB2 agonist GW842166x has neuroprotective effects against dopamine neuron loss and
its associated motor deficits in the neurotoxic 6-hydroxydopamine (6-OHDA)-induced
mouse model of PD, which has been extensively used to study motor function deficits
within subjects by assessing rotational behavior [25,26]. We chose GW842166x because it
was found to be safe and well-tolerated with an established bioavailability and no serious
adverse effects in a phase two clinical trial for pain relief [27]. Mice first received unilateral
injections of 6-OHDA or vehicle control into the dorsal striatum and then received chronic
treatments with GW842166x by daily systemic injections for 3 weeks. Dopamine neuron
loss was confirmed by the immunohistochemistry of tyrosine hydroxylase (TH) in the SNc.
Behavioral assays, including balance beam walking, pole descent, grip strength, rotarod,
and amphetamine-induced rotation, were used to assess for motor deficits. The involve-
ment of CB2 receptors was further probed by testing whether the effects of GW842166x
were blocked by the CB2 antagonist AM630.

The selective vulnerability of the SNc dopamine neurons can be attributed to an inter-
play between high cytosolic dopamine, α-synuclein, and high cytosolic Ca2+ levels [28].
Dopamine release is triggered by action potential (AP) firing in dopamine neurons. SNc
dopamine neurons exhibit autonomous pacemaker firing that produces a basal dopaminer-
gic tone in their projection targets, in particular the striatum [29], and this basal dopamine
tone is crucial for voluntary movement [30,31]. In adult SNc dopamine neurons, au-
tonomous pacemaker firing is driven by the co-activation of hyperpolarization-activated
cyclic nucleotide-gated (HCN) channels and L-type (Cav1.3) Ca2+ channels [29,32], which
leads to a Ca2+ influx [33]. CB2 agonists inhibit the action potential firing in ventral tegmen-
tal area (VTA) dopamine neurons [19,34]. Using ex vivo brain slice electrophysiology, we
tested the hypothesis that GW842166x decreases the spontaneous activity of SNc dopamine
neurons by reducing HCN activation. These results raise the possibility that the CB2
agonist GW842166x could be repurposed as a neuroprotective treatment in the early phase
of PD.

2. Materials and Methods
2.1. Animals

C57BL/6J mice (Jax stock#: 000664) of either sex (10–12 weeks old) were purchased
from The Jackson Laboratory (Bar Harbor, ME). All experiment groups had roughly equal
numbers of male and female mice. Mice were given ad libitum access to food and water,
unless stated otherwise, and housed four to five per cage in a temperature (23 ± 1 ◦C) and
humidity-controlled room (40–60%) with a 14 h light, 10 h dark cycle. Animal maintenance
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and use were in accordance with protocols approved by the Institutional Animal Care and
Use Committee of the Medical College of Wisconsin.

2.2. Intra-Striatal 6-OHDA Injection

Mice were anesthetized with ketamine (90 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.)
and placed in a robot stereotaxic system (Neurostar, Germany). A total volume of 2 µL
6-OHDA (2 µg/µL in PBS with 0.02% sodium L-ascorbate) or control vehicle (PBS and
0.02% sodium L-ascorbate) was delivered through a Nanoject III Programmable Nanoliter
Injector (Drummond Scientific Company, Broomall, PA, USA). The stereotaxic coordinates
for striatum injections were: anteroposterior, +0.5 mm; mediolateral, ±1.8 mm; dorsoven-
tral, −3.0 and −2.0 mm (Paxinos and Franklin, 2001). The injection rate was 120 nL/min
and the injectors were kept in place for 5 min to ensure adequate diffusion from the injector
tip (~30 µm). Desipramine (Sigma; 25 mg/kg, i.p.) was injected 30 min prior to 6-OHDA in-
jection to prevent the uptake of 6-OHDA by noradrenergic neurons [35]. After the surgery,
animals received a subcutaneous injection of analgesic (buprenorphine-SR, 0.05 mg/kg).
Mice began receiving drug treatments starting from the day after intra-striatal 6-OHDA
or vehicle injection. The purpose of the study was to determine whether GW842166x
was effective in reducing 6-OHDA-induced dopamine neuron loss and associated motor
deficits, and whether the effect of GW842166x was mediated by CB2 receptors. Only
controls essential to this goal were included to minimize the number of animals expended.
The 4 essential groups consisted of mice that received intra-striatal microinjections of
6-OHDA or vehicle and then daily i.p. injections of saline, and 6-OHDA-injected mice that
received daily i.p. injections of GW842166x (1 mg/kg) or GW842166x (1 mg/kg) + AM630
(10 mg/kg) for three weeks. After completion of drug treatments, immunohistochemical
staining or behavioral tests were performed (see timeline in Figures 1 and 4).

2.3. Immunohistochemistry (IHC)

Mice were anaesthetized by ketamine (90 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.)
and transcardially perfused with 0.1 M sodium PBS, followed by 4% paraformaldehyde
in 4% sucrose PBS (pH 7.4). After perfusion, the brain was removed and post-fixed in
the same fixative for 4 h at 4 ◦C and was then dehydrated by increasing concentrations
of sucrose (20% and 30%) in 0.1 M PBS at 4 ◦C and frozen on dry ice. Coronal midbrain
sections (25 µm) were cut with a CM1860 cryostat (Leica; Nussloch, Germany). The
sections were incubated with primary antibodies against tyrosine hydroxylase (TH, rabbit,
1:300, Santa Cruz Biotechnology) at 4 ◦C for 48 h. After rinsing with PBS three times
at 15 min each, midbrain sections were then incubated in secondary antibodies: anti-
rabbit IgG HRP-conjugated (1:200, Jackson ImmunoResearch) for 4 h at room temperature.
Immunoreactivity was visualized with 3,3′-Diaminobenzidine (DAB) Substrate Kit (SK-
4100; Vector Laboratories, Inc., Burlingame, CA, USA) for 5 min, after which the reaction
was stopped with PBS wash for 5 min and then rinsed in PBS, dehydrated, and cover-
slipped. The sections were imaged with a Hamamatsu Slide Scanner and analyzed by
ImageJ software. For dopamine neuron quantification, TH+ neurons in the SNc were
counted from both brain hemispheres in 6 coronal sections from each mouse between
approximately 3.1 and 3.6 mm posterior to bregma. The brain sections (25 µm) were
sampled every third slice. Counts of dopamine neurons were expressed as the percentage
of contralateral side. We compared the cell number differences within the same slices
(control and lesion sides) and between different treatment groups, which minimized
potential sampling errors.

2.4. Brain Slicing

Adult drug-naïve mice of either sex were anesthetized by isoflurane inhalation and
decapitated. The brain was removed, trimmed, and embedded in low-melting-point
agarose, and horizontal slices (200 µm thick) containing the midbrain were cut using a
vibrating slicer (Leica VT1200s), as described in our recent studies [36]. Slices were prepared



Cells 2021, 10, 3548 4 of 17

in a cutting solution containing the following (in mM): 110 choline chloride, 2.5 KCl,
1.25 NaH2PO4, 0.5 CaCl2, 7 MgSO4, 26 NaHCO3, 25 glucose, 11.6 sodium ascorbate, and
3.1 sodium pyruvate. The midbrain slices were cut at the midline to produce two individual
slices from each section. After slice cutting, ACSF was progressively spiked into the choline
solution every 5 min for 20 min at room temperature to gradually reintroduce Na+, similar
to a previous method [37]. The slices were allowed to recover for at least an additional
30 min in ACSF prior to recording. All solutions were continuously saturated with 95% O2
and 5% CO2.

2.5. Electrophysiology

Whole-cell and cell-attached patch-clamp recordings were performed with patch-
clamp amplifiers (Multiclamp 700B; Molecular Devices, San Jose, CA, USA) under infrared
differential interference contrast (DIC) microscopy. Data were acquired using DigiData
1440A and 1550B digitizers and were analyzed with pClamp 10 (Molecular Devices).
Signals were sampled at 10 kHz and filtered at 2 kHz. Recordings of action potential
(AP) firing were created in the cell-attached mode, CNQX (10 µM), D-AP5 (20 µM) and
picrotoxin (50 µM) were present in the ACSF to block synaptic currents. Junction potentials
were nullified before obtaining a gigaohm seal. The Ih activation curves were generated by
applying 1.5-s hyperpolarizing steps to various potentials (−60 to−130 mV) from a holding
potential of −60 mV and tail currents were measured at −130 mV. Tetraethylammonium
chloride (TEA-Cl, 10 mM) was present in the ACSF to block non-inactivating voltage-
dependent K+ conductance. An equimolar reduction in NaCl from the ACSF maintained
osmolality. The current amplitude following no hyperpolarizing step was subtracted
from tail current amplitudes at −130 mV and plotted as a function of test potentials. The
Ih activation curve was fitted with a Boltzmann function I = Imax/exp((Vm − V1/2)/s),
where Imax is the maximal tail current amplitude, V is the test potential, V1/2 is the
half-activation potential, and s is the slope factor. Instantaneous inward currents (Iins)
were generated by inducing 10 mV hyperpolarizing voltage steps from a resting holding
potential of −60 mV to −130 mV. Ih amplitude was calculated by subtracting Iins from the
steady-state current (see Figure 3a). The amplitudes of evoked Ih were plotted against the
hyperpolarizing voltage steps. Membrane capacitance was measured by pClamp 10 using
−5 mV hyperpolarizing steps. Patch pipettes (3–5 MΩ) were filled with an internal solution
containing (in mM): 140 K-gluconate, 10 KCl, 10 HEPES, 0.2 EGTA, 2 MgCl2, 4 Mg-ATP,
0.3 Na2GTP, 10 Na2-phosphocreatine (pH 7.2 with KOH). Series resistance (10–20 MΩ) was
monitored throughout all recordings, and data were discarded if the resistance changed by
more than 20%. An automatic temperature controller (Warner Instruments LLC, Hamden,
CT, USA) was used to maintain the temperature for recordings at 32 ± 1 ◦C.

2.6. Behavioral Tests

One day after completion of three-week drug treatments, mice were subjected to
different behavioral tests (see timeline in Figure 4a).

2.6.1. Pole Test

A pole test apparatus, consisting of a vertical pole (diameter 8 mm, height 50 cm) with
a small piece of cardboard at the top to prevent mice from climbing over the pole, was
placed into a home cage with soft bedding. Mice were placed individually on top of the
pole with their head oriented upward and allowed to descend to the floor [38]. On the
first day, mice received two training trials to learn how to descend the pole. On the second
day, five pole descent trials were performed, and the lowest times required for animals to
orient themselves in a downward direction (Tturn) and to descend to the base of the pole
(Ttotal) were used for analysis. Trials were restarted if mice prematurely fell from the pole,
and animals that slipped down the pole or failed to re-orient downwards were excluded
from analysis.
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2.6.2. Balance Beam

A custom-built wooden bar (100 cm length × 6 cm width) was placed 50 cm above
the floor, with one end placed in a dark escape home cage. Testing was performed across
three consecutive days. During the first two days, mice were habituated to the escape cage
for 2 min, then placed at the starting point and trained to cross the balance beam to reach
the escape cage three times. On the third day, mice were placed individually at the starting
point and allowed to cross the balance beam. Each mouse was tested three times. The
average time for mice to cross the beam and the number of foot slips on the testing day
were analyzed.

2.6.3. Grip Strength

Grip strength of mice was tested using a DFE II Series Digital Force Gauges (AMETEK,
Inc., Berwyn, PA, USA). The force gauge was positioned horizontally, and the mice were
held by the tail and lowered towards the apparatus. The mice were allowed to grab the
metal grid and were then pulled backwards in the horizontal plane. The force applied to
the grid just prior to loss of grip was recorded as the peak grip strength. Each mouse was
tested three times, and averaged grip strength was used for analysis [39,40].

2.6.4. Accelerating Rotarod

The accelerating rotarod test was performed using a rotarod apparatus (IITC Life
Science, Inc., Woodland Hills, CA, USA). The apparatus consisted of a computer-controlled
motor-driven rotating spindle and five lanes for five mice. Mice that fell from the rotating
spindle were detected automatically by a pressure plate at the base of the apparatus. Mice
were habituated to the test environment for one hour prior to the test. For training, mice
from the same cage were placed in separate lanes of the testing apparatus and the rod
rotated at a constant speed of 5 rotations per minute (rpm) for 180 s. After the training, mice
were tested in accelerating speed procedure in which the rotation speed accelerated from
4 to 40 rpm over the course of 5 min. The test was repeated for 3 days, with 3 trials each
day, separated by 15 min inter-trial intervals. The mean latency to fall from the rotating
rod across trials was recorded each day.

2.6.5. Spontaneous and Amphetamine-Induced Rotation

The amphetamine-induced rotation test [41] was performed using glass cylinders
(ID = 15 cm, height = 20 cm). Mice were first placed individually into a glass cylinder
and spontaneous full body rotations in the direction ipsilateral (+) or contralateral (−)
to the injected hemisphere were recorded for 40 min. Then, mice were injected with d-
amphetamine (5 mg/kg, i.p.) and put back into the same cylinder. Ten minutes after
d-amphetamine injection, rotations were recorded for another 40 min. Full body rotations
in the ipsilateral and contralateral directions were counted in 5 min intervals. The net
rotations (ipsilateral rotations–contralateral rotations) before and after d-amphetamine
injection were reported.

2.7. Chemicals

The 6-OHDA was purchased from Sigma-Aldrich (St. Louis, MO, USA). D-amphetamine
was provided by the NIDA Drug Supply Program. GW842166X and AM630 were pur-
chased from Cayman Chemical Company (Ann Arbor, MI, USA). GW842166X and AM630
were first dissolved in DMSO (Sigma-Aldrich) and then mixed with TWEEN-80 (Sigma-
Aldrich). Then, sterile saline was added to the mix solution to create a final working
solution with 2.5% DMSO + 2.5% TWEEN-80 + 95% saline. Picrotoxin and all other
common chemicals were obtained from Sigma-Aldrich. 6-Cyano-7-nitroquinoxaline-2,3-
dione disodium salt (CNQX) and D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5) were
obtained from Tocris Bioscience (Ellisville, MO, USA).
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2.8. Statistics

Data were presented as the mean ± SEM. Data sets were compared with either
Student’s t-test, one-way or two-way ANOVA, or repeated measures ANOVA, followed by
Tukey’s post hoc analysis. Post hoc analyses were performed only when ANOVA yielded a
significant main effect or a significant interaction between the two factors. Results were
considered to be significant at p < 0.05.

3. Results
3.1. CB2 Agonism Protected Dopamine Neurons against Degeneration Induced by 6-OHDA

We examined whether the CB2-selective agonist GW842166x protected against dopamine
neuron loss in the SNc. The 6-OHDA injection resulted in a significant loss of dopamine
neurons within two weeks [42]. C57BL/6J mice received a single unilateral injection of
6-OHDA or control vehicle at two sites in the striatum. Immediately after the surgery,
mice began receiving the vehicle, GW842166x (1 mg/kg), or GW842166x (1 mg/kg) +
AM630 (10 mg/kg) treatments daily for three weeks. The doses of GW842166x and AM630
were based on previous studies with adjustment for animal species [43,44]. The day
after the last treatment, an immunohistochemical staining for tyrosine hydroxylase (TH+)
of the midbrain sections was performed (Figure 1a). The one-way ANOVA indicated
significant main effects of GW842166x treatment and 6-OHDA injection on the number
of TH+ somata (F1,24 = 95.0, p < 0.001; Figure 1b,c). Tukey’s post hoc tests indicated that
the 6-OHDA injection significantly reduced the number of TH+ dopamine neurons in the
SNc compared with the vehicle injection (p < 0.001; Figure 1c). Chronic treatment with
GW842166x significantly reduced the loss of TH+ dopamine neurons in the SNc induced
by 6-OHDA (p < 0.001; Figure 1c), and these effects were blocked by co-treatment with
AM630 (p < 0.001; Figure 1c). These results suggest that GW842166x protects against the
neurotoxic effects of 6-OHDA on dopamine neurons, and this protective effect is mediated
by the activation of CB2 receptors.

3.2. Mechanisms by Which the CB2 Agonist GW842166x Exerts Neuroprotective Effects

The neurodegeneration in PD occurs in SNc dopamine neurons, but the neighboring
dopamine neurons in the VTA are largely spared [45]. The selective venerability of SNc
dopamine neurons can be attributed to an interplay between high cytosolic dopamine,
α-synuclein, and high cytosol Ca2+ levels [28]. Dopamine release is triggered by action
potential (AP) firing. SNc/VTA dopamine neurons exhibit autonomous pacemaker firing
that is necessary to maintain a basal dopamine tone in their projection targets, including
the striatum [29]. In adult SNc dopamine neurons, the autonomous pacemaker firing is
driven by the co-activation of hyperpolarization-activated cyclic nucleotide-gated channels
(HCN) and L-type (Cav1.3) Ca2+ channels [29,32], leading to a sustained Ca2+ entry and
mitochondrial stress [33]. Compared to SNc dopamine neurons, VTA dopamine neurons
express a much lower Cav1.3 Ca2+ channel density [46], high levels of the Ca2+-buffering
protein calbindin [47], and have a significantly lower risk of degeneration in PD [47,48].
The CB2 receptor mRNA and protein are expressed by midbrain dopamine neurons,
and CB2 agonists inhibit pacemaker AP firing in VTA dopamine neurons [19], but their
effects on AP firing in SNc dopamine neurons have not been examined. We investigated
whether GW842166x altered autonomous pacemaker activity in SNc dopamine neurons.
Midbrain slices were prepared from adult (10–12 weeks old) drug-naïve C57BL/6J mice.
Non-invasive, tight-seal cell-attached patch-clamp recordings were obtained from SNc
dopamine neurons, which could be readily identified by their location and characteristic
firing pattern. The recordings were performed in the presence of the AMPA receptor
blocker CNQX (10 µM), NMDA receptor blocker D-AP5 (20 µM), and GABAA receptor
blocker picrotoxin (50 µM) to block the synaptic transmission. Stable baseline AP firing
was first established prior to drug administration. GW842166x (1 µM) or the vehicle was
perfused to test their effect on AP firing. To determine the involvement of the CB2 receptor,
we also performed these recordings in slices pre-incubated with AM630 (10 µM). The
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two-way ANOVA found that GW842166x and AM630 had a significant main effect on the
AP firing frequency in SNc dopamine neurons (GW842166x: F1,33 = 6.4, p = 0.017; AM630:
F1,33 = 4.2, p = 0.048; GW842166x × AM630 interaction: F1,33 = 8.4, p = 0.007; Figure 2a,b).
Tukey’s post hoc tests revealed that GW842166x application significantly decreased the AP
firing frequency in SNc dopamine neurons (p = 0.004; Figure 2a,b), and this decrease did
not occur in neurons from slices preincubated with AM630 (p = 0.008; Figure 2a,b).
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Figure 1. GW842166x (GW) protected against the 6-OHDA-induced loss of dopamine neurons.
(a) Timeline of 6-OHDA or vehicle injection, GW/AM630 (AM) treatments and histology. (b) DAB
staining for TH+ dopamine neurons in midbrain sections of mice that received intra-striatal injection
of 6-OHDA or vehicle and chronic GW or GW + AM treatments. (c) Summarized data showing that
the total number of TH+ dopamine neurons (% if contralateral side) in the SNc was significantly
decreased in the 6-OHDA group relative to control (*** p < 0.001, 6 sections/mouse; n = 5–6 mice).
Chronic GW treatments reduced 6-OHDA-induced dopamine neuron loss (*** p < 0.001, n = 6–8 mice),
and this effect was blocked by co-treatment with AM630 (*** p < 0.001, n = 6–8).
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Figure 2. GW842166x (GW) decreased autonomous AP firing in SNc dopamine neurons in drug-
naïve mice. (a) Bath application of GW (1 µM) decreased AP firing in SNc dopamine neurons.
(b) Summarized data demonstrating that bath application of GW decreased the frequency of AP
firing in SNc dopamine neurons (** p = 0.004, n = 8 cells from 3 mice), and this decrease was blocked
by pre-incubation of the slice with AM630 (AM) (** p = 0.008, n = 8–9 cells from 3 mice).

There are several potential mechanisms that may explain the GW842166x-induced
decrease in autonomous AP firing in SNc dopamine neurons. The CB2 receptor is a Gi/o-
coupled G-protein-coupled receptor (GPCR) that leads to a decrease in cAMP [49]. The
two pacemaker channels of SNc dopamine neurons, Cav1.3 and HCN, are sensitive to
cAMP [50,51], and a sustained decrease in cAMP would decrease the activation of both
channels. However, Cav1.3 is difficult to isolate pharmacologically, so we focused our
studies on whether GW842166x may alter Ih. HCN channels are gated by cAMP and
activated by hyperpolarization [51]. Of the four HCN channel subtypes, HCN2 and HCN4
are sensitive to cAMP [52]. SNc dopamine neurons express HCN2-4, as shown by the
single-cell RT-PCR and in situ hybridization, and the expression of the cAMP-sensitive
subtypes (HCN2 and HCN4) is predominant [53,54]. cAMP binding to the cyclic nucleotide-
binding domain of HCN2 produced a marked depolarizing shift (up to 17 mV) in half-
activation potential (V1/2) that greatly facilitated voltage-dependent activation [52,55]. A
CB2-dependent decrease in cAMP concentrations was expected to shift the V1/2 of HCN to
a more hyperpolarized potential, dampening the voltage-dependent activation.

The Ih current was induced by hyperpolarizing voltage steps (from −60 mV to
−130 mV with−10 mV steps, 1.5 sec duration), followed by a step to−130 mV for the anal-
ysis of tail currents (Figure 3a,b). We next normalized the Ih amplitude at −130 mV to the
cell capacitance and to determine the Ih density (Figure 3c). The cell capacitance (Cm) was
monitored throughout the recordings and no significant changes were detected by drug
treatments (GW842166x: F1,48 = 0.3, p = 0.570; AM630: F1,48 = 0.007, p = 0.932; GW842166x x
AM630 interaction: F1,48 = 0.3, p = 0.594). The two-way ANOVA found that GW842166x and
AM630 had significant main effects on the Ih density (GW842166x: F1,48 = 5.4, p = 0.025;
AM630: F1,48 = 4.3, p = 0.045; GW842166x × AM630 interaction: F1,48 = 5.4, p = 0.025;
Figure 3c). Tukey’s post hoc tests revealed that the GW842166x application significantly de-
creased the Ih density in SNc dopamine neurons (p = 0.007), and this decrease was reversed
by preincubating slices with AM630 (p = 0.012; Figure 3c). To examine whether GW842166x
altered the Ih activation properties, we plotted the tail current amplitudes as a function
of test potentials and fit them to a Boltzmann function to produce Ih activation curves
(Figure 3a,d). The two-way ANOVA found that GW842166x and AM630 had significant
main effects on the V1/2 of SNc dopamine neurons (GW842166x: F1,42 = 5.1, p = 0.030;
AM630: F1,42 = 10.2, p = 0.003; GW842166x × AM630 interaction: F1,42 = 5.6, p = 0.022;
Figure 3e). Tukey’s post hoc tests revealed that the GW842166x application significantly
shifted the V1/2 to a more hyperpolarized potential (p = 0.010), and this shift was prevented
by preincubation with AM630 (p = 0.001; Figure 3e). These results indicated that the CB2
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activation decreased HCN channel-mediated pacemaker currents and increased the level
of hyperpolarization necessary to activate these currents in SNc dopamine neurons.
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Figure 3. Activation of the CB2 receptor decreased HCN currents (Ih) in SNc dopamine neurons.
(a) Left, A hyperpolarizing voltage step protocol used to induce Ih. Right, representative Ih traces
from SNc dopamine neurons following bath application of GW842166x (GW) or control. (b) I–V
relationship of Ih recorded from different treatment groups. (c) Ih density was significantly decreased
by bath application of GW compared to vehicle (** p = 0.007, n = 13 cells from 4 mice), and the GW-
induced decrease in Ih density was blocked by AM pretreatment (* p = 0.012, n = 13 cells from 4 mice).
(d) Ih activation curves generated by the tail current protocol in SNc dopamine neurons. (e) Bath
application of GW led to a hyperpolarizing shift in the half-activation potential (V1/2) compared with
control (* p = 0.011, n = 10–12 cells from 4 mice), and this shift was prevented by AM preincubation
(** p = 0.001, n = 10–11 cells from 4 mice).

3.3. GW842166x Protected against 6-OHDA-Induced Motor Functions Deficits

We next determined the extent to which GW842166x protected against 6-OHDA-
induced motor function deficits. The 6-OHDA injection and drug treatments were the
same as described in Figure 1, except that the behavioral experiments were carried out
starting one day after the last drug treatments. The four groups of mice were subject to
behavioral tests, including the pole test, balance beam, grip strength, rotarod tests, and
amphetamine-induced rotation assays (Figure 4a). The pole test evaluated the ability
of a mouse to grasp, maneuver, and descend a vertical pole in its home cage [38]. Mice
were placed individually at the top of the pole with their head facing upward, and the
latency required to re-orient facing downward (Tturn) and then descend the pole (Ttotal) was
recorded. One-way ANOVA indicated that drug treatment had a significant main effect on
the time needed for mice to turn (Tturn; F3,43 = 11.8, p < 0.001; Figure 4b) and the total time to
descend the pole (Ttotal; F3,43 = 9.0, p < 0.001; Figure 4c). Tukey’s post hoc tests revealed that
6-ODHA prolonged Tturn (p < 0.001) and Ttotal (p < 0.001), indicating motor dysfunction.
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The GW842166x treatment decreased Tturn (p = 0.004) and Ttotal (p = 0.007) in 6-OHDA-
exposed mice. The protective effects of GW842166x were prevented by co-treatment with
AM630 (Tturn, p = 0.014; Ttotal, p = 0.044; Figure 4b,c).
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Figure 4. GW842166x (GW) treatment attenuated 6-OHDA-induced motor deficits in the pole test
and balance beam test. (a) Timeline of 6-OHDA injection, drug treatments, and behavioral tests.
(b,c) In the pole test, mice injected with 6-OHDA took more time to reorient downwards (Tturn;
*** p < 0.001, n = 13–13) and to descend the pole (Ttotal; *** p < 0.001, n = 13–13) compared with
control mice. GW treatment prevented the prolongation of Tturn (** p = 0.004, n = 10–13) and Ttotal

(** p = 0.007, n = 10–13) induced by 6-OHDA injection. The protective effects of GW were prevented
by co-treatment with AM630 (AM) (Tturn, * p = 0.014; Ttotal, * p = 0.044, n = 10–11). (d) In the balance
beam test, the average time to cross the beam was not significantly affected by 6-OHDA injection,
chronic GW treatment, or co-treatment with GW and AM (p > 0.05, n = 10–13). (e) The number of foot
slips from the beam was significantly increased in the 6-OHDA group relative to control (*** p < 0.001,
n = 13–13), the increase in foot slips was attenuated by GW treatments (* p = 0.011, n = 10–13), and
AM co-treatments prevented the effect of GW (* p = 0.039, n = 10–11).

The balance beam walking assay analyzed the motor coordination of the fore- and
hindlimbs and was sensitive to unilateral 6-OHDA lesions in mice [56]. In this assay, mice
had to maintain balance while crossing a narrow beam. The one-way ANOVA revealed no
significant main effect of drug treatment on the time needed for mice to traverse the balance
beam (F3,43 = 2.1, p = 0.111; Figure 4d). However, there was a significant main effect of drug
treatment on the number of foot slips during beam crossing (F3,43 = 9.1, p < 0.001; Figure 4e).
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Tukey’s post hoc tests revealed that 6-OHDA-injected mice experienced significantly more
foot slips compared with control mice (p < 0.001; Figure 4e), and this increase was attenuated
by GX842166x treatment (p = 0.011; Figure 4e). The effect of GW842166x was prevented by
co-treatment with AM630 (p = 0.039; Figure 4e).

The grip strength test quantified muscular strength [39,40]. To account for differences
in grip strength due to animal size, grip strength was normalized to body weight for each
mouse. In the grip strength test, there was a significant main effect of drug treatment in
the absolute grip strength (F3,43 = 40.9, p < 0.001; Figure 5a) and normalized grip strength
(F3,43 = 27.0, p < 0.001; Figure 5b). Tukey’s post hoc tests revealed that 6-ODHA injection
decreased the absolute grip strength (p < 0.001; Figure 5a) and normalized grip strength
(p < 0.001; Figure 5b) relative to control mice, both of which were ameliorated by the
GW842166x treatment (p < 0.001; Figure 5a,b). The effect of GW842166x was prevented by
co-treatment with AM630 (p = 0.009; Figure 5a,b).
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Figure 5. GW842166x (GW) treatment attenuated 6-OHDA-induced motor deficits in the grip
strength test and rotarod test. (a,b) In the grip strength test, 6-OHDA injection decreased the absolute
grip strength (grip force, *** p < 0.001, n = 13–13) and normalized grip strength (normalized force,
*** p < 0.001, n = 13–13), both of which were ameliorated by GW treatment (*** p < 0.001, n = 10–13).
Co-treatment with AM630 (AM) prevented the protective effects of GW (** p = 0.009, * p = 0.044,
n = 10–11). (c) In the rotarod test, 6-OHDA injection significantly decreased the latency to fall
(*** p < 0.001, n = 13–13), GW treatments significantly increased the latency to fall (*** p < 0.001,
n = 10–13), and AM co-treatments prevented the effect of GW (* p < 0.05, *** p < 0.001, n = 10–11).

In the rotarod test, mice were placed on a horizontal rod that rotated with an acceler-
ating velocity. Mice had to maintain balance and an upright position while engaging in
forward locomotion to avoid falling. The experiments were performed daily for three days.
The two-way repeated-measures ANOVA revealed that there was a significant main effect
of drug treatment on the latency to fall (F3,43 = 38.2, p < 0.001). There was no significant
main effect of testing day on the latency to fall (F2,86 = 3.2, p = 0.054), and there was no
significant interaction between the testing day and drug treatment (F6,86 = 1.5, p = 0.200;
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Figure 5c). An a priori comparison indicated that the 6-OHDA injection significantly
decreased the latency to fall relative to control mice (day 1, p < 0.001; day 2, p < 0.001; day 3,
p < 0.001). The GW842166x treatment in 6-OHDA-exposed mice significantly increased the
latency to fall (day 1, p < 0.001; day 2, p < 0.001; day 3, p < 0.001), and the latency to fall did not
differ between these mice and control mice (p > 0.05). The effect of GW842166x was prevented
by co-treatment with AM630 (day 1, p < 0.001; day 2, p < 0.001; day 3, p = 0.015; Figure 5c).

We also investigated the protective effects of GW842166x in both the spontaneous and
amphetamine-induced rotation assays [41]. A unilateral intra-striatal injection of 6-OHDA
degenerated dopamine neurons in the ipsilateral SNc, while dopamine neurons in the con-
tralateral hemisphere were unaffected. This resulted in an imbalance of dopamine release
between the hemispheres and an asymmetrical movement. Mice were placed individually
into glass cylinders and spontaneous rotations in both directions were recorded for 40 min.
The one-way ANOVA indicated a significant main effect of drug treatment on spontaneous
rotations (F3,43 = 5.1, p = 0.004, Figure 6a,b), and the Tukey’s post hoc analysis showed
that the 6-OHDA group exhibited a significant increase in the net spontaneous rotations
in the direction ipsilateral to the injection site compared to the control group (p = 0.009;
Figure 6a). Next, mice received an i.p. injection of d-amphetamine (5 mg/kg, i.p.), and
rotations were recorded for another 40 min. The one-way ANOVA showed that there was
a significant effect of drug treatment on d-amphetamine-induced rotations (F3,43 = 43.8,
p < 0.001; Figure 6b). The 6-OHDA-lesioned mice performed more net rotations in the
direction ipsilateral to the injection site compared to control mice (p < 0.001). The increase
in rotations was attenuated by the GW842166x treatment (p < 0.001), and the effect of
GW8421266x was prevented by the AM630 co-treatment (p = 0.004; Figure 6b). Taken
together, the above results indicated that 6-OHDA impaired motor function in mice in a
variety of behavioral tests, and that GW842166x ameliorated the 6-OHDA-induced motor
function deficits in a CB2-dependent manner.
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Figure 6. GW842166x (GW) treatment decreased spontaneous and amphetamine-induced rotations.
(a) Mice unilaterally injected with 6-OHDA exhibited an increase in spontaneous rotations compared
to vehicle-injected mice (** p = 0.009, n = 13–13). GW without AM630 (AM) co-treatment did not
significantly alter the number of spontaneous rotations relative to control mice (p = 0.484, n = 10–13).
GW plus AM co-treatment significantly increased the number of spontaneous rotations relative to
6-OHDA controls (* p = 0.011, n = 11–13). (b) Unilateral 6-OHDA injection increased amphetamine-
induced (5 mg/kg, i.p.) net rotations relative to control mice (*** p < 0.001, n = 13–13). This increase
in rotations was attenuated by GW treatment (*** p < 0.001, n = 10–13), and the effect of GW was
prevented by AM co-treatment (*** p = 0.004, n = 10–11).

4. Discussion

The etiology of PD is heterogenous, with both genetic and environmental determi-
nants [2]. The fact that there is no single cause of PD in humans is reflected in the wide
range of neurotoxic and genetic animal models of PD used in preclinical research [57].
Importantly, there is increasing evidence that CB2-selective agonists are neuroprotective
across multiple PD models. B-caryophyllene, AM1241, and HU-308 were shown to be
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protective against dopaminergic neurotoxicity induced by rotenone [23], MPTP [58], and
LPS [59], respectively. We extended these studies by demonstrating the neuroprotective
effects of a novel CB2-selective agonist, GW842166x, against 6-OHDA-induced neurode-
generation, as well as motor function deficits. We investigated the mechanisms involved
and found that GW842166x decreased the action potential firing of SNc dopamine neurons
by reducing the activation of HCN channel-mediated currents. It is likely that the CB2
agonist protected against dopamine neuron degeneration by reducing AP firing and the
associated calcium influx/load.

The 6-OHDA could be unilaterally injected into the SNc, medial forebrain bundle
(MFB), or dorsal striatum to induce the degeneration of dopamine neuron cell bodies in the
SNc and dopaminergic nerve terminals in the striatum [60]. We targeted the dorsal striatum
because the model produced a selective lesion of dopamine neurons in the SNc, while VTA
dopamine neurons were largely spared (Figure 1), and the partial lesion of the midbrain
dopamine neurons resembled the earlier stages of PD [60], when neuroprotective effects
would be most impactful. A single 6-OHDA injection resulted in the loss of TH+ cell bodies
in the SNc ipsilateral to the 6-OHDA injection as determined by TH immunohistochemistry.
Treatments with the CB2-selective agonist GW842166x for three weeks attenuated the
6-OHDA-induced dopamine neuron loss, and this effect was prevented by the selective
CB2 antagonist AM630. Thus, GW842166x protected against dopamine neurons loss via
CB2 receptor-dependent mechanisms.

What might be the mechanisms for CB2-induced neuroprotection? The CB2 receptor
mRNA and protein are expressed in midbrain dopamine neurons [19–21]. CB2 agonists
inhibit pacemaker AP firing in VTA dopamine neurons [19,34], and the enhancement of
M-type K+ channel activation contributes to the CB2-mediated suppression of AP firing
in these neurons [34]. However, whether CB2 agonists alter AP firing in SNc dopamine
neurons has not been examined. We showed that GW842166x inhibited spontaneous
AP firing in SNc dopamine neurons, which was blocked by AM630, indicating CB2-
dependent mechanisms. The CB2 receptor is a Gi/o-coupled GPCR that leads to a decrease
in cAMP [49]. The pacemaker channel HCN contributes to the pacemaking activity of
SNc dopamine neuron [32,61], although Cav1.3 Ca2+ channels may also participate [29].
Both HCN and Cav1.3 are sensitive to cAMP [50,51], and a CB2-mediated decrease in
cAMP would decrease the activation of these channels. We found that the bath application
of GW842166x decreased the V1/2 and Ih amplitude in SNc dopamine neurons, which
were blocked by AM630. The GW842166x-induced decrease in the V1/2 would shift the
threshold of the HCN channel activation to a more hyperpolarized potential, resulting in
a requirement for a greater hyperpolarization to activate HCN channels and engage the
spontaneous AP firing.

Why would the inhibition of SNc dopamine neuron AP firing provide neuroprotec-
tion? Ca2+ overload is a primary reason as to why SNc dopamine neurons are vulnera-
ble to neurodegeneration [28]. The 6-OHDA is known to result in significant oxidative
stress to dopamine neurons, which ultimately results in Ca2+-mediated cytotoxicity [62].
GW842166x may reduce the vulnerability of dopamine neurons to 6-OHDA by reducing
the spontaneous action potential firing of these neurons and the associated calcium influx.
However, CB2 receptors in non-neuronal cells may also confer neuroprotective effects of
GW842166x. The injection of 6-OHDA or lipopolysaccharide (LPS) into the rat striatum
led to an increased expression of the CB2 receptor as assessed by a real-time quantitative
reverse transcription PCR, and this increase correlated significantly with an increase in
microglial activation [63]. The CB2 gene expression was also significantly increased in
the substantia nigra in the postmortem brains of patients with PD, and immunohisto-
chemical analyses revealed that CB2 co-localized with astrocytes but not with neurons
or microglia [22]. It is possible that both neuronal and non-neuronal mechanisms confer
CB2-mediated neuroprotection in PD.

A critical question is whether GW842166x prevents the development of motor deficits
in the 6-OHDA model of PD. We carried out an array of behavioral tests to assess motor
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function, including the pole test, balance beam, grip strength, rotarod, and amphetamine-
induced rotation assays. Our results consistently demonstrated that treatment with the
selective CB2 agonist significantly reduced 6-OHDA-induced motor deficits. Bradykinesia,
a slowness of movement resulting from an impaired voluntary motor control, is one of the
primary manifestations of PD [3], and was observed in increased latencies to complete tasks
involving locomotion and balance. Fine motor coordination and balance were assessed
with the pole test, balance beam, and rotarod tests. In the pole test, we found that the
6-OHDA lesion led to increases in both the time necessary for mice to turn and the time
to descend the pole. The 6-OHDA group demonstrated greater difficulty traversing the
balance beam and had more foot slips compared with the control group, indicating that
balance and coordination were impaired. Similarly, in the rotarod test, mice in the 6-OHDA
group had shorter latencies to fall from the rotating rod, adding further evidence for motor
impairment resulting from the loss of SNc dopamine neurons. In the grip strength test, the
6-OHDA group showed a significant decrease in the limb muscle strength. The 6-OHDA-
induced unilateral nigrostriatal lesion also resulted in asymmetric motor impairments as
shown by increased spontaneous and amphetamine-induced rotations ipsilateral to the
lesion side. The effects of the 6-OHDA lesion across the range of behavioral measures
tested were all prevented or attenuated following three weeks of GW842166x treatment in
a CB2-dependent manner. This indicated that CB2 activation is neuroprotective against
6-OHDA-induced motor deficits.

5. Conclusions

In summary, we demonstrated that GW842166x, a CB2-selective agonist, attenuated
the 6-OHDA-induced degeneration of dopamine neurons in the SNc and its associated mo-
tor deficits. GW842166x-induced protective effects were prevented by co-treatments with
the selective CB2 antagonist AM630. Our study lends further support for the therapeutic
potential of selective CB2 agonists against the degenerative effects of neurotoxic molecules
with varying mechanisms of action. Although non-selective CB receptor agonists have
shown neuroprotective effects against PD [14], targeting the CB1 receptor selectively to
ameliorate symptoms of Parkinson’s disease has yielded inconsistent results [64]. Fur-
thermore, the psychoactive effects of CB1 agonists may pose a risk for abuse [18]. As
GW842166x was found to be safe and well-tolerated with no serious adverse effects in
clinical trials [27], our study raises the exciting possibility that GW842166x or other CB2
agonists may be utilized as a neuroprotective treatment during the early phase of PD to
slow disease progression.
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