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ABSTRACT: PERK, as one of the principle unfolded protein
response signal transducers, is believed to be associated with
many human diseases, such as cancer and type-II diabetes.
There has been increasing effort to discover potent PERK
inhibitors due to its potential therapeutic interest. In this study,
a computer-based virtual screening approach is employed to
discover novel PERK inhibitors, followed by experimental
validation. Using a focused library, we show that a consensus
approach, combining pharmacophore modeling and docking,
can be more cost-effective than using either approach alone. It is also demonstrated that the conformational flexibility near the
active site is an important consideration in structure-based docking and can be addressed by using molecular dynamics. The
consensus approach has further been applied to screen the ZINC lead-like database, resulting in the identification of 10 active
compounds, two of which show IC50 values that are less than 10 μM in a dose−response assay.

■ INTRODUCTION

Virtual library screening and molecular modeling have been
used widely in the drug discovery process and have yielded
experimentally confirmed hits for various protein targets.1−6

Different virtual screening (VS) approaches have been used,
including structure-based docking and ligand-based mapping.
Not surprisingly, there are limitations in both approaches. For
example, reliable and relevant structures of the target proteins
are necessary for docking. In contrast ligand-based mapping
only requires knowledge of known ligands of the target. Often,
a novel target of therapeutic interest does not have a crystal
structure. For instance, a recent survey7 showed that there were
crystal structures available for only 155 individual kinases
among the total 518 human kinases. The time needed to obtain
such crystal structures varies considerably, and the outcome is
not guaranteed. In addition, crystal structures without bound
ligands may not be relevant, especially for proteins that undergo
large conformational changes upon ligand-binding. The
solution in such situations would be either to generate a
model structure (either entirely or partially) via homology
modeling and/or molecular dynamics (MD) simulation8−10 or
to apply a ligand-based mapping approach, such as
pharmacophore mapping and shape-based screening of the
ligand so the protein structures are not used.6,11−15

PKR-like endoplasmic reticulum kinase (PERK), along with
two other proteins IRE1 (inositol requiring enzyme 1) and
ATF6 (activating transcription factor 6), are the three principle
transducers of the unfolded protein response (UPR).16−18 The
UPR is activated in response to the accumulation of unfolded
or misfolded proteins in the endoplasmic reticulum (ER), due
to ER stress arising from a number of conditions including

glucose deprivation, hypoxia, oxidative stress, viral infection,
high cholesterol, and protein mutations. An active UPR can
restore homeostasis by increasing the capacity of the ER for
protein folding and degradation while reducing protein
synthesis; however, prolonged UPR activity, implying an
unresolved ER stress, may lead to cell apoptosis, thus
protecting the organism from the potential harmful con-
sequences. The PERK arm of the UPR regulates protein levels
entering the ER by phosphorylating the translation initiation
factor eIF2α, thereby reducing protein synthesis. PERK is
activated by autophosphorylation through a poorly understood
mechanism, which may involve oligomerization.
Recent studies have implicated the UPR in several human

diseases, for example, protein-misfolding diseases, like retinitis
pigmentosa19 and type II diabetes,20 where apoptosis signals
from the UPR triggered by misfolded proteins cause the death
of normal cells. Certain types of cancer21,22 and viruses23

exploit the UPR signal to increase the ER capacity in order to
sustain the rapid growth of cancer cells or viral replication.
Given the integral roles of PERK in the UPR, an understanding
of its interactions with other proteins in the signaling pathways
may inspire the development of potential therapeutic strategies.
Recently, GlaxoSmithKline reported their first-in-class PERK
inhibitor (GSK2606414).24 Here we discuss the discovery of
novel inhibitors of PERK utilizing virtual library screening
approaches in hopes of providing new scaffolds for the
development of PERK inhibitors.
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In this paper, we apply both structure-based docking and
ligand-based screening approaches to identify potential novel
inhibitors of PERK. We first discuss how MD simulations are
necessary to refine a PERK crystal structure for docking-based
virtual screening. Then we present a ligand-based pharmaco-
phore model generated from four hits derived from high
throughput screening (HTS). Both approaches are first
validated against the HTS results of a screen against a library
of about 27 000 compounds. The initial VS results suggest that
a consensus approach by combining both pharmacophore
modeling and docking are more effective than either one alone,
which is in accordance with previous retrospective studies25,26

on VEGFR-2 inhibitors using a number of combinations of VS
methods. Our VS protocol is then applied to screen the ZINC
lead-like database containing more than 3 million compounds.
Finally, about 50 commercially available compounds from
virtual screening were tested in biochemical kinase assays,
confirming activities of 10.

■ METHOD

Screening Work-Flow. Two virtual screening approaches,
ligand pharmacophore and docking, were used jointly. We first
trained our protocol against previous high-throughput screen-
ing data27 (the green and brown blocks in Figure 1). From the
known active compounds obtained in the HTS, a ligand-based
pharmacophore was generated and used to screen other
potential compounds. Alternatively, we also performed protein
structure-based docking to screen the compounds. The
performance of both pharmacophore and docking were
evaluated by comparing with the HTS result. On the basis of
this, a protocol was proposed and applied to a VS of the ZINC
database, which is the lower portion of the triangle shown in
Figure 1. Finally, the selected compounds from the VS were
tested in vitro.
Structure Preparation. The available apo mouse PERK

structure (PDB code: 3QD2)28 shows a closed G-loop when it
is superimposed with a structurally similar kinase PKR (PDB
code: 2A19).29 It can be seen that the G-loop region in 3QD2
clashes with the ATP in 2A19 (Figure 2). With such clashing,

the 3QD2 structure is not meaningful for docking. To obtain a
PERK structure with an “open” active site, we first raised the G-
loop region artificially by modeling after 2A19, then manually
docked the ATP and two Mg2+ ions into the ATP-binding site
of 3QD2 (using 2A19 as the template). The mouse PERK-ATP
complex was then solvated in an octahedral box of TIP3P
water,30 with a minimum buffer distance of 14 Å from the
protein surface to the box edge. There are 12 095 water
molecules in the box in total. Counter ions were also added to
neutralize the box. Structural minimization was applied before
running molecular dynamics simulation in order to remove any
bad contacts between atoms. During the MD simulation, the
system was heated up from 0 to 300 K in 200 ps with NVT
ensemble and then switched to NPT ensemble for 10 ns.
Positional restraints were applied to the two Mg2+ ions, each
with a weight of 5.0 kcal/mol/Å2 in minimization and 2.0 kcal/
mol/Å2 in MD simulations. Both minimization and molecular

Figure 1. The schematic plot of the workflow of the screening process.

Figure 2. PERK (green) superimposed with PKR-ANP complex
(silver).
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dynamics simulations were conducted with the Amber12
software package.31

A representative structure of PERK used in docking was
obtained using the pairwise average linkage clustering method
provided in the MaxCluster program.32 A total of 450
snapshots (20 ps apart) were taken from the last 9 ns of MD
simulation. RMSD of the protein structure was used as the
measure of distance between two nodes in clustering, with a
threshold value of 1.2 Å. A total of eight clusters are generated,
and the median structure of the most populated cluster was
chosen as the final model structure and used in subsequent
docking work.
Hit in Training Library. A hit was defined as a compound

demonstrating more than 50% inhibition at 1 μM concen-
tration in the PERK kinase assay among a small library of 875
known kinase inhibitors. This yielded a total number of 15 hits.
The remaining 860 compounds along with a larger library of
26 365 compounds were then considered as decoys or inactive
compounds. Therefore, a library of 27 240 compounds was
used in training the virtual screening.
Docking and Pharmacophore Mapping. A library of 27

240 compounds, including a known kinase-focused library, was
processed by docking, using Gold5.0.1 and the goldscore
scoring function.33 For each compound, 10 GA runs were
performed with a docking efficiency of 100%. It took
approximately 3 days to dock the whole library on 20 2.4
GHz AMD Opteron cores for each target.
A ligand-based pharmacophore was generated and utilized in

pharmacophore mapping using DiscoveryStudio3.5. A 3D
database of the library was built first, with 255 conformations
generated for each compound. The pharmacophore was
generated based on the four most potent hits we found in
the experimental high-throughput screening assay. A number of
pharmacophores were first generated based on each of the
compounds. Then each pharmacophore was examined by
mapping it against all four compounds. The best-fitted
pharmacophore was hence selected. This led to a five-feature
pharmacophore, including two hydrogen-acceptor features and
three hydrophobic features. An additional aromatic ring feature
was added manually afterward to mimic the adenine ring of
ATP. The most time-consuming part of pharmacophore
mapping is the conformation-building step. Mapping the
whole 3D database of 27 240 compounds (255 conformation
each) took only 4 min on a workstation of four 2.4 GHz Intel
Xeon cores.
Enrichment Calculation. Enrichment is defined as

=Enrichment
% hits

% library (1)

where percentage of hits means the percentage of the 15 true
hits found by docking, while percentage of library indicates the
percentage of the total number of compounds in the library.
Two other measures, true positive rate and false positive rate,

used in the receiver operating characteristic (ROC) plot in this
study, are defined as

=True positive rate (% hits)
Hits in docking result

All hits (2)

=False positive rate (% decoys)
Decoys in docking result

All decoys
(3)

Biochemical Screening of the Compounds Identified
by Virtual Screening. After virtual screening of the ZINC
database, 50 commercially available compounds were pur-
chased and assessed. PERK kinase activity assay was performed
in 96-well microplates (OptiPlate-96, PerkinElmer LAS, Inc.).
The reaction had a total volume of 100 μL, containing 25 mM
HEPES (pH 7.5), 10 mM MgCl2, 50 mM KCl, 2 mM DTT, 0.1
mM EGTA, 0.1 mM EDTA, 0.03% Brij 35, 5% DMSO, and 10
μg/mL BSA. The activity of 20 nM PERK was tested against 5
μM of eIF2alpha. Each reaction mixture was incubated in a 96
well plate at room temperature for 30 min. The reaction was
initiated by the addition of 10 μL [γ-32P] ATP, adjusting the
final ATP concentration to 10 μM. The reaction was incubated
at room temperature for 10 min and then quenched by
transferring 80 μL of reaction mixture to each well of a P81 96-
well filter plate (Unifilter, Whatman) containing 0.1 M
phosphoric acid. The P81 filter plate was washed with 0.1 M
phosphoric acid thoroughly, followed by the addition of a
scintillation cocktail. A MicroBeta TriLux liquid scintillation
counter (PerkinElmer) was used for screening plates. The top 4
compounds were further tested in a dose−response experiment
under the same conditions. The inhibition of PERK activity was
determined by measuring initial velocities in the presence of
varying concentrations of four compounds.

■ RESULT

Model Structure VS apo Structure in Docking. As
noted earlier, the apo PERK structure shows a closed G-loop
region (Figure 2). Superimposing the MD-refined PERK
structure with the original crystal structure clearly shows that
residues Gly18 and Phe19 in the apo structure block the gate of
the ATP-binding pocket (Figure 3a), and that they were lifted
away in the MD refined structure. The RMSD plot of non-

Figure 3. Plots of PERK: (a) Comparison of MD-refined PERK
(yellow surface) with the crystal structure (blue) reveals that residues
Gly18 and Phe19 blocked the gate of the ATP-binding pocket. (b)
RMSD plot of the non-hydrogen atoms in Arg16 (dark), Gly18
(green), and Phe19 (red) from the MD simulation.
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hydrogen atoms of Phe19 over time (aligned by backbone
atoms), for example, also indicates a notable rearrangement of
not only the backbone but also the side chain of the residue
(Figure 3b).
This closure, observed in the apo PERK structure, blocks the

binding of compounds at the ATP-binding site. A simple
illustration is shown in Figure 4a, where a number of top
ranked compounds from the docking with the apo and model
structures are shown. The docked compounds in the apo
structure appear to be more randomly distributed around the
binding site in comparison with those docked “deeply” into the
model structure as shown in Figure 4b. This simple visual
comparison between the docking results of the apo and model
structure demonstrates how unreliable the results could be
using the apo structure. A previous study on cyclin-dependent
kinase 2 using goldscore and chemscore has demonstrated that
the enrichment in docking-based virtual screening is related to
the quality of the binding poses predicted,34 thus it is important
to ensure that the docked poses are reasonable in VS.
To achieve a quantitative understanding of the docking

results, statistical measures like enrichment factor and ROC
plot were calculated by comparing the in silico results with the
in vitro results. Presumably, if the same docking protocol was
used in docking, a better kinase structure would give a better
prediction. Thus, we ranked the docked compounds, and at
select rankings we calculated the ratio of identified hits to total
(15) hits. This value is defined as the true positive rate (eq 2).
We also calculated the ratio of the decoys to the total number
of decoys to obtain the false positive rate (eq 3). Plotting the
true positive rate against the false positive rate gives the so-
called ROC plot (Figure 5). A steeper curve in the ROC plot
indicates a better prediction of the true hits against the decoys.
Generally, the modeled PERK structure gives a line that is
significantly above the line of the apo structure. When 50% of
the hits are found from the top ranked compounds, only 6% of
the decoys are picked up using the model structure. In contrast,
22% of the decoys are picked up by the docking using apo
structure when 50% of the hits are found, resulting in a 4-fold
performance boost with the model structure. Another indicator
of the predictive power called area under the curve (AUC) was
also calculated. The AUC was measured to be 0.90 and 0.75 for
the model and apo PERK, respectively. Given that a value of 0.5
means a random result with no selectivity and a value of 1.0 for

a perfect model, the docking result using our model structure is
indeed noticeably better than that of the apo structure.
Other than the ROC plot, the enrichment of the top 20% of

docking results is also examined. The model structure generally
doubles the enrichment of the apo structure in the top 20% of
the ranked library, i.e., the chance of finding one of the 15 hits
in the top 20% prediction increased twice from the apo to the
model structure (Table 1). Using the apo structure, the first hit
was found in the top 100 compounds. In contrast, the first hit
was captured in the top 60 compounds, and a total of two hits
were captured in the top 100. For comparison, in an earlier
virtual screening study2 using the cocrystal structure of FGFR1
kinase, an enrichment of about 8 was reported when the top
1000 compounds were selected from the docked library of
about 40 000 compounds, including 41 actives, which is
comparable to our enrichment of 7.3 and 9.1 for apo and
model structures, respectively, when the same number of
compounds are selected, respectively. Our docking results are
also comparable with another bench mark study35 using the

Figure 4. Docked compounds in (a) the apo PERK structure and (b) the modeled “open” structure. Compounds in apo structure show a more
random likely distribution around the ATP-binding pocket (red cycle) due to the closure of the G- loop region, while the MD-refined model
structure gives more meaningful docking poses in the pocket in general.

Figure 5. The ROC plot of the docking results using the apo (red
dashed line) and model (dark solid line) structures. The steeper the
line, the better predictive power the model has (a perfect line should
have an AUC value of 1.00), and the diagonal dark dash dot line
indicates random results (with an AUC value of 0.50). The calculated
AUC values are 0.90 and 0.75 for the model and apo structures,
respectively.
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DUD data set36 with different scoring functions, including
ChemScore, ChemGauss, and PLP, which can identify about
20−33% of the true hits within the top 5% of the ranked
libraries against kinase targets like ABL, EGFR, P38, and
VEGFR2. The docking finds about 27% and 33% of the true
hits when about 4% of the ranked compounds in the library are
selected using the apo and model structures respectively in our
study (Table 1).
Pharmacophore As a Virtual Screening Filter. As an

alternative to docking, a ligand-based pharmacophore model
was also generated by using DiscoveryStudio3.5 based on four
hits identified in the biochemical assay. The automated process
generated a five-feature pharmacophore with two hydrogen
acceptor features and three hydrophobic features. An additional
aromatic ring feature was added manually for the purpose of
mimicking the adenine region of ATP, making it a six-feature
pharmacophore (Figure 6). This is similar to a generic kinase

inhibitor pharmacophore reported,37 which divided the ATP-
binding site into five regions, the adenine region, the sugar
pocket, the phosphate binding region, and the hydrophobic
regions I and II. For each screened compound, the highest fit
value among the 255 conformations was assigned as the final fit
value. Compounds with fit values of less than zero were
considered as inactive, thus were ignored. This collected 5138
compounds, which represents roughly 20% of the whole
training library. These compounds were then ranked according

to their fit value. It is noted that among the 5138 compounds, 9
out of 11 hits (the four hits used to generate the
pharmacophore are excluded) were found, which is comparable
with the docking result (Table 1). The corresponding ROC
plot is shown in Figure 7 as “pharmacophore mapping;” the top

20% of docking results using our model structure is also
presented in the same plot as “docking using model structure.”
The two curves generally overlap with each other. The AUC
value was measured as 0.09 and 0.09 for curves of
pharmacophore and docking, respectively. Note that the x-
axis in this plot was truncated at 0.2, thus an AUC value of 0.2
corresponds to a perfect model while a value of 0.04 represents
random results. This suggests that pharmacophore mapping
and docking performed equally well in this particular study.
It has been suggested that utilizing the ligand-biased

receptor-based virtual screening could lead to better enrich-
ment if a cocrystal structure is known.38 Other studies also
suggested that using combinations of docking and similarity-
based approaches can increase the enrichment of VS.25,26 Thus,
we explored the potential of a pharmacophore-based approach
to facilitate a receptor-structure-dependent docking method.

Table 1. Enrichment of Different VS Protocols (the Actual Numbers of True Hits Found in VS Are Shown in the Parentheses)

number of top ranked compounds (% library) 50 (<1%) 100 (<1%) 500 (∼2%) 1000 (∼4%) 2000 (∼7%) 4000 (∼15%) 5138 (∼20%)

docking (apo) 0 (0) 18.2 (1) 10.9 (3) 7.3 (4) 3.6 (4) 2.7 (6) 2.5 (7)
docking (model) 0 (0) 36.3 (2) 14.5 (4) 9.1 (5) 7.3 (8) 5.4 (12) 4.6 (13)
pharmacophore mapping 36.3 (1) 18.2 (1) 10.9 (3) 10.9 (6) 7.3 (8) 5.0 (11) 4.6 (13)
pharmacophore + docking (model) 72.6 (1) 36.3 (2) 14.5 (4) 14.5 (8) 9.1 (10) 5.4 (12) 4.6 (13)
docking (model)a 0.0 (0) 24.8 (1) 9.9 (2) 7.4 (3) 6.2 (5) 5.0 (8) 4.3 (9)
pharmacophore mappinga 0.0 (0) 0.0 (0) 9.9 (2) 7.4 (3) 6.2 (5) 4.3 (7) 4.3 (9)
pharmacophore + docking (model)a 49.5 (1) 24.8 (1) 9.9 (2) 12.4 (5) 7.4 (6) 5.0 (8) 4.3 (9)

aThe four hits used to generate the pharmacophore model are excluded in statistics.

Figure 6. A ligand-based six-feature pharmacophore manually overlaid
within the PERK active site (cartoon in yellow). Green arrows and
spheres represent hydrogen acceptor features. Blue spheres represent
hydrophobic features, and a brown arrow with a green base means an
aromatic ring feature.

Figure 7. Comparison of ROC plots from different approaches. Note
that the four hits employed to generate the pharmacophore model are
removed in all data. Docking with the model structure is shown in dark
solid line. The red dashed line indicates the pharmacophore mapping
approach. The green dotted lines represents the consensus model of
pharmacophore mapping and docking, and the dark dotted dash line is
the random reference. The respective AUC value for each line is 0.09,
0.09, 0.11, and 0.04 while a value of 0.20 is for a perfect model and
0.04 for random selections.
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We reranked the 5138 selected compounds collected by
pharmacophore mapping, using docking. This combination
yielded a slightly better result than using either docking or
pharmacophore mapping alone. This is supported by a bigger
AUC value of 0.11, as well as a ROC curve that is always above
the curves of either docking or pharmacophore mapping

(Figure 7). To capture 50% of the hits, only 3% of the decoys
were picked up in the combined approach while 6% of decoys
were picked to obtain the same amount of hits in structure-
based docking. Additionally the first captured hit was among
the top 40 compounds while the first hit in docking was found
in the top 60 compounds.

Table 2. Ten Compounds (out of 50 from Virtual Screening) Confirmed to Be Active in the Biochemistry Assaya

aThe assay condition is set to have, for each 100 μL well, 20 nM of active PERK, 5 μM of EIF2α, 25 μM of the compounds, and 10 μM of
radiolabeled ATP.
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Comparing the consensus approach with the pharmacophore
mapping, it is noted that the former has significantly moved the
15 true hits higher in ranking. For instance, the enrichment
obtained in the consensus approach is generally 50−100%
more than that obtained in pharmacophore mapping (Table 1).
However, since the pharmacophore model was generated based
on four hits, there is likely a bias toward these compounds in
pharmacophore-based screening. In order to make a fair
comparison, we thus removed all four hits in the result and
calculated the enrichment again. Not surprisingly, even if we
excluded the four hits from the result of the consensus
approach, there was still one hit left in the top 50 compounds.
However, neither docking nor pharmacophore model happen
to predict any hit at this range. Furthermore, if we look at the
top 1000, 2000, or 4000 ranked compounds by VS, the
consensus approach always returns more hits than the other
two approaches. Therefore, the consensus approach of
combining a pharmacophore model with structure-based
docking can be a better choice than using either approach
alone, and a better enrichment can be expected. The possible
reason behind this may be due to the fact that docking and
ligand-based pharmacophore approaches explore different
chemical/physical spaces, i.e. docking depends on the structure
of a receptor as well as the ligands while the pharmacophore is
solely dependent on the ligand. If designed carefully, the two
approaches could complement each other in a consensus
scheme.
Screening of the ZINC Database. On the basis of the

success of our virtual screening protocol in the training library,
we then applied it to screen the ZINC lead-like database, which
includes about 3 million lead-like compounds. We first
imported the database into DiscoveryStudio, which then
generated a conformational library consisting of 255 con-
formations for each compound in the database. Subsequently,
all conformations of the 3 million compounds were screened by
mapping to the pharmacophore. The highest scored con-
formation for each compound was selected and then used to
rank the 3 million compounds. The top 10 000 compounds
were then selected and subjected to structure-based docking.
The same docking procedure was used. The top 10% of the
docked compounds, i.e. the top 1000, were then further
profiled by clustering them into 100 clusters in order to filter
out similar compounds in the library. We anticipate this may
increase the chemical diversity in a smaller pool of selections.
The center compound of each cluster was selected as the
representative compound for that cluster. Another possible
advantage of this is that if any center compound shows
promising activity, we could come back and investigate more
compounds in that cluster.
We purchased 50 commercially available compounds out of

the 100 representative compounds and then tested them in a
kinase assay. For each 50 μL well, there were 20 nM of active
PERK, 5 μM of eIF2α, 25 μM of the compounds, and 10 μM of
ATP. The initial assay shows 10 active compounds exhibiting
more than 50% inhibition (Table 2). All 10 compounds fit our
pharmacopore well. As an example, the overlay of compound 6
with the pharmacophore is shown in Figure 8. Then dose
responses were obtained for four of the compounds. The IC50

of two of the compounds is less than 10 μM (2.6 and 8.7 μM,
respectively).

■ CONCLUSION
The docking-based virtual screening method normally requires
a quality crystal structure, which may not always be available. In
the case of PERK, the only available crystal structure, at the
time of our study, was an apo structure. The structure presents
a closed G-loop region at the ATP-binding site of the kinase,
which hinders the docking of the inhibitors into the ATP-
binding site. We examined two approaches that can potentially
resolve the issue. In our first approach, by using another kinase
PKR as a template, we artificially lifted the G-loop so that the
ATP-binding site could accommodate an ATP molecule. MD
simulation was applied to relax the system to obtain a model
cocrystal structure of PERK with an “open” active site. Applying
the model structure in virtual library docking yielded a
significantly improved enrichment, generally twice the enrich-
ment of using the apo crystal structure. This in turn suggests
that a well-modeled protein structure can be a better target than
an inadequate crystal structure in structure-based docking.
The other approach we investigated was the ligand-based

pharmacophore mapping. On the basis of the four inhibitory
compounds found in experimental kinase assays, a six-feature
pharmacophore was built using the ligand-based pharmaco-
phore generation module in DiscoveryStudio3.5. Using the
pharmacophore mapping method to screen the same library
shows a similar performance to the docking method in terms of
enrichment. However, in regards to efficiency, pharmacophore
mapping is 1000 fold faster than docking, given the fact that
docking of about 27 000 compounds took about 3 days using
20 2.4 GHz AMD Opteron cores, while pharmacophore
mapping (with a prebuilt conformational database of all the
compounds) only took 4 min on four 2.4 GHz Intel Xeon
cores. Reranking the pharmacophore mapping results using the
docking scores shows a slightly better prediction than using
docking or pharmacophore mapping alone. The reranked result
generally predicts more hits in the upper region of the ranking
list, thus showing a higher probability of finding a hit in a
smaller number of the ranked compounds. The improvement
though is not enormous, yet notably enough to validate our
argument. The limitation of the pharmacophore approach,
however, is that some known inhibitors must be available. This
may be achievable by acquiring information from the literature
or by performing experiments, but within an affordable scale.
With the huge saving in resources and the competitive accuracy,

Figure 8. Overlay of compound 6 and the pharmacophore. Green
indicates a hydrogen bond feature, and blue suggests a hydrophobic
feature.
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the pharmacophore approach can serve as a cost-effective
predocking filter for virtual library screening.
Upon our preliminary study of the combination of docking

and pharmacophore modeling, we proposed a consensus virtual
screening approach which uses pharmacophore mapping as a
fast filter to generate a much reduced compound pool for
docking, then makes the final decision based on the docking
result (Figure 1). This consensus approach was then applied to
screen the ZINC lead-like database,39,40 which includes about 3
million compounds. On the basis of the VS using the consensus
approach, we purchased 50 compounds to test them in vitro.
Ten out of 50 compounds show activity while two exhibit an
IC50 of less than 10 μM, which further provides validity of this
consensus approach. We anticipate that more potent
compounds, i.e. subnanomolar IC50, may be found if a more
kinase specific library was screened.
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