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Abstract
Advanced SARS-CoV-2 infections not uncommonly associate with the occurrence of silent or manifest thrombotic events which
may be found as focal or systemic disease. Given the potential complexity of COVID-19 illnesses, a multifactorial causation is
likely, but several studies have focused on infection-induced coagulopathy. Procoagulant states are commonly found in associ-
ation with the finding of antiphospholipid antibodies. The correlation of the latter with thrombosis and/or clinical severity remains
controversial. Although measures of antiphospholipid antibodies most commonly include assessments for lupus anticoagulant,
anticardiolipin, and anti-ß2-glycoprotein-I antibodies, lesser common antibodies have been detected, and there remains specu-
lation that other yet undiscovered autoimmune thrombotic events may yet be found. The recent discovery of post-vaccination
thromboses associated with platelet factor 4 antibody has created another level of concern. The pathogenesis of antiphospholipid
antibodies and their role in COVID-19-related thrombosis deserves further attention. The multifactorial nature of thrombosis
associated with both infection and vaccination should continue to be studied as new events unfold. Even if a cause-and-effect
relationship is variable at best, such dedicated research is likely to generate other valuable insights that are applicable to medicine
generally.
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Introduction

The spectrum of disease associated with SARS-CoV-2 infec-
tion is considerable ranging from a relatively asymptomatic
presentation to multisystem disease and death [1]. In compli-
cated illnesses, thrombosis, thromboembolism, and intravas-
cular events are quite prominent as detailed in most publica-
tions [2–4]. Variability in cerebral thrombosis alone has
attracted international collaborative study among patients with
COVID-19 [5]. Incidences of thrombotic events during
COVID-19 or shortly thereafter are reportedly variable [6].
The disease course is potentially complicated by many co-
variables, and thus the understanding of pathogenesis for
thrombosis and related events is accordingly complex [7].

Children too with COVID-19 evolve what appears to be a
prothrombotic state, but fortunately it is less associated with
clinical thrombosis [8, 9]. It is not surprising that human ge-
netic variability may have a role in ascribing risk for such
events [10]. Apart from the issue of thrombosis and infection,
recent events have highlighted concerns with thrombosis in
the context of COVID-19 vaccination [11]. Preceding the lat-
ter, there has already been considerable study on the theme of
causation for thrombosis and particularly the potential associ-
ation with antiphospholipid antibodies [12]. It should also be
conceded that outside of the potential for thrombosis-related
antibodies, alterations in platelet functionality have also been
observed [13]. These events must also be seen in the context
of endothelial injury or altered fibrinolysis otherwise [14–16].
Persistence of an anomalous clotting profile in other regards
has also been proposed well after acute infections [17].

The concept of antiphospholipid antibody-associated
thrombosis is considerably complex, and despite decades of
related research, many aspects of such an association continue
to attract investigation [18, 19]. This narrative review exam-
ines the existing science in the context of applications to
COVID-19. It is evident that the themes of thrombosis with
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either infection or vaccination will open new windows of un-
derstanding as scientists and clinicians are attracted to this
research on short notice and with intensity given concerns
with the current COVID-19 pandemic.

Antiphospholipid Syndrome

The definition of antiphospholipid syndrome has garnered
considerable international attention and has led to at least
twomajor consensus statements from very learned and precise
scholars [20–22]. As a syndromic entity, there remains con-
siderable ambiguity as to how any such diagnosis is applied to
a given patient. That is, clinical syndromes, including those
that span thrombotic illnesses, are often detailed on a collec-
tion of presentations with and without supportive laboratory
data. As such, there eventually proves to be a range of ill-
nesses that are truly represented until further refinement of
either clinical or laboratory diagnostic criteria subsequently
become available. The difficulty with precision in the diagno-
sis of spectral illnesses has considerable history in medicine
[23]. One of the most pressing issues is the definition of high
accuracy diagnostic laboratory measures. What sometimes
appears to be a seemingly logical collection of diseases may
eventually prove to have considerable diversity after further
investigation and discovery.

The revised classification for antiphospholipid syndrome
includes such a combination of clinical and laboratory criteria
[21, 22]. Expert panels propose that at least one clinical and
one laboratory criterion is required to establish a diagnosis.
The clinical criteria include one or more episodes of vascular
thrombosis in any body system in which the disease is corrob-
orated by objective imaging or histopathology. Another clin-
ical criterion includes adverse pregnancy outcomes of varying
natures. The laboratory criteria so decided must be one or
more of documented lupus anticoagulant, anticardiolipin an-
tibodies, or anti-ß2-glycoprotein-I antibodies in the least and
with given minimum diagnostic quantitations. As discussed
below, more such putative pathogenic antibodies are being
proposed. Whereas these criteria help to narrow the various
disease presentations into an identifiable diagnosis, it is ac-
knowledged that the predictive values are potentially quite
variable. This is not surprising given that clinical disease en-
tities may span cardiac, neurological, dermatological, renal,
and hematological systems alone or in combination. The ap-
parent pathology may be focal or diffuse. Whereas the
syndromic aspect of such diagnoses may cause ambiguity, it
remains possible that the pathogenesis is quite variable even
though it largely attracts immune phenomena and thromboses.

In essence, antiphospholipid syndromes are acquired ill-
nesses associated with thrombotic events and the presence of
various measurable serum antibodies that are directed to pro-
teinaceous immunogens and that are linked to anionic

phospholipids [18, 19]. The latter immune interactions are
believed to trigger intravascular events that lead ultimately
in part to thrombosis and an associated chain of clinical and
subclinical events. Rather than a vasculitis per se, the syn-
drome identifies more as a non-inflammatory vasculopathy
whereby the blood vessel wall, in whole and/or involving
the endothelium, attracts molecular events that occur during
a procoagulant state. As such, the blood vessel may be arterial,
venous, or capillary. Thrombocytopenia is not uniform but
may occur in a sizeable minority. The ability of animal models
to manifest antiphospholipid syndrome has been demonstrat-
edwith passive infusions of such diagnostic antibody and with
the subsequent observation of thrombosis. There is no doubt
that a better understanding of this spectral entity attracts some
considerations for active intervention [22].

The Elusive or Surreptitious Antiphospholipid
Antibody?

The definition of antiphospholipid antibodies has a historic
progression [18, 19, 24]. The classic representation of an
antiphospholipid antibody was discovered at least as early as
the twentieth century and as manifested by the cardiolipin
non-specific antibody detected among patients with syphilis.
Much later, the lupus anticoagulant was coined in the context
predominantly of unique rheumatic diseases. By the 1990s,
antibodies to ß2-glycoprotein-I continued to add to the com-
pendium of such antibodies. The same latter era ushered in the
ability to detect antiphospholipid antibodies by enzyme im-
munoassays. Generalizing, such antibodies bind to plasma
proteins that are phospholipid-binding, although it has been
previously believed that some such antibodies have direct
phospholipid binding [25]. They may occur alone or in com-
bination, and although there is a general correlation in com-
parative quantitations, the latter is not always determinable
[22]. Adding further complexity to the above, new such po-
tential antibodies have emerged as possible candidates includ-
ing those directed to prothrombin, phosphatidylserine/
prothrombin complexes, and annexin-V.

The presence of the lupus anticoagulant has a greater spec-
ificity and predictive value for the syndrome compared to
anticardiolipin antibodies. Furthermore, for what
antiphospholipid antibody may exist, there can be consider-
able variation in the immunoglobulin types, quantitation, and
effector functions. The latter has been shown in part through
the work of Levy et al. who differentiated antiphospholipid
antibodies among patients with either systemic lupus erythe-
matosus or syphilis [25]. Thus, the sensitivity and specificity
of antibody detection alone may be fraught with difficulty and
thereafter complicate interpretation. A more problematic issue
is the occurrence of the clinical syndrome in which there is
apparently a seronegative state for such antibodies, thus
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raising the concept that not all antibody targets have yet been
defined. For example, while conventionally screening for IgG
or IgM antibodies, the role of IgA such antibodies can be
underestimated. Therefore, even if COVID-19 infection and/
or vaccination attracts any such mechanism for thrombosis, it
is conceivable that there may or may not be identifiable
antiphospholipid antibodies that correlate with the same.

Mechanistically, it is held that these antibodies interfere
with the hematological reactions of various anticoagulants in
normal and healthy physiology [18, 19]. Other cellular events
include interactions with endothelial cells, peripheral blood
mononuclear series, and platelets in the least. Given the dif-
ferent antibody profiles, such diversity may allow for the un-
derstanding of potentially why there may be differential ex-
pressions of the clinical syndrome. Nevertheless, there is good
reason to believe that the syndrome is not solely an antibody-
mediate disease(s). As theorized, first events of endothelial
disruption, but in the presence of unique antibody, may there-
after lead to thrombosis with or without genetic predisposi-
tion. If the latter pathogenesis is true in its simplest descrip-
tion, not all presence of such antibodies will necessarily lead
to disease nor will all such disease, if it occurs, be of the same
intensity.

Antiphospholipid antibodies may be present in significant
quantitations among asymptomatic patients at the time of
measure and may persist in the long term without an identifi-
able related disease [18, 19, 26]. For example, low titres of
such antibodies, especially anticardiolipin, may be seen in up
to 10% of normal volunteers. In contrast, the more aggressive
‘catastrophic antiphospholipid syndrome’ commonly has co-
identifiable such antibodies in high quantitation. In the least,
more credence is ascribed to the presence of these antibodies
in the long term and at least some 12 weeks or more apart in
measure. Again, however, the persistence of higher-titred sera
for either anticardiolipin antibodies or anti-ß2-glycoprotein-I
antibodies may occur in up to 1% or more of the general
population. Many individuals will have transient rises of such
antibodies that may disappear in weeks or months thereafter
first detection. The latter is especially more common among
IgM than IgG such antibodies and most often of those with
relatively low titres. There does not appear to be an association
of lupus anticoagulant and other antiphospholipid antibodies
in healthy populations [26]. The application of such antibody
determination therefore can be fraught with difficulty. Indeed
the plethora of publications on this topic varies greatly in the
application of diagnostic antibody thresholds whether for
frank disease or for population screening studies [22].
Methodological concerns also attract attention including con-
siderable interlaboratory variability [27]. Risk of disease may
depend on having high titres of these antibodies along with a
combination of them [22]. In addition, the superimposition of
infection on patients with antiphospholipid antibodies may
potentially trigger clinical thrombotic events or the

antiphospholipid syndrome otherwise including the more ad-
vanced presentations [28, 29].

It is well-known that infections, or immune stimulation
otherwise, have the potential to raise polyclonal activations
and that may non-specifically include various autoantibodies.
For example, the genesis of rheumatoid factor or anti-smooth
muscle antibody inMycoplasma pneumoniae infections bears
witness to the same [30, 31]. Such a reactive genesis is usually
followed by transiency in expression, and most patients, or
animal models, have a return to baseline. An inherent consid-
eration for polyclonal non-specific immune activation during
COVID-19 coincides with the finding of broad autoantibody
reactivity when finely screened [32].

Whereas polyclonal activations may arise during the course
of infection specifically or non-specifically, a key question is
whether the particular infection per se allows for
antiphospholipid antibodies to develop after either infection
and/or vaccination [24]. This has been a long-standing con-
cern and has attracted some research [33–37]. With both bac-
terial and vaccine model systems, there is evidence that both
bacterial and viral epitopes can attract the development of
these antibodies. The nature of such antibodies can vary; they
may vary in their specificity, and the genesis can be experi-
mentally related to molecular mimicry. Others hinted that the
molecular mechanism of epitope sequence homology may be
just as important as attractive changes in conformation of such
epitopes that arise during attachment or infection [25, 38]. In
these regards, therefore, there is reason to believe that
COVID-19 infection or vaccination could at least enact the
genesis of antiphospholipid antibodies. Abdel-Wahab et al.
conclude that at least for some particularly chronic infections,
there is increased risk for the development of antiphospholipid
antibodies which are thereafter associated with thrombosis-
related illnesses [37].

Antiphospholipid Antibodies and COVID-19
Infection

That COVID-19 may include in its manifestations various
intravascular coagulopathies is well-established [2]. The latter
events are generally a sign of more severe disease, but such
consequences can occur at any age or stage of infection. A
good example of the latter is the thrombotic events that may
occur during COVID-19 in pregnancy whether systemically
or focally in the placenta [39]. Within this milieu, it is not a
surprise that patients with COVID-19 may develop what are
believed to be autoimmune antibodies in a more plenary sense
[40, 41].

Antiphospholipid antibodies during COVID-19 infection
have already attracted considerable attention [12, 42, 43].
Table 1 exemplifies the nature of data that continues to be
accumulated from larger case series. From the outset in
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analyzing this compendium of related science, it must be ac-
ceded that there is considerable heterogeneity in patient pop-
ulations and laboratory methodology. Hence, it would be pre-
carious to assume that meta-analysis would be appropriate to
apply. A review of these studies, however, nevertheless lends
itself to several key observations.

Some have found no consistent associat ion of
antiphospholipid antibodies and thrombosis or disease sever-
ity [46, 49, 51, 53, 64, 69, 71]. Whether detected at the time of
first patient presentation or shortly thereafter, such antibody
status is time-accrued, maximizes in over 1 month after infec-
tion onset, and tends to be transient [49, 68, 70]. The timing of
antibody detection therefore must be considered in comparing
one study to another. Borghi and colleagues examined reac-
tivity to specific ß2-glycoprotein-I domains but found a low
prevalence [46]. Others find that the presence of such antibod-
ies correlates with severity of COVID-19 [55, 61, 68]. There is
a high frequency of antiphospholipid antibodies among pa-
tients in intensive care [51, 58, 62, 68, 74]. An association
of such antibodies with stroke risk has been suggested [45,
50]. The finding of more than one antiphospholipid antibody
in a given patient has been associated with cerebral infarction
[65, 66]. Some studies find a particular association of severe
disease with the presence of IgA antiphospholipid antibodies
[42, 57]. Among patients with lupus anticoagulant, one study
of critically ill patients found an association of IgM
anticardiolipin antibodies with thrombosis [70]. Antibodies
to phosphatidyl serine/prothrombin complex and/or pro-
thrombin appear to be much less common in some but not
all studies [68, 69, 73]. Zuo et al. assessed purified immuno-
globulin from such patients and found it to promote venous
thrombosis in a murine model [67]. Others find that the pres-
ence of antiphospholipid antibodies may be a strong predictor
of endothelial activation in vitro [73]. It remains tempting to
propose that a rapid and severe COVID-19 illness may bear
similarity to catastrophic antiphospholipid syndrome when
associated antibodies are determined [75].

From the research detailed above, it is safe to say that a
conclusive role of antiphospholipid antibodies in the course of
COVID-19 is yet to be defined. The rise of antiphospholipid
antibodies during COVID-19 infection must be seen in a larg-
er context of the potential rise in autoantibodies generally [32,
61, 68, 70, 72].

Heparin-Induced Thrombocytopenia
During COVID-19

As anticoagulants have been used for both treatment and pre-
vention during COVID-19 especially in advanced illnesses, it
is not surprising that eventually there would emerge uncom-
mon citations of heparin-induced thrombocytopenias [76–88].
Most of the latter, although not all, have been associated withT
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platelet factor 4 antibodies if so assessed. The form of heparin
in use has varied in these reports. In some circumstances, the
reaction may seemingly occur with the use of heparin for
anticoagulation in the face of ECMO [83, 84]. A requisite
for alternative anticoagulants is inherent both for treatment
and for avoiding any further cascade of the associated pathol-
ogy [78, 80]. The specificity of platelet factor 4 antibodies has
been questioned [81, 86, 87]. Even more so, the concept of
heparin-independent genesis of platelet factor 4 antibody dur-
ing severe COVID-19 has been discussed [82, 85, 89]. Zhu
et al. provide evidence to drive the hypothesis that anti-Spike
RBD antibodies may function in part to activate platelets [89].
Jevtic et al. have proposed that screening assays for such an-
tibodies are better confirmed at least with assessments of
platelet activation otherwise, but some disparity among these
patients has been seen by some [87, 90]. It is yet unclear if any
such inconsistencymay be due to varying technologies among
laboratories and perhaps non-standardization. Regardless,
Preti et al. propose that the incidence of heparin-induced
thrombocytopenia is higher in COVID-19 than the back-
ground control population [88]. Others rightfully caution in
deriving immediate conclusions in regards to pathogenesis
[91].

Apart from the above, COVID-19 has been associated with
de novo immune thrombocytopenia that may otherwise occur
with various viral infections [92, 93]. Again, mechanisms of
pathogenesis and their interrelationship with other COVID-
19-related platelet disorders remain to be defined. One key
factor to be considered is the genetic polymorphism among
patients and its role in susceptibility [94].

Thrombotic Events and COVID-19 Vaccination

Concerns for the potential of new COVID-19 vaccine tech-
nologies to be associated with autoimmune phenomena are
not new [95]. Some other concerns could also be discussed
at a theoretical level [96, 97]. The experience early in the era
of COVID-19 vaccines is that any such events would be rare
in the context of millions of individuals so immunized to date
worldwide and with several vaccine products. Whether any
such consequence will manifest itself in the long term remains
to be seen and requires judicious review.

One potential such immune reaction has attracted consid-
erable public and scientific attention and has been recently
identified predominantly in the context of adenovirus-
vectored vaccines [11, 98, 99]. These events occur with man-
ifestations of clinical thromboses [100]. The incidence post-
vaccination with adenovirus vectors is not clear but has vari-
ably been suggested to be anywhere between 1/20,000 to
1/2,000,000 vaccinations [101, 102]. The occurrence of such
events has edged toward greater frequency as more data is
acquired and a more systematic approach to surveillance is

had. In Norway, an assessment post-vaccination with a first
dose among 492 healthcare workers did not find clinically
relevant thrombocytopenias [103]. A few patients were found
to have anti-platelet factor 4 antibodies albeit corroborative
findings of platelet activation were lacking. Precedent for con-
cerns regarding post-vaccination hematological events was
heralded with somewhat similar vaccine vectors for Ebola
[104–108]. The latter studies included considerably fewer pa-
tients than would be exposed for COVID-19 vaccination, and
adverse events were transient.

Several recent publications expound on these uncommon
but yet concerning complications during COVID-19 vaccina-
tion series [109–114]. Greinacher et al. describe eleven pa-
tients, mainly female, who developed various thromboses
within 5 to 16 days after the ChAdOx1 nCov-19 vaccine
[109]. Named immune thrombotic thrombocytopenia, it is
proposed that platelet activation is mediated by antibodies to
platelet factor 4. The latter study did not detail an analysis for
antiphospholipid antibodies among these patients, but one pa-
tient was particularly noted to have a combination of von
Willebrand’s disease and a preceding anticardiolipin anti-
body. These patients were also found to have markers of dis-
seminated intravascular coagulopathy. Overall, the disease
mimicked that seen with severe heparin-induced thrombocy-
topenia. Schultz also describe quite a similar presentation
among another five patients [110]. Again, antibodies to plate-
let factor 4 were discovered, but there were no details of
antiphospholipid antibody screening. Scully et al. presented
findings on another twenty-three similar patients [111].
Twenty-two of the latter had mainly cerebral venous throm-
bosis. Five of ten patients assessed were found to have lupus
anticoagulant, but none were found to have other
antiphospholipid antibodies. Tiede et al. detail another five
patients but include more variant presentations of thrombosis
for arterial, venous, and small vessel disease [112]. Althaus
et al. comment on a series of eight patients which included
deaths [115]. The latter facilitated postmortem studies which
provided evidence of arterial and venous thrombotic events as
well as occlusion of renal capillaries. See et al. cite American
reports of similar complications after use of the
AD26.COV2.S vaccine [113]. Most relevant is the similarity
of presentations to those suffering similar illnesses apparently
from the ChAdOx1 nCov-19 vaccine. The latter study did not
find evidence of antiphospholipid antibody linkages, but did
find variable positivity for platelet factor 4 antibody and asso-
ciated platelet activation studies. A review in Germany asso-
ciates cerebral venous thrombosis with adenovirus-vectored
vaccination although recognizing that this occurs amidst of
the background incidence of thrombotic events [114].
Further recommendations for the diagnosis and management
of this entity have focused on the finding of platelet factor 4
antibodies [116]. Nevertheless, the latter authors have right-
fully acknowledged the potential for other causes of
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thrombosis and thrombocytopenia and have urged caution in
the nature of investigations required including the search for
antiphospholipid syndrome. Many case reports of a similar
event among those receiving adenovirus-vectored vaccine
have emerged both in media and scientific journals
[117–132]. Typical features include thrombocytopenia, in-
creases in circulating D-dimer, and low fibrinogen levels.
Although focus has been made on the central nervous system
thromboses, other foci for thrombosis are identified and are
evidence of the systemic potential for such toxicity. The case
study presented by Ryan et al. illustrates how hematological
events may occur in the absence of clinically apparent throm-
bosis [132]. The latter pattern is uncommonly cited but yet it is
unlikely to be found prospectively unless some form of non-
thrombotic manifestation becomes apparent. The latter pattern
is also a harbinger for many more such patients who likely
have a mild form of post-vaccination hematological dyscrasia
that is laboratory determined but not clinically evident. As the
antiphospholipid syndrome is a spectral illness, it is also likely
that post-vaccination hematopathology takes a spectral distri-
bution most of which is subclinical. It is also yet to be seen
whether similar post-vaccination events will also follow after
use of other adenovirus-vectored vaccines being promoted in
either Russia or China [133, 134]. Although adenovirus-
vectored vaccines differ on some important facets, post-
vaccine thrombotic events are nevertheless similar [135].

Undoubtedly, the above findings are preliminary and will
require international collaboration to further determine the
frequency of these events after vaccination and to further ex-
plore the pathogenesis. Despite previous large-scale studies of
similar vaccine efficacy, the number of patients required to
find such uncommon post-vaccination events is greater
[136]. Data from a large group of US vaccines, in which most
were given RNA vaccines, did not find an association with
cerebral thrombosis [137]. One of the latter vaccines was tem-
porally associated with a relapse of thrombotic thrombocyto-
penic purpura in a case report [138]. The question remains
nevertheless as to whether any such processes bear similarity
in whole or part to thromboses that are otherwise found during
active COVID-19 infections. In particular and with special
reference to cerebral thrombosis, retrospective study suggests
that COVID-19 in itself attracts an incidence of the latter
which exceeds that expected in the general uninfected popu-
lation [114, 139].

As these and other SARS-CoV-2 vaccines emerge, and if
thromboses continue to be attributed to the latter, there is a
general tendency to ascribe the trigger event to the specific
viral components of these vaccines. Molecular mimicry will
certainly be at the forefront of hypotheses, and what raises
commonality between vaccine and SARS-CoV-2 is Spike
protein expression and/or variation [140, 141]. Nguyen et al.
give credence to the genesis of platelet factor 4 antibodies
through potential steric alterations of some antigens [142].

There may be a strong and direct role of platelet factor 4
antibodies, and again an association with antigenic conforma-
tional change is posed [115]. Lesser considered components
will be the excipients or adjuvants that accompany the same if
any. That such components can be immune triggers in them-
selves has precedence and deserves consideration [23, 143].
The proclivity of anomalous thromboses to young females
after some SARS-CoV-2 vaccines raises concern that may
or may not bear on pathogenesis. The latter raises theoretical
considerations for other immune diseases in which young fe-
males more commonly develop antiphospholipid antibodies
[144].

Yet other mechanisms of pathogenesis have alternative ra-
tionale to be entertained. Khadkhoda’s proposal, for example,
of an inadvertent vaccinemia draws some preliminary interest
but is not without precedence [145]. During the course of
creating adenovirus vectors for gene transfer or cancer thera-
py, early studies recognized that intravenous administration in
animal models was associated with thrombocytopenia, auto-
antibody, endothelial cell activation, dyscoagulation, and/or
inflammation in a dose-dependent manner [146–154]. Many
of these events extinguished in a time-accrued manner and
may be influenced by prior immunity to the vector [148,
153]. Human studies of attempted gene therapy for cancers
were well known to have episodes of thrombocytopenia dur-
ing trials with small patient numbers [155–158]. One such
study also identified other alterations relating to coagulation
including the presence of lupus anticoagulant [156]. Stone and
colleagues ascribed such reduction in circulating platelets to
liver sequestration after virus-platelet interactions [159]. The
role of vaccinemia has now been furthered by Badbaran et al.
who have reported on the presence of vaccine in the blood-
stream for days following intramuscular inoculation [160].
Although investigating only a small group of vaccines,
vaccinemia was common, and the majority had higher vector
copy numbers circulating after 2–3 days rather than immedi-
ately after vaccination. Others have suggested a more complex
mechanism involving endothelial changes, circulating coagu-
lation factors, and platelet activation [161–165]. A role for the
complement system and cytokines also merits consideration
[166–168]. Theories of pathogenesis abound [102, 169, 170].
These events and many similar published are intriguing but do
not guarantee a mechanism understood for post-vaccination
thrombosis. It must be conceded however that veritable con-
cerns about adenoviral vector safety and toxicity were duly
being expressed nearly two decades ago albeit with cautious
deliberation [171, 172].

The occurrence of such thrombotic events has been found
at least for the two adenovirus-vectored vaccines most com-
monly used, and thus it is of interest to at least consider in
preliminary form what may be similar or dissimilar among the
latter [110, 111, 113, 141]. There are indeed more dissimilar-
ities than similarities. The two adenovirus precursors are of
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different lineage. The genes remnant from the given adenovi-
rus precursors and the sequences added thereafter are diver-
gent. The ChAdOx1 nCov-19 vector is constructed with a
human tissue plasminogen activator signal sequence [173].
This might engender thoughts of some potential coagulation
activity given that tissue plasminogen activator circulates in
much higher quantitation in the blood of those with COVID-
19 infection versus controls [15]. The latter association is
much more avid for those patients with worse disease.
Expression of this signal peptide modulates immunoreactivi-
ty, but it is unclear to what extent any such product will be
transcribed [174]. Nevertheless, the AD26.COV2.S vector
uses a wild-type signal peptide rather than that of the tissue
plasminogen activator [175]. The latter was found to produce
a natively-folded Spike protein as the major immunogen. The
main commonalities therefore are generically the adenoviral
nature of the vector and the production of Spike protein.
Kowarz et al. forward a theory that Spike protein variants
may be the root cause given transcriptional variability [141].
It is of note that a small study of platelet expression variables
after mRNA SARS-CoV-2 vaccination among healthy indi-
viduals did not find platelet reactivity or activation [176].

Another phenomenon to consider is that respiratory adeno-
viral infections, particularly in children, may be accompanied
by thrombocytopenia and dyscoagulopathy [177–179]. More
prominent such changes are potentially age-dependent which
raises the concern for a dose-exposure dependent mechanism
similar to that described above in both animal model and
human experiments with adenovirus vectors. Lurhuma et al.
previously proposed that among patients otherwise with idio-
pathic thrombocytopenic purpura, circulating immune com-
plexes could be found that included adenoviral antigens
[180]. Others could not confirm any such association but then
only with the inability to find virus genome in clinical samples
[181]. The latter does not exclude the genesis of this disease
based on post-infection immune reactivity. Such findings
then, if related to similar pathogenesis, point more to the ad-
enoviral nature of the vaccines rather than Spike production
per se. One must couch the latter clinical findings against a
back-drop however of other viral (non-adenoviral) illnesses
that may be associated with thrombocytopenias or
dyscoagulation.

The above discussion is very relevant in the context of
vaccinemia. Infection of cells during vaccination must be aug-
mented in order to secure a more likely cellular uptake.
Despite the latter and even in the event that uptake is relatively
inefficient without cellular uptake stimuli, a massive
vaccinemia may nevertheless be accompanied by a low grade
however inefficient infection of vascular endothelial cells.
Past studies of gene therapy using adenovirus vectors are
again crucial to this analysis [182–187]. Whereas vascular
endothelial infection with adenovirus vectors was established,
several attempts were successfully had with the outcome of

enhancing endothelial infections and promoting gene thera-
pies. As vector enters the systemic circulation, therefore direct
endothelial invasion, infection, and pathological outcomes
thereof are at least theoretically possible and beyond. Such a
theory at least would implicate vector-driven pathology but
would also allow for the consequences of such infection and
Spike protein display to enter into a multifactorial causation.
Such theory would also explain the role of adenovirus vectors
to cause dyscoagulation in other vaccinations, e.g., Ebola vi-
rus, and yet draw the potential for variation among these vac-
cines due to the inherent diversity of the vector construct. This
theory could also explain the nonspecificity of site for throm-
bosis in the vascular endothelial bed, and furthermore explain
cerebral thromboses due to the potential effect on brain mi-
crovascular endothelium [183].

In the interim, recommendations for clinical and laboratory
diagnosis of vaccine-associated thrombosis have emerged
[188–190]. Recognition of variation for laboratory diagnostic
methods may explain some centre-centre heterogeneity for
diagnosis [131, 191]. Treatment of COVID-19 related throm-
bosis raises some jeopardy since heparin or derivatives as
anticoagulants are in common use. Whether for COVID-19
or vaccine-related thrombosis, the use of alternate anticoagu-
lants, and possibly IVIG, should be considered [111, 112, 122,
190, 192–194]. More likely than not, once the pathogenesis of
this phenomenon is better understood, other forms of therapy
will emerge [122, 195]. Furthermore, changes as to how the
vaccines will be recommended and used are likely to occur
[196]. Patients at high risk of thrombophilia require particular
consideration.

Discussions of this nature are sure to raise issues of vaccine
hesitancy, but any such discussion should be seen purely and
justly in the eye of scientific endeavor and contribution. Mass
vaccination will undoubtedly benefit the populace at large, but
as we are already learning, no existing vaccine will be perfect
and somemay appear less perfect than others over time. There
are many aspects of COVID-19-related immunology that have
been critically assessed, but the entity of related autoimmunity
is relatively in its infancy [197–199]. In the interim, compli-
cations of thrombosis whether after infection or vaccination
should be embraced as substance for further understandings of
pathogenesis since the spin-offs are more likely to be broader
than initially presumed. Such interest is more so evident with
the potential that SARS-CoV-2 may become resident as the
fifth common respiratory endemic coronavirus [200].

Conclusion

Thrombotic illnesses are common among advanced COVID-
19 infections. The pathogenesis is likely multifactorial, but
study continues to examine unifying hypotheses. The more
contemporary finding of thrombosis post-SARS-CoV-2
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vaccination adds further impetus to the research that is re-
quired. Antiphospholipid antibodies are commonly found in
the sera of those infected, but a bonafide cause-and-effect
relationship is yet to be concluded. The diversity of
antiphospholipid antibodies variably includes lupus anticoag-
ulant, anticardiolipin, and anti-ß2 glycoprotein-I antibodies
alone or in combination. Post-vaccination thrombosis has
been associated thus far with antibodies to platelet factor 4.
Disease-related antiphospholipid antibodies are largely tran-
sient, but a role during active infection or shortly thereafter
cannot be excluded. In the interim, continued research on
pathogenesis, disease course, and causation is welcome.
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