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Abstract: The mesenchymal epithelial cell transforming factor c-Met, encoded by c-Met proto-
oncogene and known as a high-affinity receptor for Hepatocyte Growth Factor (HGF), is one of the
receptor tyrosine kinases (RTKs) members. The HGF/c-Met signaling pathway has close correlation
with tumor growth, invasion and metastasis. Thus, c-Met kinase has emerged as a prominent
therapeutic target for cancer drug discovery. Recently a series of novel 2-aminopyridine derivatives
targeting c-Met kinase with high biological activity were reported. In this study, 3D quantitative
structure-activity relationship (QSAR), molecular docking and molecular dynamics simulations (MD)
were employed to research the binding modes of these inhibitors.The results show that both the
atom-based and docking-based CoMFA (Q2 = 0.596, R2 = 0.950 in atom-based model and Q2 = 0.563,
R2 = 0.985 in docking-based model) and CoMSIA (Q2 = 0.646, R2 = 0.931 in atom-based model and
Q2 = 0.568, R2 = 0.983 in docking-based model) models own satisfactory performance with good
reliabilities and powerful external predictabilities. Molecular docking study suggests that Tyr1230
and Arg1208 might be the key residues, and electrostatic and hydrogen bond interactions were shown
to be vital to the activity, concordance with QSAR analysis. Then MD simulation was performed
to further explore the binding mode of the most potent inhibitor. The obtained results provide
important references for further rational design of c-Met Kinase type I inhibitors.

Keywords: c-Met kinase; 2-Aminopyridine; 3D-QSAR; molecular docking; molecular dynamics sim-
ulations

1. Introduction

Cancer is one of the severe life-threatening diseases [1]. Existing data indicated that
more than 50% of proto-oncogenes and oncogene products are tyrosine kinases [2]. It
was reported that many human tumors were related with abnormal activation of tyrosine
kinase route [3,4]. Cellular mesenchymal-epithelial transition factor (c-Met), known as a
high affinity receptor for hepatocyte growth factor (HGF), is a member of receptor tyrosine
kinases (RTKs). The HGF/c-Met signaling pathway can regulate various tumor cellular
processes including growth, invasion and metastasis. Thus, c-Met kinase has emerged as a
prominent therapeutic target for cancer drug discovery. Looking for novel and efficient
c-Met inhibitors has become a hotspot in the pharmaceutical industry [5].

According to the different structures and binding modes to the c-Met kinase, the
reported c-Met inhibitors can mainly be divided into three types. Type I c-Met inhibitors
are believed to be ATP-competitive inhibitors that bind to the ATP binding site in a U-
shaped conformation, such as Crizotinib 1 [6], S49076 2 [7], AMG 337 3 [8] and Volitinib
4 [9]. Type I c-Met inhibitors are believed to be highly selective for c-Met. Type II c-Met
inhibitors, characterized by relatively high molecular weight and lipophilicity [10], such
as Cabozantinib 5 [11], Foretinib 6 [12], Altiratinib 8 [13] and Merestinib 9 [14], are also
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ATP-competitive compounds. But they can pass the gatekeeper and occupy the deep
hydrophobic back pocket, and they are multi-target c-Met kinase inhibitors. Type III c-Met
inhibitors are other atypical c-Met kinase inhibitors such as Tivantinib 10 (ARQ197) [15].
Type III c-Met inhibitors are identified as non-ATP competitive inhibitors that binds to an
inactive c-Met conformation.

Some potential type I c-Met inhibitors, such as 2-aminopyridine derivatives have an
important nitrogen heterocyclic structure skeleton with a wide range of biological activities
and excellent activities against tumors, which makes it a potential c-Met RTK inhibitors for
cancer therapy [16].

In this study, in order to explore the quantitative structure-activity relationship
(QSAR) [17] of these new 2-aminopyridine c-Met kinase type I inhibitors. 3D compar-
ative molecular field analysis (CoMFA) [18] and comparative molecular similarity indices
analysis (CoMSIA) [19] methods were carried out to construct QSAR models to reveal the
key structural features related to their inhibition activity. Two different methods were used
to obtain the optimal molecular conformation alignments, one is based on atomic alignment
(Alignment A) and the other is based on molecular docking conformation (Alignment B).
Then we used molecular dynamics simulations (MD) method to study the binding mode
of the most active compound and C-Met. The obtained results can help to understanding
the inhibition mode and provide useful guidance for the rational design of novel c-Met
inhibitor with higher activities.

2. Results and Discussion
2.1. The Studied c-Met Inhibitors

The studied dataset is composed of 42 novel 2-aminopyridine derivatives [20,21].
These compounds were designed by way of replacing the imidazole, oxazole or tetrazole at
the C-3 position with the amide bond and introducing a suitable aryl group on the amide
bond or replacing the known O-linker with amide, sulfonamide and S-linkers [20,21].Their
inhibitory activities were obtained from the literatures published by the same labora-
tory [20,21]. These compounds were divided into a training set (34 compounds used to
build model) and a prediction set (8 compounds used to validate the constructed model,
marked by ‘*’ in Table 1) in an approximate ratio of 4:1. For QSAR analysis, the half
maximal inhibitory concentration (IC50) values, inhibitory activities on c-Met kinase of
2-aminopyridine derivatives, were transformed into pIC50 values (−log IC50) and used as
dependent variables (Supplementary Materials).

Table 1. The studied chemical IDs (the detailed molecular structures were listed in the Supplementary
Material) and corresponding experimental/predicted inhibition activities.

No.

Activity (pIC50)

Exp.
Alignment A Alignment B

CoMFA CoMSIA CoMFA CoMSIA

1 6.494 6.684 6.634 6.447 6.437

2 7.004 6.848 6.958 6.966 6.97

3 6.553 6.338 6.464 6.669 6.587

4 7.785 7.567 7.687 7.789 7.775

5 7.670 7.766 7.584 7.615 7.764

6 6.993 6.988 7.108 6.914 6.987

7 7.210 7.267 7.155 7.218 7.248

8 6.640 6.597 6.632 6.726 6.687

9 7.347 7.440 7.474 7.367 7.349

10 * 7.231 7.332 7.333 7.248 7.416
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Table 1. Cont.

No.

Activity (pIC50)

Exp.
Alignment A Alignment B

CoMFA CoMSIA CoMFA CoMSIA

11 * 6.641 6.459 6.636 6.791 6.918

12 * 7.419 7.457 7.310 7.223 6.934

13 6.819 6.718 6.790 6.663 6.718

14 7.577 7.541 7.547 7.569 7.579

15 7.179 7.432 7.372 7.116 7.11

16* 6.885 6.841 6.917 6.884 6.909

17 7.297 7.284 7.288 7.333 7.223

18 7.588 7.324 7.259 7.553 7.6

19 7.343 7.426 7.301 7.425 7.373

20 7.348 7.358 7.332 7.365 7.362

21 6.619 6.745 7.018 6.64 6.577

22 7.115 7.019 7.084 7.096 7.031

23 * 7.088 7.021 7.145 6.87 7.024

24 7.656 7.647 7.685 7.789 7.67

25 6.996 6.892 6.786 6.97 7.026

26 7.188 7.193 7.239 7.158 7.283

27 7.009 7.070 7.000 6.965 6.968

28 6.707 6.791 6.750 6.707 6.655

29 6.761 6.771 6.784 6.747 6.755

30 5.920 5.766 5.797 5.833 5.736

31 5.155 5.450 5.600 5.354 5.46

32 * 6.222 6.237 6.356 6.369 6.263

33 * 5.386 6.036 6.075 5.984 5.505

34 6.319 6.040 5.980 6.366 6.347

35 5.886 5.821 5.833 5.75 5.762

36 5.943 6.084 6.026 6.063 6.009

37 6.387 6.375 6.269 6.435 6.491

38 6.251 6.223 6.193 6.171 6.13

39 6.292 6.356 6.178 6.304 6.357

40 6.678 6.843 6.892 6.683 6.681

41 5.943 6.006 5.969 5.9 5.963

42 * 6.468 6.887 6.863 6.102 6.202

* Prediction set compounds.

2.2. Atom-Based CoMFA and CoMSIA Models
2.2.1. The 3D-QSAR Models

To investigate the relationships between molecular structures and corresponding
activities, 42 potential c-Met Kinase inhibitors were firstly analyzed by CoMFA and CoMSIA
methods. Figure 1 shows the overlay of all training compounds using the common atoms
of molecule 4 as a template (Alignment A). The LOO cross-validation correlation coefficient
Q2, correlation coefficient R2, standard error of estimate (SEE) and F-statistic value were
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used to evaluate the reliability of the model. The corresponding values of the parameters
were listed in Table 2.Molecules 2020, 25, x FOR PEER REVIEW 4 of 17 
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Figure 1. The studied c-Met inhibitors. (A) is the common atoms (represented as balls) used for
molecular alignment in compound 4. (B) is the atom-based alignment figure (Alignment A). (C) is
the docking-based alignment figure (Alignment B).

Table 2. Summary of the CoMFA and CoMSIA models for alignment-A and alignment-B.

PLS Statistic
Alignment-A Alignment-B

CoMFA CoMSIA CoMFA CoMSIA

Q2 0.596 0.646 0.563 0.568
ONC 2 2 6 2

R2 0.950 0.931 0.985 0.983
SEE 0.150 0.175 0.085 0.089

R2
pred 0.839 0.840 0.821 0.854
F 160.303 76.047 286.459 260.420

Field distribution - - - -
S (Field distribution) 47.2% 19.7% 54.00% 14.30%
E (Field distribution) 52.8% 33.2% 46.00% 33.20%
A (Field distribution) - 19.3% - 30.00%
D (Field distribution) - 27.8% - 22.5%

2.2.2. CoMFA Results

An ideal QSAR model should be stable, reliable and highly predictive. It is generally
considered that Q2 and R2 (Q2 > 0.5, R2 > 0.6) are the basic parameters to evaluate a 3D
CoMFA model [22]. The parameter values listed in Table 2 indicated that the built CoMFA
model has good stability and robustness. Figure 2A shows the scatter plot of experimental
and predicted activity values. In this figure, the samples are evenly distributed around the
straight line y = x. All values are within the acceptable range. Figure 3A shows the error
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between the experimental and the predicted activity values, in which 20 compounds have
positive errors and 22 compounds have negative errors.Molecules 2020, 25, x FOR PEER REVIEW 5 of 17 
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Figure 2. The scatter plots of experimental values vs. predicted values using CoMFA and CoMSIA based on atom-based
approach (Alignment A) and docking-based approach (Alignment B). (A) is the CoMFA model of Alignment A, (B) is the
CoMSIA model of Alignment A, (C) is the CoMFA model of Alignment B, (D) is the CoMSIA model of Alignment B.

2.2.3. CoMSIA Results

In the CoMSIA analysis, in addition to the electrostatic and steric fields, hydrophobic
field and hydrogen bond field (including hydrogen bond acceptor and hydrogen bond
donor) are also used. A total of eight different field combinations were calculated to find
optimal model. The results and parameters were listed in Table 3. From this table we
can see that the model by using S, E, A and D fields can provide the highest Q2 with
contributions of 19.7%, 33.2%, 19.3% and 27.8%, respectively. According to the LOO results,
the optimal principal component number is 2 and R2 is higher than 0.9. The scatter plot of
the experimental and predicted activity values of the CoMSIA model was shown in Figure
2B. Figure 3B is the predicted error of each chemical in a bar graph, in which 23 compounds
showed a positive error and 19 compounds showed a negative error. All these results
indicated that the CoMSIA model is also robust and stable with high predictive ability.

Table 3. Different field combinations in CoMSIA analysis keeping S and E fields in all cases for
alignment-A.

Field ONC Q2 R2 SEE F Rate of Contribution

SED 2 0.628 0.934 0.172 79.479 0.268:0.525:0.207
SEA 2 0.643 0.943 0.160 92.376 0.277:0.392:0.331
SEH 2 0.603 0.923 0.185 67.394 0.235:0.440:0.325

SEHA 2 0.620 0.929 0.179 73.004 0.191:0.292:0.255:0.262
SEHD 2 0.602 0.922 0.186 66.626 0.184:0.375:0.273:0.168
SEAD 2 0.646 0.931 0.175 76.047 0.197:0.332:0.193:0.278

SEHAD 2 0.622 0.922 0.187 66.342 0.148:0.253:0.160:0.227:0.212
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based approach and receptor-based approach were shown in panels (A–D), respectively. The shorter the bar is, the better
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2.2.4. Contour Map Analysis

The contour maps can intuitively show the relationships between biological activities
and structures, and provide useful guidance for the rational design of new inhibitors.

The CoMFA contour maps were shown in Figure 4. The green area in Figure 4A
indicates that the introduction of a large group at this position will increase the activity
of the c-Met inhibitor. The yellow area indicates that the introduction of a large group
can decrease the inhibition activity. There is a green area around the C28 atom of the
template molecule. Compounds 4 and 6 are chosen as comparison to prove this point for

the reason that
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, so the
corresponding compounds have higher activity values.

In the electrostatic contour map, the red areas indicate that the electronegative groups
can increase the activity of the compound. In Figure 4B, there is a red area near C30 position.
The compounds 2 and 1 can be the proof of this point. The activities of compounds with
group -O are higher than those with the -N near C30. The blue area near C32 indicates
that the introduction of an electropositive group at this position is beneficial to the activity,
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for example, the bioactivity of compound 9 with
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The contour maps of CoMSIA were shown in Figure 5, from where we can see that
the steric and electrostatic figures are mainly similar to the CoMFA model. Figure 5C is
the hydrogen bond donor field. The cyan and purple regions indicate that the H-bond
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be proved that the activity of compound 2 with -O is higher than compound 1 with the
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c-Met inhibitor, which can be demonstrated by the following comparison: compounds 4
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2.3. Docking-Based CoMFA and CoMSIA Models
2.3.1. Molecular Docking Analysis

In order to find reasonable inhibitor active conformation, rather than the lowest energy
conformation, we conducted another two QSAR models using the docked conformations.
Here, CDOCKER module in the Discovery Studio 2.5 [23] was used to complete the
molecular docking and The X-ray crystal structure of c-Met kinase (PDB ID:3CCN) was
downloaded from the RCSB protein database (http://www.pdb.org). In order to test the
accuracy of the docking method, we docked the small molecule contained in the X-ray
crystal, and compared the best conformation with the configuration of the small molecule in
the X-ray crystal. The results showed that the root mean square deviation (RMSD) between
the optimal docking conformation of the compound and its X-ray crystal conformation
was 1.0294 Å, which was lower than 2 Å, the value described in the literature reference.
This result suggests that the docking method can accurately predict the configuration
and orientation of the compound reported in the X-ray crystal structure, and the docking
method is reliable and can be used for c-Met kinase inhibitor docking.

After conformation minimization, the forty-two compounds were docked into the
active pocket of c-Met kinase 3CCN, and 3129 binding conformations were obtained,
where the CDOCKER score ranged between −16.84 and 980.98 Kcal/mol. The most active
compound 4 was chosen as an example to analyze the interaction mode with c-Met Kinase,
shown in Figure 6. From this figure it can be seen that the hydrogen bond and Pi are two
most important interactions.
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2.3.2. Docking-Based CoMFA and CoMSIA Model Results

After molecular docking, the best-scoring conformation of each compound was se-
lected for the subsequent QSAR analysis. The training set and prediction set used here
are the same as the atom-based QSAR analysis. Table 4 displays the results of different
field combinations in the CoMSIA model. It can be seen that the four combined fields of
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SEAD is the best one, the same as the atom-based model. The statistical parameters of
these two models were shown in Table 2. The correlation diagrams of experimental and
predicted values of CoMFA and CoMSIA were shown in Figure 2C,D, respectively. The
error bar graphs between the experimental and predicted values were shown in Figure
3C,D, respectively.

Table 4. Different field combinations in CoMSIA analysis for alignment-B.

Field ONC Q2 R2 SEE F Rate of Contribution

SED 3 0.556 0.981 0.094 229.485 0.255:0.515:0.230
SEA 3 0.55 0.976 0.105 184.036 0.219:0.477:0.304
SEH 2 0.52 0.984 0.087 272.649 0.182:0.446:0.372

SEHA 2 0.53 0.985 0.082 303.786 0.136:0.339:0.306:0.219
SEHD 2 0.526 0.991 0.065 491.572 0.154:0.358:0.163:0.325
SEAD 3 0.561 0.981 0.095 228.254 0.178:0.378:0.264:0.180

SEHDA 2 0.536 0.988 0.073 385.686 0.117:0.286:0.197:0.138:0.262

The alignment graph based on the docking conformation is shown in Figure 1C. Com-
pared with atom-based graph, the docking-based alignment graph is slightly dispersed,
and the model Q2 is a little lower. But the docking-based CoMFA and CoMSIA models
are still satisfactory and practically useful, for the Q2 value higher than 0.50, and other
parameters are all similar or even higher than the atom-based models.

2.3.3. Contour Map Analysis

A substantial amount of information contained in the CoMFA and CoMSIA models
can be seen through the contour map. Figures 7 and 8 respectively show the contour maps
of docking-based CoMFA and CoMSIA models. Comparing these figures with those from
atom-based results, it can be seen that, though slightly complicated and different, they
provide quite similar relationships between structure and activities.
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2.4. Molecular Dynamics Simulation Results

In order to further study the interaction mode between these inhibitors and c-Met,
molecular dynamics simulation was carried out on the system of the most active compound
4 bound to 3CCN via molecular docking. We ran a 500 ns molecular dynamics simulation
and analyzed the trajectory. The root mean square deviation (RMSD) and the root mean
square fluctuation (RMSF) of the complex, the ligand and the binding pocket (defined
as residues within 5 Å around the ligand) were calculated to research the stability of the
structure and residues in the system. As shown in Figure 9A, there were some fluctuations
in the entire system at the early stage of the trajectory and the fluctuations of the RMSD
in the complex indicating the system was gradually stabilized. In order to obtain more
accurate analytical results, we chose the last 50 ns trajectory for the next analysis.
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that the residues within 5 Å around the ligand.

Then, we extracted the structure of the last frame and compared it with the initial
structure to determine whether the molecule was stable in the binding site. As shown in
Figure 10A, though the conformation of compound 4 had undergone some changes, it still
remained locating in the allosteric pocket.
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Figure 10. The ligand location comparison of the initial structure and after MD stabilized conforma-
tion. (A) Overlay of the first frame structure and the last frame structure of the trajectory, this green
is the protein structure of the first frame and this red is the small molecule structure of the first frame,
this blue is the protein structure of the last frame and this yellow is the small molecule structure of
the last frame; (B) the amino acid residues around the binding site.

We calculated the RMSF of every Cα atom of the complex. As shown in Figure 11,
the RMSF values of the residues in the region of 1139–1142, 1200–1213, 1219–1225 and
1245–1250 were smaller than other residues. These residues, such as ASP1222 and TYR1230
that were shown in Figure 10B, were near to the c-Met binding site, which illustrated
that the residues near the binding site were more stable than other residues during the
MD process. This result is consistent with the result of the RMSD of the binding site in
Figure 9C.
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The binding energy between the ligand and protein was calculated by using MM-
GBSA method, listed in Table 5. From the value of binding free energy (∆Gbind), we can
conclude that Compound 4 bind well to the protein. As shown in Table 5, van der Waals
(∆EvdW) contributes the most to the binding of the ligand and protein. The contribution
ratio of ∆EvdW and ∆Eele to the system was similar to that in the CoMFA model.
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Table 5. Binding free energy of the system and energy contribution of each component.

Interaction Contribution (kcal/mol) Standard Deviation

∆EvdW −32.99 3.62
∆Eele 36.18 24.78
∆GGB −25.82 23.74
∆GSA −4.45 0.38
∆Egas 3.19 24.72
∆Esolv −30.27 23.64
∆Gbind −27.08 3.80

In addition, we decomposed the binding energy to study the contribution of each
residue, shown in Figure 12. In this figure, the residue ASP1222 has lowest energy value,
indicating that ASP1222 has the greatest contribution to the binding of the system. 

2 

 

Figure 12. Contribution of partial residues calculated by decomposing the binding energy. 

Figure 12. Contribution of partial residues calculated by decomposing the binding energy.

In order to clarify the reason why residue ASP1222 is so important, we calculated
the hydrogen bonds, defined as the distance of acceptor and donor < 0.35 nm and the
angle > 120◦ [24], of the entire system during the MD simulation. As shown in Table 6, we
can clearly see that the main hydrogen bonds of the whole system were formed only by the
residue ASP1222 and Compound 4.

Table 6. Hydrogen bond distribution for the system.

Acceptor DonorH Donor Frac

ASP_1222@OD2 MOL@H22 MOL@N4 0.6651
ASP_1222@OD2 MOL@H20 MOL@N3 0.6569
ASP_1222@OD1 MOL@H20 MOL@N3 0.6431
ASP_1222@OD1 MOL@H22 MOL@N4 0.6178

3. Materials and Methods
3.1. Molecular Conformation

The structures of the studied forty-two compounds were drawn and optimized in
SYBYL 6.9 software [25]. Gasteiger-Hückel charge of each compound is calculated [26].
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To obtain the lowest energy conformation of each molecule, a conformation searching
was carried out through the multiple reconstruction image search method module. Then
the lowest-energy geometric structure of each molecule was selected for the succeeding
molecular alignment.

3.2. Molecular Docking

In this study, the CDOCKER module is used to do molecular docking in the Discovery
Studio 2.5 [23] to generate the molecular active conformations of the c-Met kinase inhibitors.
The molecular structures were optimized by preparing binding ligand modules. The X-ray
crystal structure of c-Met kinase, binding with triazolopyridazine, is downloaded from the
RCSB protein database (http://www.pdb.org) and the PDB succession number is 3CCN.
The protein structure was prepared using the protein preparation module, including adding
missing loop structure regions, protein protonation and automatic protein preparation. The
torsion force of the ligand and the receptor were set to be rotatable and rigid respectively,
by using the semi-flexible docking method [27]. The binding site radius was set to 10, top
hits were set to 100, and other parameters were set as default. According to the scoring and
binding mode of each molecule, the best conformation was selected for subsequent analysis.

3.3. Molecular Alignment

To obtain optimal QSAR models, two different alignment methods, namely align-
ment A and alignment B, were employed. Alignment A is the atom-based method. The
compound with highest inhibition activity is selected as the template molecule, and the
remaining compounds were aligned to the common substructure using “align database”
command. Alignment-B is a docking-based approach, all the conformations used for align-
ment were derived from the docking analysis, i.e., the best conformation of each molecular
docking was selected, then imported into SYBYL6.9, added the Gasteiger-Hückel charges
and subjected to the process of molecular alignment.

3.4. CoMFA and CoMSIA Modeling

The entire process of 3D QSAR research was completed in SYBYL 6.9 software. In
this study, the lowest energy conformation database of the training set compounds were
obtained as stated in Section 3.1. The most active compound No 4 was chosen as the
template molecule, and the common framework superposition method was used to ensure
the consistency of the spatial orientation as much as possible.

CoMFA analysis calculated steric and electrostatic fields as input by applying Tripos
force field. Methane molecule and hydrogen ion were used as probes to travel in the
space around the molecule to detect corresponding steric field (S) and electrostatic field (E)
values. The cutoff value and attenuation factor were set default to 30 kJ/mol and 0.3 [28],
respectively.

On the bases of steric and electrostatic fields, CoMSIA method also uses another three
fields, i.e., hydrogen bond acceptor (A), hydrogen bond donor (D) and hydrophobic field
(H). Gaussian function, a function related to distance, was used to calculate these field
values.After model building, the Stdev*Coeff method was adopted to display the contour
maps of the model results.

3.5. Model Validation

Leave-one-out (LOO) cross-validation is employed to determine the optimal principal
component number (ONC), and partial least squares (PLS) was carried out to build mod-
els [24]. LOO cross-validation is the method that extracts a compound from the training set
as a temporary test set, and uses the remaining compounds as a temporary training set to
build a model. Use the model from the temporary training set to predict a compound in
the temporary test set. PLS is an extension of multiple regression analysis that we used
pIC50 value as the dependent variable and the descriptors of CoMFA or CoMSIA as the
independent variable in this study The parameters used in the model building process

http://www.pdb.org
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include the optimum number of components (ONC), cross-validation correlation coeffi-
cient (Q2), standard error of estimate (SEE), correlation coefficient (R2) and F-statistic value
(F).The LOO cross-validated coefficient Q2 value is calculated as follows (Equation (1)):

Q2 = 1 −
∑n

i = 1 (Ypred,i − Yexp,i)
2

∑n
i = 1 (Yexp,i − Ymean)

2 (1)

In this formula, Yexp and Ypred represent the experimental activity and the predicted
activity, respectively. Ymean is the average activity of all molecules in the training set.

The predictive ability of the models was assessed by the R2
pred, defined as follows

(Equation (2)):

R2
pred =

SD − PRESS
SD

(2)

where SD is the sum of the squared deviations of the actual activity of the molecule in the
prediction set and the average activity of all molecules in the training set. PRESS indicates
the sum of squared deviations of the experimental and predictive biological activity values
of the prediction set compounds.

3.6. Molecular Dynamics Simulation

In order to perform molecular dynamics simulations, we used the restrained electro-
static potential (RESP) protocol with HF/6-31G* basis set to calculate the partial atomic
charges for the ligand atoms [29–31]. The force field parameters for the ligand were cre-
ated using the Antechamber program and described by the General Amber Force Field
(GAFF) [32]. The force filed parameters for the protein was generated by a standard
ff14SB [33] force field. The system was built with the tLEaP module of the Amber 14
package [34]. Then, we used a cubic box of TIP3P [35] water molecule to wrap the system
and each amino acid in the system was at least 10 Å from the edge of the water box. The
chloride ions were added to the system to make it in an electrically neutral state. In this
part, AMBER 14 will renumber the amino acid sequence, so the number of the amino acid
of protein will change from aa 1055–1114 and aa 1120–1346 to aa 1–60 and 61–287.

All molecular dynamics simulations were carried out using the AMBER 14 package.
The process of energy minimization was divided into three steps. First, the system was
constrained by 5.0 kcal·mol−1·Å−2 to optimize solvent and ionic molecules. Then, only the
protein backbone atoms were constrained by 3.0 kcal·mol−1·Å−2 to make amino acid side
chains find better ways to accommodate the ligand. In the third step, no restriction was
imposed on the atoms to minimize the system. In every step, we executed 5000 steps with
the first 2500 steps executed by using the steepest gradient descent method and the second
2500 steps performed by using the conjugate gradient method. We heated the system from
0 K to 310 K in the canonical (NVT) ensemble after energy minimization and this process
lasted 100 ps when all atoms were constrained by 5.0 kcal·mol−1·Å−2. To adjust the solvent
density to equilibrate, a short equilibration simulation over 50 ps under 1 atm pressure in
the isothermal isobaric (NPT) ensemble was performed and all atoms of the system was
restrained by 5.0 kcal·mol−1·Å−2. After this, a trajectory of 1.5 ns was performed in NPT
ensemble. The first 1.0 ns was divided into five steps and every step lasted 0.2 ns, and
the limiting force for the five steps were set as 5.0, 4.0, 3.0, 2.0 and 1.0 kcal·mol−1·Å−2,
respectively. The last 0.5 ns were carried out without any restraint.

We used the PMEMD program to perform a 500 ns production of MD simulation
of the system at 310.0 K, 1 atm in the NPT ensemble without any restraint. During the
simulation, we used the Particle Mesh Ewald (PME) [36] method to deal with long-range
Coulomb interactions and the SHAKE algorithm [37] to limit the bond length containing
hydrogen atoms. The cutoff value was set to 10.0 Å to handle non-bonded interactions. In
order to avoid fringe effect, periodic boundary conditions was used during simulation. We
set 2 fs as the time step and recorded the coordinates of the track every 2 ps in this process.
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3.7. Binding Free Energy Calculations

MM-GBSA [38–41] method was used to calculate the binding free energy of the system.
In this process, an average of 5000 structures was extracted with an interval of 10 ps from
the last 50 ns MD trajectory. We used the equations below to calculate the binding free
energy (Equation (3)):

∆Gbind = ∆Gcomplex − ∆Greceptor − ∆Gligand

∆Gbind = ∆H − T∆S ≈ ∆EMM + ∆Gsolv − T∆S

∆EMM = ∆Einternal + ∆Eele + ∆EvdW

∆Gsolv = ∆GGB + ∆GNP

(3)

The binding free energy (∆Gbind) is the sum of the enthalpy term (∆H) and entropy
term (−T∆S). ∆H of the system is the summation of the interaction energy of the gas
phase among the protein–ligand (∆EMM) and the solvated free energy (∆Gsolv). ∆EMM
is obtained by adding the internal energy (∆Einternal, consists of the energies of bonds,
angels and torsions), the electrostatic interaction energy (∆Eele) and the van der Waals
interaction energy (∆EvdW). ∆Gsolv is the sum of the polar solvation free energy (∆GGB)
and the nonpolar solvation free energy (∆GNP).

3.8. Per-Residue Free Energy Decomposition Analysis

We decomposed per-residue free energy decomposition using the 5000 structures
collected from the last 50 ns MD trajectory with an interval of 10 ps. The MM-GBSA method
was employed to calculate the Per-residue free energy decomposition (∆GMM−GBSA) with
the following Equation (4):

∆GMM−GBSA = ∆EvdW + ∆Eele + ∆Ep + ∆Enp (4)

In this formula, ∆EvdW represents the van der Waals interaction energy, ∆Eele repre-
sents the electrostatic interaction energy, ∆Ep represents the polar solvation free energy
and ∆Enp represents the nonpolar solvation free energy.

4. Conclusions

In this study, a series of 2-aminopyridine inhibitors targeting c-Met kinase were
used for molecular modeling (3D-QSAR, molecular docking and molecular dynamics
simulations). The binding modes of the most active compound 4 showed that Arg1208
and Tyr1230 might be the key residues. 3D-QSAR including CoMFA and CoMSIA models
were used to explore the relationships between 2-aminopyridine derivatives and their
bioactivities. Especially the 3D contour maps can provide detailed understanding of the
key structural features responsible for the c-Met kinase inhibitors activity, as summarized
in Figure 13. The Results show that the electrostatic and hydrogen bonds are the main
interactions between c-Met kinase and ligands, concordance with the docking result. The
MD simulations were performed to study the system of the most active compound 4 bound
to c-Met (3CCN). In this process, residue ASP1222 that formed hydrogen bonds with small
molecules had the highest energy contribution to the integration of the entire system. The
results from this study provide a reference for further rational design of novel c-Met kinase
inhibitors with high potency.
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