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Tubeimoside I induces accumulation of
impaired autophagolysosome against
cervical cancer cells by both initiating
autophagy and inhibiting lysosomal
function
Xuping Feng1,2, Jing Zhou2, Jingyi Li3, Xueyan Hou4, Longhao Li1,5, Yongmin Chen6, Shuyue Fu2, Li Zhou2,
Changlong Li7 and Yunlong Lei1

Abstract
Cervical cancer is one of the most aggressive human cancers with poor prognosis due to constant chemoresistance
and repeated relapse. Tubeimoside I (TBM) has been identified as a potent antitumor agent that inhibits cancer cell
proliferation by triggering apoptosis and inducing cell cycle arrest. Nevertheless, the detailed mechanism remains
unclear and needs to be further elucidated, especially in cervical cancer. In this study, we found that TBM could induce
proliferation inhibition and cell death in cervical cancer cells both in vitro and in vivo. Further results demonstrated
that treatment with TBM could induce autophagosome accumulation, which was important to TBM against cervical
cancer cells. Mechanism studies showed that TBM increased autophagosome by two pathways: First, TBM could
initiate autophagy by activating AMPK that would lead to stabilization of the Beclin1-Vps34 complex via dissociating
Bcl-2 from Beclin1; Second, TBM could impair lysosomal cathepsin activity and block autophagic flux, leading to
accumulation of impaired autophagolysosomes. In line with this, inhibition of autophagy initiation attenuated TBM-
induced cell death, whereas autophagic flux inhibition could exacerbated the cytotoxic activity of TBM in cervical
cancer cells. Strikingly, as a novel lethal impaired autophagolysosome inducer, TBM might enhance the therapeutic
effects of chemotherapeutic drugs towards cervical cancer, such as cisplatin and paclitaxel. Together, our study
provides new insights into the molecular mechanisms of TBM in the antitumor therapy, and establishes potential
applications of TBM for cervical cancer treatment in clinic.

Introduction
With 500,000 incident cases and 260,000 deaths

annually, cervical cancer has been implicated one of the
most common cancers worldwide1,2. Primary preventions
and early treatment of precancerous lesions have sharply
declined the incidence rate in most developed countries;
however, the morbidity and mortality remain high in
some low-income countries3,4. In addition, the primary
methods for cervical cancer treatment such as surgery,
radiotherapy and adjuvant chemotherapy, have greatly
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improved the carcinoma survival rate5,6. Nonetheless,
increasing radioresistance or chemoresistance, repeated
relapse and tumor metastasis limit the treatment efficacy,
highlighting the urgency of developing novel and reliable
therapeutic strategies.
Autophagy is a conservative lysosomal degradation

pathway during which the intracellular materials are
degraded and recycled7. Cellular stress events, such as
energy limiting, oxidative stress and nutrient depriva-
tion, result in accumulation of damaged or toxic pro-
teins and organelles that can drive autophagy to sustain
cellular homeostasis8. The autophagic products, such as
amino acids, fatty acids and other small molecules can
provide a certain amount of energy and synthetic sub-
strates to maintain adequate energy. Given its “self-
digest” function, the role of autophagy in cancer is
complex and context-dependent9. Autophagy is origin-
ally known as a tumor suppressor from the investigation
of the tumorigenesis tendency in mice with allelic loss of
autophagy-related genes (ATGs). However, increasing
studies have implicated its role in tumor promoting by
assisting cancer cells survival in stress either from
environment or induced by tumor therapy10,11. Target-
ing the autophagy process has been regarded as a novel
therapeutic approach12. Therefore, development of
novel autophagy modulator has rewired a way of cancer
treatment.
Tubeimoside I (TBM) is extracted from the tuber of

Bolbostemma paniculatum (Maxim) Franquet (Cucur-
bitaceae), a traditional Chinese herb previously used in
anti-viral or anti-inflammatory treatment13. Recently,
growing studies have reported its direct cytotoxity in
multiple human cancer cells, characterized by mito-
chondrial damage, endoplasmic reticulum stress, apop-
tosis and cell cycle arrest14–17. In addition, TBM could
sensitize human ovarian cancer cells to cisplatin
(CDDP)18. TBM has been considered as a promising
anticancer agent. However, the underlying mechanism
remains unclear and elusive.
In the present study, we found that TBM-treated

cervical cancer cells displayed decreased proliferating
rate and obvious cell death. TBM also promoted
remarkable autophagosome synthesis, resulted from
activation of adenosine monophosphate-activated pro-
tein kinase (AMPK) signaling. In addition, autophagic
flux was blocked in the late stage of autophagic process,
eventually leading to impaired autophagolysosomes
accumulation and cell death. Moreover, this
novel autophagic cell death inducer may enhance the
treatment efficacy of chemotherapeutic drugs
towards cervical cancer. Our findings suggest that TBM
act as a potent autophagy modulator and may provide
new insights into therapeutic strategy for cervical
cancer.

Results
TBM inhibits cervical cancer cells proliferation both in vitro
and in vivo
To identify the role of TBM in cervical cancer, cervical

cancer cell lines (HPV18-positive HeLa and HPV16-
positive SiHa) were treated with TBM. MTT assay
showed that TBM markedly decreased the cervical cancer
cells’ viability in a dose-dependent manner (Fig. 1a). LDH
release assay also revealed that TBM could damage the
integrity of plasma membrane (Fig. 1b). As shown in
Supplementary Figure 1, cells exposed to TBM exhibited a
significant survival inhibition, as evidenced by the
decreased colony numbers. Furthermore, in comparison
to controls, a notably lower rate of EdU-postive cells was
observed in TBM-treated cells (Figs. 1c, d), indicating the
growth inhibitory effect of TBM on cervical cancer cells.
To further define the antitumor effects of TBM in vivo,

we established a mouse xenograft model with HeLa cells,
following by receiving TBM or saline solution treatment.
Tumor size, volume and mass increased dramatically in
the vehicle control. In contrast, tumor in TBM-treated
mice grew less prominent (Figs. 1e–g). In addition, most
of the TBM-treated tumors displayed reduced
Ki67 staining (Figs. 1h, i), indicating the decreased pro-
liferating ability in TBM-treated group. Collectively, these
results suggest that TBM inhibit proliferation of cervical
cancer cells both in vitro and in vivo.
Besides, we found that TBM effectively decreased the

cell viability of several cancer cells in a dose-dependent
manner, including glioblastoma, breast cancer, hepato-
carcinoma, lung cancer and colorectal cancer cells, indi-
cating that TBM is a broad-spectrum antineoplastic agent
(Supplementary Figure 2). Unfortunately, TBM could also
induce growth inhibition in normal cells (Supplementary
Figure 3A and 3B). However, the cytotoxicity of TBM was
low when treatment concentration was less than 10 µM,
and the cytotoxicity of TBM was equivalent to commonly
used anticancer drugs such as cisplatin (CDDP), paclitaxel
(PTX), doxorubicin (DOX) and 5-fluorouracil (5-FU)
(Supplementary Figure 3C), suggesting that low con-
centration of TBM is relatively safe and may be benefit for
cancer treatment.

TBM induces apoptosis in cervical cancer cells both in vitro
and in vivo
To get more insights into the mode of TBM-induced

cell death, we treated cervical cancer cells with TBM
combination with a series of death inhibitors. As shown in
Figs. 2a, b, Z-VAD-FMK, a pan-caspase inhibitor19, par-
tially rescued TBM-induced cell death; in contrast, other
inhibitors including ferrostatin-1 and necrostatin-1, failed
to influence the cell death caused by TBM, in spite of their
specific capacities to inhibit ferroptosis20 and necropto-
sis21, respectively. This implies that apoptosis might be
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associated with TBM-induced cervical cancer cell death.
Consistently, both TUNEL assay and flow cytometry
analysis exerted prominent apoptotic effect in cervical
cancer cells (Figs. 2c-e). In addition, cleaved-CASP3 and
cleaved-PARP1, one of caspase downstream effectors22,
were accumulated upon TBM treatment (Fig. 2f). Con-
sistently, TBM also caused apoptosis in cervical cancer
in vivo (Fig. 2g). In summary, these data indicate that
apoptosis is involved in TBM against cervical cancer both
in vitro and in vivo.

TBM induces autophagosome formation in cervical cancer
cells
Interestingly, as shown in Figs. 2a, b, co-treatment of

TBM and CQ could initiate more cell death than TBM

alone, indicating that autophagy might be also involved in
TBM-induced cell death. To explore the relationship
between TBM and autophagy, cervical cancer cells were
treated with TBM and then LC3 II conversion, a specific
marker of autophagy23, was measured. Of note, TBM
significantly induced LC3 II accumulation in both dose-
dependent and time-dependent manners (Figs. 3a, b). In
addition, transmission electron microscopy experiment
also showed that the formation of double-membraned
autophagic vacuoles was frequently observed in cervical
cancer cells treated with TBM (Supplementary Figure 4).
Furthermore, both the endogenous LC3 and exogenous
GFP-LC3 puncta, representing the number of autophagic
vacuoles23, were remarkably increased in TBM-treated
cells (Figs. 3c–f). Acidic vesicular organelles, which are

Fig. 1 TBM inhibits cervical cancer cells proliferation. a Hela and SiHa cells were treated with indicated concentrations of TBM for 24 h. Cell
viability was measured by the MTT assay. b TBM disrupted cellular membrane integrity as measured by LDH release in the medium. Cells were treated
as in (a). c–d Cell proliferation of HeLa and SiHa cells were measured by EdU labeling. Cells were treated as in (a). Scale bars: 100μm. e–g Nude mice
bearing HeLa xenograft tumor were treated with 100 μL saline solution (control, n= 5) or 3 mg/kg TBM (n= 5) daily for 16 days. e Tumor tissues were
taken and imaged after animals sacrificed. Scale bars: 1 cm. f Tumor volumes were monitored every other day and calculated by the length and
width. g Tumors were weighed immediately once mice were killed. h–i Tumor tissues were sectioned and subjected to immunohistochemistry for
evaluating expression of Ki67. Scale bars: 100 μm. *p < 0.05; **p < 0.01; ***p < 0.001
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Fig. 2 TBM induces apoptosis in cervical cancer cells both in vitro and in vivo. a–b HeLa and SiHa cells were treated with TBM (15 μM) either
alone or combination with specific cell death inhibitors, ferrostatin-1 (5 μM), necrostatin-1 (5 μM), Z-VAD-FMK (10 μM) and CQ (10 μM) for 24 h, and
the percentage of cell death was determined by MTT assay. c–d HeLa and SiHa cells were treated with indicated concentrations of TBM for 24 h, and
apoptosis index was determined by TUNEL assay. Scale bars: 100μm. e HeLa and SiHa cells were treated with indicated concentrations of TBM for 24
h, and then apoptosis was measured with FACS assay. f HeLa and SiHa cells were treated with indicated concentrations of TBM for 24 h, and the
expression of cleaved CASP3 and PARP1 was measured with immunoblot. g Tumor samples were collected from the mouse xenograft mode, and the
expression of cleaved CASP3 and PARP1 was measured with immunoblot. *p < 0.05; ***p < 0.001
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Fig. 3 (See legend on next page.)
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markers of autophagosomes24, were also markedly
increased following TBM treatment (Figs. 3g, h), high-
lighting its capacity in inducing autophagosome
accumulation.
To examine whether TBM induces autophagy in vivo,

tumor samples were analyzed for LC3 II level. We
observed an increase of LC3 II conversion by immunoblot
analysis (Fig. 3i). Consistently, TBM-treated xenografts
displayed stronger LC3 staining compared with the con-
trol group (Figs. 3j, k). In summary, TBM can induce
autophagosome accumulation in cervical cancer both
in vitro and in vivo. In addition, TBM also induced
autophagosome accumulation in various types of cancer
cells as evidenced by the LC3 II accumulation (Supple-
mentary Figure 5).

TBM initiates autophagy by activating AMPK
Once autophagy initiated, a series of ATGs will drasti-

cally be activated to mediate autophagosome formation. A
key event in the autophagy pathway is the activation of the
Beclin1-Vps34 complex, which functions in the formation
of isolated membrane (also known as the phagophore).
Intriguingly, we found that Beclin1 showed a relatively
strong interaction with ATG14 and weak binding affinity
toward Bcl-2 in TBM-treated cells (Figs. 4a-d), suggesting
that TBM could stabilize the Beclin1-Vps34 complex by
dissociating Bcl-2 from Beclin1. In addition, treated with
TBM combination with 3-MA or wortmannin (WTM),
the PtdIns3K inhibitors that selectively block activation of
Beclin1-Vps34 complex25, obviously decreased LC3 II and
LC3 dots formation in cervical cancer cells (Figs. 3c, d;
Supplementary Figure 6A and 6B). Furthermore, mole-
cular inhibition of ATG5 or Beclin1 by siRNA revealed a
decrease in LC3 II accumulation (Supplementary Table 1,
Figs. 4e, f). These results show that TBM can initiate
autophagy in vitro.
AMPK and mTOR signaling pathways are two main

autophagy-initiating pathways26. Considering that TBM
could damage the mitochondria and cause the depletion
of mitochondrial transmembrane potential (ΔΨm)27,28,
which subsequently decreased the production of energy in
the form of adenosine triphosphate (ATP), we

hypothesized that AMPK might play a critical role in
TBM-induced autophagy. To confirm this, we firstly
measured the ATP levels in HeLa and SiHa cells treated
with TBM. As expected, both cells exerted a dose-
dependent decrease of ATP production (Fig. 4g). Immu-
noblot also showed that TBM could activate AMPK and
its down-stream protein, ACC, in a dose-dependent
manner (Fig. 4h). To further exam the role of AMPK in
TBM-induced autophagy, CC, a specific AMPK inhibitor,
was used to inactivate AMPK29. Of note, CC decreased
TBM-induced accumulation of LC3 II and formation of
LC3 puncta (Figs. 4i, k). In summary, these data indicate
that TBM initiates autophagy by activating AMPK in
cervical cancer cells.

TBM inhibits autophagic flux in cervical cancer cells
In addition to initiate autophagy, our earlier observa-

tions also showed that TBM induced an increase of p62
(Figs. 3a, b, i), a substrate of autophagy which is delivered
to the lysosomes for degradation8. Enhanced p62
expression can be either associated with increased protein
synthesis or due to discontinuity of autophagosome
turnover30, suggesting that TBM may inhibit autophagic
flux. To clarify the underlying mechanism, HeLa and SiHa
cells were treated with TBM in combination with Baf A1
(a V-ATPase inhibitor)31 or CQ (a lysosomotropic com-
pound)32, both of which could block the end stage of
autophagy. As shown in Figs. 5a-d, Baf A1 or CQ induced
much less further accumulation of LC3 II protein and
LC3 dot numbers in TBM-treated cells compared with
control cells, supporting the inference that TBM may
inhibit autophagic flux. Additionally, TBM treatment
resulted in accumulation of p62 dots and increased
colocalization with LC3 punta (Figs. 5e, f), which also
suggested autophagic flux inhibition. Furthermore,
autophagic flux induced by rapamycin could also be
impeded by TBM, suggesting TBM-induced autophagic
flux inhibition is independent on the mechanisms of
TBM-initiated autophagy (Fig. 5g). Finally, tandem
mCherry-GFP-LC3 reporter assays also determined
TBM-induced autophagic flux inhibition evidenced by
that exposure to TBM caused notable formation of yellow

(see figure on previous page)
Fig. 3 TBM initiates autophagosome formation in cervical cancer cells. a Immunoblot analysis of LC3 and p62 in HeLa and SiHa cells treated
with indicated concentrations of TBM for 24 h. b Immunoblot analysis of LC3 and p62 in HeLa and SiHa cells treated with 15 μM TBM for indicated
time. c Immunofluorescence analysis of endogenous LC3 puncta formation in TBM-treated HeLa and SiHa cells in present with or without 3-MA for
24 h. Scale bar: 20μm. d Graph shows quantification of LC3-positive punctate cells in (c). e HeLa and SiHa cells were transfected with GFP-LC3 for 48
h, and then treated with 15 μM TBM for another 24 h. GFP-LC3 puncta was visualized by immunofluroescence. Scale bars: 20μm. f Graph shows
quantification of GFP-LC3-positive punctate cells in (e). g Acridine orange was used to stain acidic vesicular organelles in HeLa and SiHa cells treated
with 15 μM TBM. Scale bars: 50 μm. h The total number of acidic vesicular organelles (AVO) per cell in Figure G was quantified by ImageJ software. i
Tumor tissues were hydrolyzed, and then LC3 and p62 were examined by immunoblot. j–k Tumor tissues were resectioned and subjected to
immunohistochemistry for evaluating expression of LC3 in mouse tumor xenograft. Scale bars: 100 μm. *p < 0.05; ***p < 0.001
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Fig. 4 TBM induces an AMPK-dependent autophagosome formation. a–b Interaction among Beclin1, Atg14L and Bcl-2 in HeLa (a) and SiHa (b)
cells was determined by co-immunoprecipitation assay. c–d Interaction between Bcl-2 and Beclin1 in HeLa (c) and SiHa (d) cells was determined by
co-immunoprecipitation assay. e HeLa and SiHa cells were transfected with siScramble or siATG5 for 48 h, and then treated with 15 μM TBM for
another 24 h. Expression of Atg5 and LC3 was examined by immunoblot. f HeLa and SiHa cells were transfected with siScramble or siBeclin1 for 48 h,
and then treated with 15 μM TBM for another 24 h. Expression of Beclin1 and LC3 was examined by immunoblot. g ATP production was detected in
cells treated with indicated concentrations of TBM by ATP Assay Kit (Beyotime Biotechnology, S0026). (h) Immunoblot analysis AMPK, ACC, AMPK
phosphorylation (Thr172) and ACC phosphorylation (Ser79) in cells treated with the indicated concentrations of TBM for 24 h. β-actin was used as the
internal control. i Cells were treated with TBM in the absence or presence of CC. AMPK, AMPK phosphorylation (Thr172) and LC3 were measured by
immunoblot. j Cells were treated with TBM in the absence or presence CC for 24 h. LC3 puncta formation was measured by immunofluorescence
analysis. Scale bars: 20 μm. k Graph shows quantification of LC3-positive puncta in Figure J. *p < 0.05; **p < 0.01; ***p < 0.001
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Fig. 5 (See legend on next page.)
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fluorescent autophagosomes and moderate increase of red
fluorescent autophagolysosomes (Figs. 5h, i). In summary,
these results show that autophagic flux inhibition plays a
role in TBM-induced accumulation of autophagosomes.

TBM blocks autophagic flux by impairing lysosomal
enzyme
The inhibition of autophagic flux could probably be

attributed to impaired fusion between autophagosome
and lysosome33. To determine whether lysosomal traf-
ficking was affected by TBM, we assessed the colocaliza-
tion of endogenous LC3 with LAMP1, which represents
the formation of autophagolysosome34. Surprisingly, TBM
induced a significant overlap between LC3 and LAMP1
and Pearson’s correlation coefficient equaled about 0.5
(Supplementary Figure 7A and 7B), indicating that TBM
induced fusion between autophagosome and lysosome. In
line with the results, examination of the endogenous
colocalization of LC3 and LysoTraker Red, a specific dye
for lysosome labeling, also confirmed that
autophagosome-lysosome fusion was not impaired by
TBM (Supplementary Figure 7C and 7D).
Next, we detected whether TBM might deregulate the

function of lysosome. We first examined the lysosomal
pH, as maintaining acidification is essential for lysosomal
activity35. However, AO staining displayed a significant
increase of acidic vesicles in TBM-treated cells (Figs. 3g,
h). To further monitor the lysosomal pH, cells treated
with TBM was applied with LysoSensor Green DND-189
(pKa~5.2) and analyzed with flow cytometry. As shown in
Supplementary Figure 8A, an increasing shift of acidic
compartments was observed in cells with TBM treatment,
indicating the role of TBM in retaining the acidic envir-
onment. Similar result was obtained using LysoTracker
Red (Supplementary Figure 8B), which accumulated in
acidic lysosomes. These results indicate that TBM-
induced autophagic inhibition is not correlated with
lysosomal pH alteration.
Now that TBM maintained an adequate pH in cervical

cancer cells, we next examined the expression of LAMP1,
LAMP2, RAB5 and RAB7, which are critical membrane
proteins for lysosome and endosome and are important
for lysosomal physiology35. Results showed that all

proteins exhibited an increase in TBM-treated cells on a
dose-dependent manner (Fig. 6a), indicating that the
disturbed autophagic flux was not due to the decreased
membrane protein expression of lysosomes and
endosomes.
In the end, we examined the function of lysosomal

enzymes. Accumulating evidence indicated that dysfunc-
tion of lysosomal hydrolytic enzymes resulted in an
increase of ubiquitinated proteins36. As expected, TBM
treatment induced accumulation of ubiquitinated proteins
in HeLa and SiHa cells (Fig. 6b). Furthermore, DQ-BSA
was applied to monitor general endosomal-lysosomal
process, during which the red fluorescence of DQ-BSA
was supposed to self-quench without proteolytic clea-
vage37. Notably, very little dequenching occurred in TBM-
treated cells, indicating the TBM impaired lysosomal
enzymes’ activity (Fig. 6c). Similarly, the epidermal growth
factor receptor (EGFR) degradation assay was performed
in HeLa and SiHa cells. Accordingly, complex formed by
EGF and its receptors might be endocytosed, and then
transferred to lysosomes for degradation38. As shown in
Fig. 6d, TBM inhibited EGF-triggered EGFR degradation,
verifying the lysosomal dysfunction. In addition, we
investigated the capacity of TBM on cathepsin processing
in cervical cancer cells. Our data showed that TBM
remarkably prevented the maturation of CTSD, resulting
in inhibition of lysosomal activity (Fig. 6e). In summary,
our data demonstrate that TBM inhibits lysosomal
cathepsin activity, thereby leading to accumulation of
impaired autophagolysosomes.

Accumulation of impaired autophagolysosomes
contributes to TBM-induced cell death
Insufficient autophagy, which would cause accumula-

tion of damaged proteins or organelles, may be a disaster
to cancer cells and lead to cell death39. To investigate the
link between autophagy blockade and cell death induced
by TBM, we transfected cervical cancer cells with Beclin1
or ATG5 siRNA, followed by TBM treatment. Cell via-
bility was measured with MTT assay and EdU labeling.
These data demonstrated that reduction in ATG5 or
Beclin1 levels rescued the cell viability caused by TBM
(Figs. 7a–c). Furthermore, similar results were obtained

(see figure on previous page)
Fig. 5 TBM inhibits autophagic flux in cervical cancer cells. a HeLa and SiHa cells were treated with TBM in the absence or presence of CQ (10
µM). LC3 was measured with immunoblot. b Cells were treated with TBM in the absence or presence of bafilomycin A1 (Baf, 100 nM). LC3 was
measured with immunoblot. c–d HeLa and SiHa cells were treated with TBM in the absence or presence of 10 µM CQ. LC3 puncta formation was
measured by immunofluorescence analysis and quantified by ImageJ. e–f Cells were treated with TBM. LC3 and p62 puncta were measured by
immunofluorescence analysis and quantified by ImageJ. g HeLa and SiHa cells were treated with TBM in the absence or presence of rapamycin (500
nM). LC3 and p62 expression was measured with immunoblot. The ratio of LC3 II/β-actin was determined with ImageJ software. h–i Cells were
transfected with mCherry-GFP-LC3 for 48 h, and treated with TBM for another 24 h. The formation of autophagosome (mCherry-positive; GFP-
positive) and autophagolysosome (mCherry-positive; GFP-negative) was examined and quantified by ImageJ. Scale bars: 20 μm. *p < 0.05; ***p <
0.001
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by using the autophagic inhibitors, 3-MA or WTM
(Fig. 7d). Intriguingly, combination use of TBM with CQ
or Baf A1 exacerbated TBM-induced cell death (Figs. 2a,
b, 7e). In summary, these data indicate that TBM-induced
autophagolysosome accumulation contributes to cell
death in cervical cancer cells.

TBM enhances chemotherapeutic sensitivity through
autophagy modulation
Previous studies have found that autophagy inhibition

can enhance the efficacy of chemotherapeutic agents by
abolishing the chemoresistance of cancer cells40,41. As a
specific autophagy modulator, we therefore explored
whether TBM would sensitize cervical cancer cells to
several chemotherapeutic drugs, including CDDP, PTX,
DOX and 5-FU. Co-treatment of HeLa and SiHa cells

with TBM and CDDP or PTX in 24 h, resulted in
remarkable decrease in cell viability than that of DOX and
5-FU, whereas minimal cytotoxicity was observed when
monotherapy was given (Fig. 8a). While co-treatment for
48 and 72 h, TBM treatment combined with DOX or 5-
FU caused a more severe increase of cell death (Supple-
mentary Figure 9). Furthermore, in one HPV negative
human normal epithelial cell line (HaCat), TBM would
significantly enhance the cytotoxicity in DOX-treated
cells, but slightly in PTX, 5-FU and CDDP-treated cells,
which is different with cancer cells (Supplementary Fig-
ure 10). These results suggest that low concentration of
TBM, acting as a chemosensitizer or autophagy mod-
ulator, is relatively safe in combination treatment with
some drugs, or may produce severe side reaction when
co-treated with other drugs.

Fig. 6 TBM impairs lysosomal hydrolytic activity in cervical cancer cells. a Cells were treated with indicated concentrations of TBM for 24 h. The
expression of LAMP2, LAMP1, RAB5, and RAB7 in whole cell lysates was determined by immunoblot. b Immunoblot of ubiquitin in HeLa and SiHa
cells treated with TBM in indicated concentrations for 24 h. c Autophagolysosomes stained with DQ-BSA in HeLa and SiHa cells treated with 15 μM
TBM for 24 h. Accumulation of fluorescent signal indicated the lysosomal proteolysis of DQ-BSA. Torin1 acted as positive control. Scale bar: 10 μM. d
HeLa and SiHa cells were starved of serum overnight and treated with EGF (100 nM) in the absence or presence of 15 μM TBM for 2 h. EGFR, AKT and
phosphorylation of AKT (Thr 308) were analyzed by immunoblot. e Immunoblot analysis of endogenous CTSD in HeLa and SiHa cells treated with 15
μM TBM for 24 h
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To reveal the underlying mechanism, we focused on the
combination between TBM and CDDP, since CDDP is the
first line drug in clinical cervical cancer treatment42. It has
been reported that CDDP might induce a protective
autophagy (Fig. 8b), a cause of chemoresistance42. As
improvement of therapeutic efficacy may result from the
defected autophagy induced by TBM, we aimed to
examine whether autophagy blockade was involved in the
combination strategies. As shown in Fig. 8c, increased
LC3 II conversion by CDDP was further augmented in the
presence of TBM. Meanwhile, CDDP-induced degrada-
tion of p62 was obstructed by TBM, suggesting that
CDDP-induced autophagy flux was blocked by TBM and
more impaired autophagolysosomes were accumulated.
Furthermore, molecularly inhibiting autophagy by trans-
fecting cervical cancer cells with ATG5 or Beclin1 siRNA
decreased the LC3 II expression (Figs. 8d, e). Accordingly,

in combined treatment, cell proliferation was partially
restored by knockdown of ATG5 and Beclin1 (Fig. 8f),
indicating that autophagy initiation was involved in TBM-
induced accumulation of impaired autophagolysosomes
and enhanced cytotoxicity. In summary, these data indi-
cate that TBM may be a potent synergistic application as
an autophagy modulator for cancer treatment.

Discussion
TBM, an ingredient from traditional Chinese herb, has

been recently emerged to play a tumor-suppressive role in
multiple cancers17,43–46. However, the molecular
mechanisms have not been clearly determined. Here, we
demonstrated that TBM was a potent autophagy mod-
ulator. TBM induced an AMPK-dependent autophagy
initiation and inhibited autophagic degradation by inhi-
biting lysosomal proteolysis, leading to

Fig. 7 Accumulation of impaired autophagolysosomes is contributed to TBM-induced cell death. a Cells were transfected with siScramble,
siATG5 or siBeclin1 for 48 h. The expression of Atg5 and Beclin1 was measured by immunoblot. The ratio of Atg5/β-actin and Beclin1/β-actin was
determined with ImageJ software. b–c Cells were transfected with siScramble, siATG5 or siBeclin1 for 48 h, and then treated with 15 μM TBM for
another 24 h. b Cell viability was detected by MTT assay. c Proliferation rate was detected by EdU labeling. d Cells were treated with 15 μM TBM in the
absence or presence of 3-MA or WTM. Cell viability was determined by MTT assay. e Cells were treated with 15 μM TBM in the absence or presence of
bafilomycin A1 (Baf). Cell viability was determined by MTT assay. *p < 0.05; ***p < 0.001
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autophagolysosomes accumulation in cervical cancer
cells. Meanwhile, our findings indicated that accumula-
tion of immature autophagolysosomes by TBM triggered
cell death, and enhanced CDDP-mediated cytotoxicity in
cervical cancer cells.
Autophagy is a basic catabolic process, which captures

unnecessary or dysfunctional cellular components and
fuses with lysosomes for degradation34. The function of
autophagy in cancer therapy is controversial10,11. For
one hand, autophagy may contribute to cell death;47,48

for the other hand, autophagy may play a supportive role

in drug resistance49. In this study, we demonstrated that
TBM could induce biosynthesis of autophagosome,
which was subsequently engulfed by the lysosomes to
form autophagolysosomes. However, the autophagoly-
sosomes failed to degrade the cargo due to defects of
lysosomal function. Inhibition of autophagy
initiation restored cell proliferation, while autophago-
lysosome inhibitors aggravated the cell death incidence,
suggesting that TBM functions as a promising anti-
tumor agent by inducing a particular autophagy inhi-
biting effect.

Fig. 8 TBM enhances chemotherapeutic sensitivity through autophagy modulation. a HeLa and SiHa cells were treated with chemotherapeutic
drugs, including cisplatin (CDDP, 10 μM), paclitaxel (PTX, 100 nM), doxorubicin (DOX, 0.25 μM) and 5-fluorouracil (5-FU, 2 μM) in the absence or
presence of 10 μM TBM for 24 h and MTT assays were performed to assess cell viability. b Cells were treated with CDDP in indicated concentrations
for 24 h, and the expression of LC3 and p62 was measured with immunoblot. c HeLa and SiHa cells were treated with 10 μM CDDP in the absence or
presence of TBM for 24 h, and the expression of LC3 and p62 was measured with immunoblot. d–e Cells transfected with siScramble, siATG5 or
siBeclin1 were co-treated without or with TBM and CDDP, and then subjected to monitor the expression of LC3 II conversion. f Cells transfected with
siScramble, siATG5, or siBeclin1 were co-treated without or with TBM and CDDP. Cell viability was determined by MTT assay. *p < 0.05
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The AMPK signaling pathway is a well-recognized
pathway accounting for autophagy50. As one of the major
metabolic sensors, AMPK plays an important role in
modulation of the autophagy process. Traditionally,
AMPK triggers autophagy by either directly activating
unc-51 like autophagy activating kinase 1 (ULK1) or
indirectly inhibiting mechanistic target of rapamycin
(mTOR), both of which eventually lead to activation of
Beclin1-Vps34 complex through phosphorylating
Beclin151. We here demonstrated that TBM remarkably
decreased ATP production, thereby inducing phosphor-
ylation of AMPK and activation of Beclin1-Vps34 com-
plex to initiate autophagy. In addition to initiation of
autophagy, increasing studies have revealed the role of
AMPK in the late stage of autophagy, such as autophagic
proteolysis. For one hand, AMPK can increase the cellular
ATP levels to promote autophagic degradation52. For the
other hand, autophagy flux may also be inhibited with
AMPK activation when intracellular nutrition depletion is
too excessive, as the autophagy requires adequate amount
of ATP to complete this complicated membrane flow-
dependent process53. Thus, the mechanism of AMPK-
mediated autophagy under TBM treatment is complex
and remains to be further elucidated.
Lysosome has been considered as the degradation cen-

ter in most eukaryotic cells54. Maintaining lysosomal
physiology is essential for autophagy. For instance, the
lysosomal acidification, lysosomal trafficking, lysosome
fusion with late endosome or autophagosome, and
maturation of lysosomal proteases are the most important
impacts for lysosomal physiology55. In our study, the
disruption of lysosomal activity induced by TBM was due
to the dysfunction of lysosomal enzyme. In addition, a
stale lysosomal function is essential for complete autop-
hagy and cellular homeostasis, especially in tumor cells
suffering from stress condition, in contrast, accumulation
of autophagolysosomes due to defect lysosomal activity
will result cancer cells death56,57. It is therefore con-
ceivable that the late stage inhibition of autophagy is
contributed to the cytotoxicity of TBM in cervical cancer
cells. However, further investigation is needed to be per-
formed on the detailed mechanism of impaired lysosomal
proteolysis by TBM.
Recently, the importance of interaction between drug

resistance and autophagy in cancer treatment has been
widely emerged. Currently, autophagy inhibitors can be
classified into early-stage inhibitors (wortmannin,
LY294002 and 3-MA) and late-stage inhibitors (CQ, HCQ
and Baf A1)41. Extensive preclinical studies have demon-
strated that autophagy inhibition could enhance the
treatment efficacy of chemotherapeutic drugs towards
cancer26,40, so novel autophagy inhibitors are worthwhile
to be exploited. In this study, we found that TBM mark-
edly promoted the sensitivity of CDDP in cervical cancer

cells via modulating autophagy. Remarkably, considering
that TBM displayed certain antitumor bioactivity, com-
bination of TBM with other chemotherapeutic drugs
might be more effective in cancer therapy.
In summary, our study demonstrates that TBM triggers

cell death and promotes CDDP sensitivity in cervical
cancer by inducing the accumulation of impaired autop-
hagolysosomes. Our findings suggest that TBM is a spe-
cific autophagy modulator and could be potentially
developed as an adjuvant for further cancer treatment.
Our research provides a basis for potential use of TBM in
further cancer therapy, especially in cervical cancer
treatment.

Materials and methods
Cell lines and culture
Human cervical cancer cell lines HeLa and SiHa, glio-

blastoma cell lines U87 and U251, colorectal cancer cell
lines HCT116, HT29 and SW480, hepatocarcinoma cell
lines HepG2 and Hep3B, lung cancer cell lines A549 and
H1299, human intestinal epithelial cell line HIEC, as well
as human lung fibroblasts cells MRC5 were obtained from
the American Type Culture Collection (ATCC). Huh7 cell
was purchased from the Type Culture Collection of the
Chinese Academy of Sciences. Human breast cancer cell
lines MCF-7 and MDA-MB-468 were provided by Pro-
fessor Qiang Yu (Genome Institute of Singapore). Human
normal epithelial cell line HaCat cells was provided by
Professor Qunying Lei (Fudan University of China).
Human fetal normal liver cells LO2 cells were obtained
from our lab storage. All cells were cultured in Dulbecco’s
modified Eagle’s medium or RPMI1640 (Invitrogen,
Carlsbad, CA, USA), supplemented with 10% fetal bovine
serum (FBS; Gibco, 10100-147), 105 U/L penicillin, and
100mg/L streptomycin at 37 °C in an atmosphere con-
taining 5% CO2.

Cell viability measurement
Cells were treated with TBM alone or combination with

other drugs. After treatment, 0.5 mg/mL 3-(4, 5-dimethyl-
2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide
(MTT) was added and incubated for 4 h. The insoluble
formazan product of cells was dissolved in dimethyl
sulfoxide after three times washing with phosphate buf-
fered saline (PBS). The optical density (OD) of each cul-
ture well was measured by spectrophotometry at 570 nm.
The OD value of the control cells was taken as 100%
viability. Cellular membrane integrity was assessed with
the lactic dehydrogenase (LDH) Release kit (Beyotime), as
described previously58. Briefly, LDH activity was assayed
by adding 100 μL potassium phosphate buffer within 23
mM pyruvate and 0.3 mg/mL β-NADH. Then the con-
version of NADH to NAD+ was monitored at 340 nm
with a spectrophotometer.
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Flow cytometry
Cell apoptosis was analyzed using a PI/Annexin V kit

(KeyGEN Biotech). Cells were washed once with PBS, and
resuspended in PI//Annexin V solution. At least 20000
live cells were analyzed. The flow cytometry data were
collected with FACSCalibur flow cytometer (Becton
Dickinson, San Jose, CA, USA), and then analyzed with
FlowJo software.

Tumor xenograft model
The study was subjected to the Institutional Animal

Care and Treatment Committee of Sichuan University.
Female BALB/c nude mice at 4 weeks of age were
obtained from Beijing HFK Bioscience and kept in a
sterile environment. HeLa cells (5 × 106) resuspended in
100 μL PBS were injected subcutaneously into the right
dorsal region of each mouse, respectively. Seven days after
implantation, mice were randomly divided into 2 groups
(n= 5/group). (1) Control, receiving daily i.p. saline
solution (NS); (2) TBM, receiving daily i.p. 3 mg/kg of
TBM. Tumor volumes were measured every 2 days
determined by measuring the length (l) and the width (w)
and calculating the volume (V= l × w2/2). After 16 days of
treatment, mice were sacrificed. Tumor tissues were iso-
lated and either frozen in liquid nitrogen or fixed in 10%
formalin immediately.

Immunohistochemical analysis
Formalin fixed tissues were embedded by paraffin, and

sections were consecutively cut (4μm thickness). The
paraffin-sections were dewaxed, rehydrated, and incu-
bated in 3% H2O2 for 10min to quench the endogenous
peroxidase activity. After antigen retrieval in citrate buffer
and incubating with normal rabbit serum for 20 min at 37
°C, the tumor sections were performed with indicated
antibodies, following by reaction with diaminobenzidine
(Fuzhou Maixin Biotechnology, DAB-0031) and coun-
terstaining with Mayer hematoxylin (Beyotime, C0107).
Imaging was obtained with a Leica DM2500 microscope.
Immunohistochemical staining was assessed by both the
fraction of positive cells (0–100%) and the immunos-
taining intensity (0-negative, 1-weak, 2-moderate, 3-
strong). The final score was calculated by multiplying the
fraction score and the intensity score.

Immunoblot and Immunoprecipitation
Cells were solubilized in lysis buffer and lysates were

centrifuged. Supernatant fractions were separated by
SDS-PAGE and transferred to polyvinylidene difluoride
membranes (EMD Millipore, ISEQ00010). Immunor-
eactive bands were detected by ECL (EMD Millipore,
WBKLS0500). For immunoprecipitations, cell lysates
were incubated with 1 μg indicated antibodies overnight
at 4 °C, following by addition of protein A-Sepharose

beads (40 μL, GE Healthcare) for another 2 h. The sam-
ples were analyzed by immunoblot.

Lysosomal pH measurement
Cells were loaded with 1mM LysoSensor Green DND-

189 (Invitrogen, 10010-023) or LysoTracker Red (C1046)
in pre-warm regular medium for 20min at 37 °C. Then
the cells were washed twice with PBS and immediately
analyzed by flow cytometry. The flow cytometry data were
collected with FACSCalibur flow cytometer (Becton
Dickinson, San Jose, CA, USA), and then analyzed with
FlowJo software.

DQ-BSA degradation assay
Cells were plated onto glass coverslips, and incubated

with 10mg/mL DQ-BSA (Thermo Fisher Scientific, D-
12051) for 30minutes. After washing with PBS for three
times, the fluorescent signal of DQ-BSA was recorded
with a Leica DM2500 microscope.

Statistical analysis
All data are reported as mean ± SD. Data analysis was

performed using Prism 5.0 (Graph-Pad Software, Inc., La
Jolla, CA). The statistical significance of the difference
between experimental groups in instances of single
comparisons was determined using the 2-tailed unpaired
Student t test of the means. Comparisons where p < 0.05
were deemed significant.
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