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1  |  INTRODUC TION

Effective egress of mature virus particles from host cells is one of the 
important determinants of virus infectivity. While some viruses are 
released after mediating lysis of the infected cells, others acquire a 
membrane envelope by budding at the host cell plasma membrane 
(PM). Yet other viruses, like coronaviruses (CoVs), obtain their enve-
lope as they bud into a membrane compartment inside the cell, and 
must therefore be transported from their site of assembly to the cell 
surface to be able to reach the extracellular milieu via exocytosis 
(Hernandez-Gonzalez et al.,  2021; Sturman & Holmes,  1983). The 

progeny CoVs assemble by budding into the lumen of the intermedi-
ate compartment (IC) (Klumperman et al., 1994; Stertz et al., 2007; 
Tooze et al., 1984), functionally situated between the endoplasmic 
reticulum (ER) and the Golgi apparatus in the early secretory pathway 
(Saraste & Kuismanen, 1984; Saraste & Marie, 2018). However, the 
IC also turns out to communicate directly with endocytic compart-
ments (Saraste & Prydz, 2019), opening for unconventional modes 
of egress that bypass the Golgi stacks participating in the conven-
tional secretory process (Ghosh et al., 2020; Saraste & Prydz, 2021). 
Assembly at the IC membranes is a common property of CoVs be-
longing to different genera (α-, β-, and γ-CoVs), including the Severe 
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Abstract
There has been considerable recent interest in the life cycle of Severe Acute 
Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of the 
Covid-19 pandemic. Practically every step in CoV replication—from cell attachment 
and uptake via genome replication and expression to virion assembly has been consid-
ered as a specific event that potentially could be targeted by existing or novel drugs. 
Interference with cellular egress of progeny viruses could also be adopted as a pos-
sible therapeutic strategy; however, the situation is complicated by the fact that there 
is no broad consensus on how CoVs find their way out of their host cells. The viral 
nucleocapsid, consisting of the genomic RNA complexed with nucleocapsid proteins 
obtains a membrane envelope during virus budding into the lumen of the intermediate 
compartment (IC) at the endoplasmic reticulum (ER)–Golgi interface. From here, sev-
eral alternative routes for CoV extracellular release have been proposed. Strikingly, 
recent studies have shown that CoV infection leads to the disassembly of the Golgi 
ribbon and the mobilization of host cell compartments and protein machineries that 
are known to promote Golgi-independent trafficking to the cell surface. Here, we 
discuss the life cycle of CoVs with a special focus on different possible pathways for 
virus egress.
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Acute Respiratory Syndrome (SARS)-CoV causing the serious out-
break in 2002 (SARS-CoV) and the recent pandemic (SARS-CoV-2) 
in humans (Bracquemond & Muriaux, 2021; Stertz et al., 2007). In 
the assembly process, the virus nucleocapsid—consisting of the 
positive-stranded genomic RNA complexed with nucleocapsid (N) 
proteins—is enclosed in a lipid bilayer derived from a subdomain of 
the IC membrane, that incorporates the viral membrane glycopro-
teins designated as S (spike), M (membrane), and E (envelope) into 
the forming virions (Figure 1) (Scherer et al., 2022).

For a long time, viral envelope glycoproteins have provided im-
portant tools for studies of intracellular transport of membrane pro-
teins between the ER and the PM (Bergmann et al., 1981; Saraste & 
Kuismanen, 1984). Figuring out the transport routes for virus par-
ticles from their intracellular site of assembly to the site of release 
via exocytosis can be more challenging than studying conventional 
glycoprotein transport to the cell surface. Namely, the large size of 
intracellularly budding virus particles—for example, CoVs range from 
80 to 120 nm in diameter—means that they have to be packaged into 
specialized transport carriers, which currently remain poorly char-
acterized. Another reason is that virus infection typically leads to 
alterations in the structure and function of endomembrane com-
partments, resulting in the redistribution of traditional organelle 
markers. Indeed, viruses seem to have developed the ability to in-
hibit or reorganize secretory transport routes in a manner that is in 
their best interest.

In this Micro Review, we focus on the structural and functional 
changes occurring in the host cells during CoV infection and discuss 
how these changes may influence the mode of egress of newly as-
sembled virus particles. Since the different stages of the virus life 
cycle are closely interconnected, we also briefly address earlier 
steps of virus infection.

2  |  VIRUS ENTRY AND EGRESS:  GLYC AN 
BINDING AT THE RIGHT PL ACE?

To be able to enter their host cells and release their genome to the 
cytoplasm, CoVs must first bind to transmembrane protein recep-
tors at the cell surface. Subsequently, the viral membrane can either 
fuse directly with the host cell PM, or the virus is endocytosed and 
releases its genome from an endosomal compartment (Figure 1) (Fung 
& Liu, 2019; Jackson et al., 2022). The attachment and entry steps of 
the virus particles are mediated by the trimeric S glycoprotein. Direct 
fusion with the PM requires that the spike protein has been primed by 

F I G U R E  1  A cartoon illustrating early and late stages of the 
CoV life cycle. Upper panel: Following attachment to specific 
receptor(s)—such as ACE2—CoV enters cells either by fusing 
directly with the cell surface, or following its uptake into 
endosomes, where the viral envelope fuses with the endosomal 
membrane. In both cases, the viral nucleocapsid enters the 
cytoplasm and undergoes uncoating, resulting in the release of 
the viral RNA genome. The positive-sense RNA associates with 
host cell ribosomes directing the synthesis of non-structural 
proteins (nsps), which provide subunits of the viral RNA replicase 
or act in the biogenesis of an ER-derived convoluted membrane 
compartment, which includes double-membrane vesicles (DMVs)—
the sites for viral RNA replication and transcription. Lower 
panel: Sub-genomic mRNAs produced in the DMVs function in 
the synthesis of the viral structural proteins—the cytoplasmic 
nucleocapsid (N) protein and three membrane proteins (E, M, 
and S)—in free- or ER membrane-bound ribosomes, respectively. 
Vesicle-mediated transport and accumulation of the membrane 
proteins at the IC membranes sets, the stage for virus assembly 
by budding into the IC lumen. Three alternative pathways for CoV 
delivery from the IC to the extracellular space are depicted: Route 
1) the progeny viruses highjack the constitutive secretory pathway 
as they segregate into the dilated rims of Golgi cisternae and pass 
across the Golgi stacks (cis-to-trans) based on cisternal progression. 
At trans-Golgi, the viruses are sorted into post-Golgi carriers which 
move to the PM and undergo exocytosis. Route 2) this pathway 
bypassing the Golgi stacks is based on a direct connection between 
the IC elements and REs, defined by Rab1 and Rab11, respectively. 
Prior to Golgi fragmentation, these compartments reside at the 
non-compact zones of the Golgi ribbon, connecting the different 
Golgi stacks. In this case, the endocytic recycling system provides 
the carriers for the final delivery of the virus for exocytosis. 
Route 3) the progeny viruses are released from cells via lysosomal 
exocytosis. They may reach the lysosomes via trans-Golgi; for 
example, following route 1, or employ a direct IC-to-lysosome 
pathway, which remains to be identified. for simplicity, only one 
CoV particle in the lumen of the carriers is shown, although many 
of them contain numerous viruses
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the proprotein convertase furin during virus egress from a producer 
cell, and that the new host cell expresses the TMPRSS2 protease at its 
surface that introduces a second proteolytic cleavage. Alternatively, 
the two successive cleavages of the S protein may be created by pro-
teases (cathepsins) after the virus has entered the lumen of the en-
dosome (Hoffmann et al., 2020; Millet & Whittaker, 2015; Zhang & 
Zhang, 2021). For SARS-CoV and SARS-CoV-2, angiotensin-converting 
enzyme 2 (ACE2) has been shown to act as an obligate receptor 
for host cell entry, while for the Middle East Respiratory Syndrome 
(MERS)-CoV the reported receptor is dipeptidyl peptidase IV (DDP4). 
In addition, several CoVs bind to the glycosaminoglycan (GAG) chains 
of heparan sulfate (HS) proteoglycans (de Haan et al., 2005; Milewska 
et al., 2014). SARS-CoV-2 depends both on ACE2 and HS for efficient 
S protein interaction with the host cell (Clausen et al.,  2021), while 
HCoV-NL63—another human CoV—seems to interact with HS via the 
M protein (Naskalska et al., 2019). It is important to note that the pat-
tern of HS sulfation, which determines the biological specificity of the 
GAG chains, changes with age, which could significantly affect the sus-
ceptibility of different age groups to CoV infection (Feyzi et al., 1998; 
Kreuger et al., 1999). The diversity of cell surface glycan structures in 
a population is beneficial in an evolutionary perspective to ensure that 
certain individuals survive severe threats from disease-causing micro-
organisms (Varki, 2011). The extent of variation in HS structure among 
individuals is not known in detail, and will also vary in different tissues. 
Studies of the receptor-binding domain (RBD) of the S protein using 
glycan arrays and ACE2-positive HEK cells demonstrated its additional 
affinity for sialic acid, preferentially in the context of mono-sialylated 
gangliosides. The affinity was similar to that observed for binding to 
HS, and reduced levels of cell surface sialic acid were inhibitory to 
virus attachment and cell entry (Nguyen et al., 2022).

Many viruses depend on glycans as receptors or co-receptors 
for efficient binding to and entry into their host cells (Aquino & 
Park, 2016; Russell et al., 2006). Since the same glycans are synthe-
sized and modified in the secretory pathway, progeny viruses un-
dergoing egress must either avoid binding to the glycan receptors, 
or be able to detach from the bound glycan at the cell surface by 
an appropriate enzymatic activity. Influenza viruses bind to variants 
of sialic acid both during entry into and egress from their host cells, 
and utilize the activity of viral neuraminidase to promote the release 
of newly synthesized virions from cell surface glycans (McAuley 
et al.,  2019). Enzymatic release of SARS-CoV-2 from host cell HS 
GAGs has not been demonstrated, but has been described for in-
stance in the case of Herpes simplex virus 1, which is released from 
the cell surface by heparanase degradation of HS GAGs attached to 
syndecan-1 (de Pasquale et al., 2021; Hadigal et al., 2020). As dis-
cussed below, CoV infection causes disassembly of the Golgi appa-
ratus (Cortese et al., 2020; Hackstadt et al., 2021; Lavi et al., 1996; 
Ruch & Machamer,  2012; Ulasli et al.,  2010), where HS synthesis 
normally takes place (Prydz & Dalen,  2000). How CoV-mediated 
Golgi disassembly influences the biosynthesis and transport of HS 
is not known in detail, but Golgi fragmentation is caused by the 
depletion of two Golgi-associated peripheral membrane proteins, 
GRASP55 and GRASP65, leads to a reduction in HS synthesis (Ahat 

et al., 2022). In the early phase of infection, HS chains are most likely 
still normally synthesized, but the SARS-CoV-2 virions may prefer 
egress route(s) where the S protein avoids encountering and binding 
to the newly synthesized glycosaminoglycans.

3  |  VIRUS RNA REPLIC ATION AND 
PROTEIN SYNTHESIS

Virus-infected cells rearrange their endomembranes to establish 
viral factories, where the viral genome is replicated and transcribed 
(Blanchard & Roingeard,  2015; Hernandez-Gonzalez et al.,  2021; 
Miller & Krijnse-Locker, 2008; Sachse et al., 2019; Snijder et al., 2020; 
Wong et al., 2021). CoV infection leads to the formation of double-
membrane vesicles (DMVs) that are continuous with ER-derived 
convoluted membranes (Figure  1) (Cortese et al.,  2020; Eymieux, 
Rouillé, et al.,  2021; Fehr & Perlman,  2015; Klein et al.,  2020; 
Knoops et al.,  2008; Mendonca et al.,  2021; Stertz et al.,  2007; 
Wong et al.,  2021) and may develop into structures called vesicle 
packages. These membrane-enclosed environments are thought to 
protect the viral RNA from recognition by host cell innate immunity 
mechanisms, thus providing safe havens for viral RNA replication 
(Malone et al., 2022; Sachse et al., 2019). Interestingly, there appears 
to be a close connection between the DMVs and the IC subdomains 
where CoV assembly takes place (Cortese et al., 2020; Mendonca 
et al., 2021; Scherer et al., 2022); however, how the genomic RNAs 
actually reach the sites of assembly remains poorly understood.

Interestingly, the biogenesis of the DMVs engages the machin-
eries operating in autophagy (Blanchard & Roingeard,  2015; Twu 
et al., 2021), with possible additional contribution from peroxisomes 
(Cortese et al.,  2020). The autophagic pathway has also been im-
plicated as an egress route for SARS-CoV-2 virus particles in light 
of ubiquitination of the M protein (Yuan et al.,  2022). Following 
replication and transcription of viral RNAs, the genomic and sub-
genomic mRNAs leave the DMVs, most likely through special pores 
(Wolff et al., 2020). After entering the cytoplasm they are ready to 
be translated in ER-associated ribosomes to yield the viral envelope 
proteins E, M, and S, which contain N-terminal signal sequences for 
ER translocation. By contrast, the nucleocapsid protein N is syn-
thesized on free ribosomes (Figure 1). The non-structural proteins 
(nsps) and accessory proteins (ORFs) of CoVs are not included in the 
virus particles, but by interacting with specific host proteins (Gordon 
et al., 2020; Stukalov et al., 2021) can these proteins participate not 
only in viral RNA replication (Figure 1), but also in the virus-induced 
organelle rearrangements, such as Golgi disassembly (see below). 
Consequently, these proteins may also be linked to the mechanisms 
of virus egress.

4  |  VIRUS A SSEMBLY

CoV assembly is initiated by coating of the RNA genome by N pro-
teins, leading to the formation of phase-separated condensates in 
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association with the M protein—the major viral membrane protein 
present in the IC membranes—and virus budding (Lu et al.,  2021). 
Co-expression of the structural proteins of CoVs has demonstrated 
that the formation of virus-like particles (VLPs) also requires the E 
protein (Fischer et al., 1998; Vennema et al., 1996; Xu et al., 2020). 
The S protein is not required for VLP formation, but is essential for 
virus infectivity; that is, all three proteins must co-localize in the IC 
to ensure the formation of fully functional CoV particles. The three 
proteins—the E protein (Cohen et al.,  2011; Corse & Machamer, 
2000; Li et al.,  2014), the M protein (Klumperman et al.,  1994; 
Krijnse-Locker et al.,  1992; Machamer & Rose,  1987; Swift & 
Machamer,  1991) and the S protein (Lontok et al.,  2004; McBride 
et al., 2007)—are all transmembrane proteins that following their in-
sertion into the ER membrane are transported to the IC (Figure 1). 
Efficient incorporation of these proteins into the virus envelope re-
quires that they harbor signals for retention or retrieval to the peri-
nuclear Golgi region of the host cell, which has been demonstrated 
by studies of individually expressed proteins. Generally, receptor-
mediated retrieval of endogenous ER proteins via C-terminal KDEL 
signals functions throughout the Golgi apparatus (Miesenböck & 
Rothman,  1995), and likewise, membrane proteins with a terminal 
double lysine motif (KKXX) in their cytoplasmic tails are retrieved 
retrogradely from the PM and distal regions of the Golgi apparatus 
to the IC and the ER (Itin et al., 1995; Jackson et al., 1990; Nilsson 
et al., 1989; Townsley & Pelham, 1994).

During the early stages of CoV infection, before the Golgi ap-
paratus is severely affected, viral proteins can be returned to the 
IC from more distal compartments by well-known mechanisms 
(Bracquemond & Muriaux, 2021). Both retention and retrieval sig-
nals operate to maintain their concentration in the perinuclear Golgi 
region (reviewed by Ujike & Taguchi, 2015). For instance, the M pro-
teins of certain CoVs localize to secretory compartments that lie be-
yond the sites of CoV assembly at the IC (Klumperman et al., 1994; 
Perrier et al.,  2019). The S protein forms trimers in the ER, which 
are incorporated into virions at the IC through their interactions 
with the highly abundant M protein (Godeke et al.,  2000). When 
expressed in BHK cells, the S protein displays a more widespread 
distribution in the secretory compartments, and is also detected 
at the PM (Nal et al.,  2005; Vennema et al., 1990). The S protein 
also contains a di-basic signal in its cytoplasmic tail that mediates its 
COPI-mediated retrieval to the IC (McBride et al., 2007), where the 
protein can be retained through its interaction with the M protein 
(Opstelten et al., 1995). Furthermore, the E protein contains intrinsic 
information that retains it in the perinuclear IC/Golgi region (Corse 
& Machamer, 2000, 2002), where the E and M proteins interact via 
their cytoplasmic tails (Corse & Machamer, 2003).

The E and the S proteins of CoVs are both S-acylated/palmitoy-
lated at cysteines in their cytoplasmic domains (Lopez et al., 2008; 
McBride & Machamer, 2010). Inhibition of acylation of the S protein 
reduced its interaction with the M protein (Thorp et al., 2006) and in-
hibited fusion between viral and cellular membranes (Li et al., 2022; 
Petit et al.,  2007), suggesting that its association with particular 
lipid domains is important at different stages of the virus life cycle. 

Interestingly, it has been recently reported that the cytoplasmic 
domain of the S protein is acylated at a total of 10 cysteines. The 
hyper-acylation process starts in the ER with palmitate addition to 
cysteines close to the transmembrane domain, and continues at ad-
ditional cysteines after ER exit, with each S protein trimer arriving at 
the IC being decorated by up to 30 acyl chains (Mesquita et al., 2021). 
Based on its extensive acylation the S protein triggers the formation 
of cholesterol-rich membrane nanodomains in the IC membranes, 
thereby facilitating virus budding (Mesquita et al., 2021) possibly by 
promoting membrane curvature (Ernst et al., 2019). The formation 
of “lipid rafts” at the IC during SARS-CoV-2 infection may also play a 
role in the formation of specialized transport carriers mediating the 
egress of progeny viruses.

5  |  ENDOMEMBR ANE ALTER ATIONS 
SUPPORT CoV REPLIC ATION, A SSEMBLY, 
AND EGRESS

As mentioned above, the first observable change occurring intracel-
lularly in CoV-infected cells is the formation of DMVs—the sites of 
RNA replication—which appear already at 3 hours of post-infection 
(Cortese et al.,  2020; Eymieux, Rouillé, et al.,  2021; Mendonca 
et al., 2021; Stertz et al., 2007). Other early membrane rearrange-
ments in CoV-infected cells include alterations in the appearance of 
mitochondria and the recruitment of peroxisomes to the vicinity of 
the DMVs (Cortese et al., 2020).

It has been recognized for some time that virus infection impacts 
autophagy, a key process that regulates cellular homeostasis by di-
recting dysfunctional organelles and proteins toward degradation, 
thereby providing building blocks for biosynthesis during starvation. 
The initiation of autophagy involves the formation of a double-
membrane structure called the phagophore (Seglen et al.,  1990), 
which grows to form the autophagosome, enclosing in a selective 
or non-selective manner cytoplasmic material for delivery to lyso-
somes for degradation. Autophagy can be activated in response 
to virus infection, to shield the invading virus, and to deliver it to 
pre-lysosomes or lysosomes for proteolytic degradation and pre-
sentation of peptide fragments to the adaptive immune system 
(Liang et al.,  2021). However, many viruses encode proteins that 
inhibit autophagy, redirecting membrane sources normally used for 
this process to alternative purposes for their benefit (Blanchard & 
Roingeard,  2015; Roth et al.,  2020). The IC/cis-Golgi membranes 
that are known to provide such a membrane source (Ge et al., 2015) 
were recently shown to co-operate with the endosomal system in 
the formation of a precursor membrane structure designated as the 
pro-phagophore. Moreover, the formation of this hybrid compart-
ment that initiates autophagy was reported to be inhibited by the 
nsp6 of SARS-CoV-2 (Kumar et al., 2021).

Another link between autophagy and SARS-CoV-2 infection is 
provided by phosphatidylinositol-3-kinase (PI3K), which besides 
being involved in autophagosome biogenesis, is required for the for-
mation of DMVs (Twu et al., 2021; Williams et al., 2021). In addition, 
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the ORF3a protein of SARS-CoV-2 has been shown to block auto-
phagy by inhibiting the machinery—including the tethering complex 
(HOPS) and the SNARE (syntaxin 17)—that mediates the fusion be-
tween autophagosomes and lysosomes (Miao et al., 2021). Besides 
escaping engulfment by the autophagic pathway, a potential benefit 
for the virus could be ensuring that the IC membranes are preferen-
tially used for virus assembly, instead of being depleted by autopha-
gosome formation. The egress of β-CoVs was shown to be enhanced 
by ORF3a, which also contributes to Golgi fragmentation (see 
below), while the progeny CoVs were suggested to follow an exit 
route that passes via late endosomes and/or lysosomes (Figure  1; 
Chen et al., 2021).

CoV infection, like infection of cells by a variety of other viruses, 
has been shown to induce fragmentation of the Golgi apparatus 
(Cortese et al., 2020; Glingston et al., 2019; Hackstadt et al., 2021; 
Lavi et al., 1996; Ruch & Machamer, 2012; Ulasli et al., 2010). This 
striking organelle alteration can be observed already at 6 hours of 
post-infection when the first progeny viruses are released into the 
medium of cultured cells (Cortese et al., 2020; Hackstadt et al., 2021; 
Lavi et al., 1996; Ulasli et al., 2010). Expression of individual CoV pro-
teins has also been shown to induce Golgi fragmentation, with both 
the E protein and ORF3a having this ability. Notably, both proteins 
have been reported to function as ion channels (Freundt et al., 2010; 
Hackstadt et al.,  2021; Ruch & Machamer,  2011), indicating that 
the induction of Golgi fragmentation is an intrinsic property of viral 
proteins. However, it may involve additional host factors (Ruch & 
Machamer, 2011; Westerbeck & Machamer, 2019).

Strikingly, instead of interfering with virus release, the dra-
matic Golgi alterations seem to facilitate this process (Ruch & 
Machamer, 2012). Indeed, Golgi-independent egress via lysosomes 
(Figure 1), as shown by its resistance to Brefeldin A (BFA) treatment, 
has been suggested to dominate during β-CoV infection (Ghosh 
et al., 2020. This mode of egress appears to be stimulated by the 
ORF3a protein of SARS-CoV-2 which redirects the lysosomal mem-
brane proteins LAMP1 and LAMP2 to the PM (Chen et al., 2021), 
in analogy to observations made with reovirus-infected cells 
(Fernandez de Castro et al., 2020). SARS-CoV ORF3a does not seem 
to promote the same mechanism, but is still stimulatory to virus 
egress, possibly by forming ion channels in the cell membrane (Lu 
et al., 2006). What has been designated as lysosomal egress is re-
ported to involve a pathway traversing late endosomes and/or ly-
sosomes (Chen et al.,  2021; Ducatelle & Hoorens,  1984; Freundt 
et al., 2010; Ghosh et al., 2020); however, the detailed intracellular 
route remains to be characterized. The same holds also for virus exit 
at the cell surface, where two modes of release to the cell exterior 
have been reported, one via membrane tunnels providing openings 
for large virus-containing carriers (Mendonca et al., 2021) and an-
other involving secretory vesicles that generally contain a single 
virus particle (Eymieux, Uzbekov, et al., 2021).

We have previously drawn the attention to the direct connec-
tion between the IC and the endocytic recycling system—consisting 
of the widely distributed recycling endosomes (REs) and the peri-
centrosomal endocytic recycling compartment (ERC)—in providing 

a pathway for the delivery of CoVs from the IC to the extracellular 
space (Figure 1; Saraste & Prydz, 2021). These compartments—the IC 
and REs, defined by the GTPases Rab1 and Rab11, respectively—also 
appear to co-exist in the non-compact zones of the Golgi ribbon, ad-
jacent to the dilated rims of the stacked Golgi cisternae, with which 
they share structural similarity (Figure  1; Saraste & Prydz,  2019). 
Interestingly, besides its role in ER-Golgi trafficking, the IC has been 
implicated in Golgi-independent transport routes, that can be de-
fined, for instance, by their resistance to BFA (Marie et al.,  2009; 
Prydz et al., 2008, 2013; Sannerud et al., 2006; Tveit et al., 2009; 
Zhang et al., 2020). A secretory Golgi-bypass route via RE has also 
been demonstrated in neuronal dendrites (Kennedy & Hanus, 2019).

Interestingly, an increasing number of viruses turn out to exploit 
the endocytic recycling apparatus defined by Rab11 for their assem-
bly and/or release, regardless of whether they bud intracellularly or 
at the PM (Bruce et al., 2012; Coller et al., 2012; Lučin et al., 2018; 
Pereira et al., 2014; Rowe et al., 2008; Vale-Costa & Amorim, 2016). 
For example, infection of cells with influenza virus results in the 
accumulation of Rab11-positive REs at the pericentrosomal ERC, 
creating cholesterol-rich membrane domains for the binding of 
viral genome-containing ribo-nucleoproteins (vRNPs) (Kawaguchi 
et al., 2015). Subsequently, the vRNPs are delivered in a Rab11- and 
microtubule-dependent fashion to the PM where virus assembly by 
budding is completed (Bruce et al., 2012). The functional association 
of IC membranes with the REs/ERC (Marie et al., 2009; Saraste & 
Marie, 2018) raises the possibility that this pericentrosomal mem-
brane system at the crossroads of the endo- and exocytic transport 
routes also plays a role in the release of CoVs (Saraste & Prydz, 2021).

6  |  SUMMARY AND OUTLOOK

Taking into consideration the recently expanding literature, we 
summarize here the available information on the pathways and 
mechanisms that the intracellularly budding CoVs employ as they 
are exported from their host cells (Figure 1). As is often the case 
with recently emerged “hot topics”, the situation is quite puzzling 
and further research is required to obtain a better picture of how 
these viruses take advantage of the more or less conventional cel-
lular machineries to promote their release. Nevertheless, it is clear 
that the long-prevailing concept on the role of the classical secre-
tory pathway in CoV egress has been seriously questioned. Indeed, 
the lack of inhibition of β-CoV release by BFA set the stage for the 
search and characterization of an alternative Golgi-independent 
exit route via the endo-lysosomal system (Ghosh et al., 2020). One 
potential problem with this pathway is that the progeny viruses 
would undergo proteolytic degradation as they pass through lys-
osomes and become non-infectious. This could probably be par-
tially avoided if CoV infection leads to the reported neutralization 
of the acidic lumen of endosomes and lysosomes over time (Ghosh 
et al., 2020). However, recent cryo-EM studies indicated that the 
spikes of SARS-CoV-2 particles residing in lysosome-like orga-
nelles have undergone proteolysis, although it remained unclear 
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whether they represent newly made or re-internalized virus parti-
cles (Mendonca et al., 2021). Another problem with this pathway is 
to understand how viruses are delivered from the IC to lysosomes, 
since they evidently cannot follow the BFA-sensitive pathway via 
the Golgi stacks and the trans-Golgi/TGN (Figure 1). Indeed, the 
effects of BFA and other transport inhibitors on the release of the 
various CoVs from different host cells, including epithelial cells, 
deserve further analysis.

In line with data obtained with other viruses, the role of se-
cretory autophagy in CoV egress has also been considered (Yuan 
et al.,  2022). However, the detailed mechanisms of this process, 
which until now have been predominantly described in the case of 
cytosolic proteins, remain poorly understood. Indeed, one may ask 
how it can be responsible for the efficient secretion of large-sized in-
tralumenal virus particles. Finally, the collective results showing that 
a number of viruses highjack the endocytic recycling apparatus and 
the master GTPase Rab11 during the late stages of their replication 
makes the direct IC-RE pathway a particularly attractive candidate 
to consider in the case of CoVs (Figure 1). Moreover, this pathway 
can readily explain the puzzling findings regarding efficient CoV 
release after the Golgi apparatus has been subjected to extensive 
reorganization due to virus infection (Saraste & Prydz, 2021). In fact, 
it may even be beneficial for the virus to be able to down-regulate 
alternative paths or remove obstacles as it embarks on its “uncon-
ventional journey” from the IC via REs to the extracellular space.
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