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Novel circular single-stranded DNA
viruses identified in marine
invertebrates reveal high sequence
diversity and consistent predicted
intrinsic disorder patterns within
putative structural proteins
Karyna Rosario, Ryan O. Schenck, Rachel C. Harbeitner, Stephanie N. Lawler and
Mya Breitbart*

College of Marine Science, University of South Florida, St. Petersburg, FL, USA

Viral metagenomics has recently revealed the ubiquitous and diverse nature of single-
stranded DNA (ssDNA) viruses that encode a conserved replication initiator protein
(Rep) in the marine environment. Although eukaryotic circular Rep-encoding ssDNA
(CRESS-DNA) viruses were originally thought to only infect plants and vertebrates,
recent studies have identified these viruses in a number of invertebrates. To further
explore CRESS-DNA viruses in the marine environment, this study surveyed CRESS-
DNA viruses in various marine invertebrate species. A total of 27 novel CRESS-DNA
genomes, with Reps that share less than 60.1% identity with previously reported
viruses, were recovered from 21 invertebrate species, mainly crustaceans. Phylogenetic
analysis based on the Rep revealed a novel clade of CRESS-DNA viruses that included
approximately one third of the marine invertebrate associated viruses identified here and
whose members may represent a novel family. Investigation of putative capsid proteins
(Cap) encoded within the eukaryotic CRESS-DNA viral genomes from this study and
those in GenBank demonstrated conserved patterns of predicted intrinsically disordered
regions (IDRs), which can be used to complement similarity-based searches to identify
divergent structural proteins within novel genomes. Overall, this study expands our
knowledge of CRESS-DNA viruses associated with invertebrates and explores a new
tool to evaluate divergent structural proteins encoded by these viruses.

Keywords: single-stranded DNA virus, CRESS-DNA virus, circular DNA virus, intrinsically disordered proteins
(IDPs), intrinsically disordered regions (IDRs), marine invertebrate, crustaceans

Introduction

Viral metagenomics, or shotgun sequencing of total nucleic acids from purified virus particles,
enables examination of viral communities without prior knowledge of the viruses present, thus
resulting in an unprecedented view of viral diversity (Breitbart et al., 2002; Edwards and Rohwer,
2005; Angly et al., 2006). This technique has uncovered many novel viral types and extended the
environmental distribution of known viral groups (Delwart, 2007; Rosario and Breitbart, 2011).
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In particular, the incorporation of rolling circle amplification
(RCA) into viral metagenomic studies has unearthed a high
diversity and wide distribution of eukaryotic viruses with
circular, single-stranded DNA (ssDNA) genomes that encode
a conserved replication initiator protein (Rep; Delwart and
Li, 2012; Rosario et al., 2012a). Before the metagenomics
era, eukaryotic circular Rep-encoding ssDNA (CRESS-DNA)
viruses were only known in agricultural and medical fields
since they are known plant (Geminiviridae and Nanoviridae)
and vertebrate (Circoviridae) pathogens. However, over the past
decade metagenomic approaches have revealed the ubiquitous
nature of eukaryotic CRESS-DNA viruses, with reports from
various environments, including deep-sea vents (Yoshida et al.,
2013), Antarctic lakes and ponds (López-Bueno et al., 2009;
Zawar-Reza et al., 2014), wastewater (Rosario et al., 2009b; Roux
et al., 2013; Kraberger et al., 2015; Phan et al., 2015), freshwater
lakes (Roux et al., 2012, 2013), oceans (Rosario et al., 2009a;
Labonte and Suttle, 2013; Roux et al., 2013), hot springs (Diemer
and Stedman, 2012), the near-surface atmosphere (Whon et al.,
2012; Roux et al., 2013), and soils (Kim et al., 2008; Reavy et al.,
2015). Novel CRESS-DNA viruses have also been discovered
from fecal samples of a variety of vertebrates (Blinkova et al.,
2010; Li et al., 2010a,b; Phan et al., 2011; Ge et al., 2012; Ng
et al., 2012; Sachsenroder et al., 2012; van den Brand et al., 2012;
Cheung et al., 2013, 2014; Sikorski et al., 2013a; Garigliany et al.,
2014; Lian et al., 2014; Smits et al., 2014; Zhang et al., 2014; Sasaki
et al., 2015). Notably, CRESS-DNA viruses similar to circoviruses,
which were previously thought to only infect vertebrates, have
now been identified in amyriad of invertebrates, including insects
(Ng et al., 2011; Rosario et al., 2011, 2012b; Dayaram et al., 2013;
Padilla-Rodriguez et al., 2013; Pham et al., 2013a,b; Garigliany
et al., 2015), crustaceans (Dunlap et al., 2013; Hewson et al.,
2013a,b; Ng et al., 2013; Pham et al., 2014), cnidarians (Soffer
et al., 2014), and gastropods (Dayaram et al., 2015a), suggesting
that CRESS-DNA viruses may be prevalent amongst unexplored
taxa.

Well-studied viruses from the Circoviridae, Nanoviridae,
and Geminiviridae families demonstrate the rapid evolutionary
potential of CRESS-DNA viruses due to high nucleotide
substitution rates (Duffy et al., 2008; Duffy and Holmes, 2009) as
well as mechanistic predispositions to recombination (Lefeuvre
et al., 2009; Martin et al., 2011). These characteristics, combined
with the high level of recently reported diversity, highlight the
need to continually revisit taxonomic classification of this viral
group to add new species, genera and/or families. However,
this task is complicated by the fact that many of the CRESS-
DNA virus genomes exhibit novel genome architectures, only
share similarities to the highly conserved Rep of known viruses,
and have similarities to viruses belonging to multiple different
taxonomic groups (Rosario et al., 2012a; Roux et al., 2013). In
addition, the definitive hosts for many of these CRESS-DNA
viruses remain unknown, hindering their classification according
to traditional standards.

CRESS-DNA viruses are characterized by small genomes
(∼1.7–3 kb) that contain 2–6 protein-encoding genes. The
smallest monopartite CRESS-DNA viruses, members of the
Circoviridae family, exhibit only two major open reading frames

(ORFs), which encode a Rep and a capsid protein (Cap). Many of
the novel eukaryotic CRESS-DNA viral genomes obtained from
environmental samples or individual organisms through either
metagenomic sequencing or degenerate PCR (herein referred
to as “metagenomic CRESS-DNA viruses”) exhibit similarities
to circoviruses and have been referred to as ‘circo-like’ viruses.
Although many of the metagenomic circo-like virus genomes are
highly divergent, these surveys have uncovered a novel CRESS-
DNA viral group, the proposed Cyclovirus genus (Li et al., 2010a).
Cycloviruses, which form a sister group to the Circovirus genus
within the family Circoviridae, have been identified from both
vertebrates (Li et al., 2010a; Smits et al., 2013; Tan Le et al.,
2013; Garigliany et al., 2014; Zhang et al., 2014) and invertebrates
(Rosario et al., 2011, 2012b; Dayaram et al., 2013, 2014, 2015b;
Padilla-Rodriguez et al., 2013).

Similarities to circoviruses are mainly based on the Rep
whereas the second major ORF in novel circo-like metagenomic
CRESS-DNA viruses generally does not have any significant
matches in the database but is assumed to encode for a structural
protein based on the genomic architecture of known circoviruses.
In lieu of significant matches to known structural proteins in
the GenBank database, it is important to investigate putative
novel Caps in CRESS-DNA viruses to provide evidence regarding
their structural function. A potential avenue to identify conserved
patterns in highly divergent structural proteins, such as those
observed in novel metagenomic CRESS-DNA viruses, is to
investigate the presence of predicted intrinsically disordered
regions (IDRs). IDRs are regions within a protein that lack a
rigid or fixed (i.e., ordered) structure, allowing a protein to exist
in different states depending on the substrate with which it is
interacting (Dunker et al., 2001; Brown et al., 2011). Research
examining IDRs within viral proteomes has revealed that smaller
viral genomes, such as those of CRESS-DNA viruses, contain a
higher proportion of predicted disordered residues than larger
viruses (Xue et al., 2012, 2014; Pushker et al., 2013). Therefore
it has been suggested that small viruses may exploit IDRs to
encode multifunctional proteins (Xue et al., 2012, 2014; Pushker
et al., 2013). Since structural proteins in several viral families
commonly contain IDRs (Chen et al., 2006; Goh et al., 2008a,b;
Chang et al., 2009; Jensen et al., 2011), the presence of similar
patterns of predicted disorder amongst unidentified CRESS-DNA
proteins may provide one line of evidence for these proteins
representing putative Caps.

To contribute to efforts exploring the diversity of CRESS-
DNA viruses in invertebrates, this study investigated various
marine invertebrate species for the presence of these viruses.
A total of 27 novel CRESS-DNA genomes were recovered
from 21 invertebrate species, expanding the known diversity
of CRESS-DNA viruses associated with marine organisms and
providing the first evidence of viruses associated with some
under-sampled taxa. The well-conserved Rep of CRESS-DNA
viruses was used to explore the relationships between these novel
viruses and previously reported eukaryotic CRESS-DNA viruses
in GenBank, including metagenomic CRESS-DNA viruses. In
addition, the non-Rep-encoding ORFs (i.e., putative Caps) within
these genomes were investigated for IDRs. Disorder prediction
methods suggest that CRESS-DNA viral Caps exhibit conserved
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patterns of predicted disorder, which can be used to complement
similarity-based searches to identify structural proteins within
novel CRESS-DNA viral genomes.

Materials and Methods

Sample Processing and Genome Discovery
CRESS-DNA viruses were investigated in a variety of marine
invertebrate species that were collected as samples of opportunity
(Table 1 and Supplementary Table S1). Specimens were identified
with the highest degree of taxonomic resolution possible based
on morphology. Whole organisms or tissue sections were
serially rinsed three times using sterile SM Buffer [0.1 M NaCl,
50 mM Tris-HCl (pH 7.5), 10 mM MgSO4]. Viral particles
were partially purified from each specimen prior to DNA
extraction. For this purpose, samples were homogenized in one
of two ways depending on the size of the specimen. Smaller
organisms or dissected tissues that could be placed in a 1.5 ml
microcentrifuge tube were homogenized in 1 ml of sterile
SM Buffer through bead-beating using 1.0 mm sterile glass
beads in a bead beater (Biospec Products). Homogenates were
then centrifuged at 6000 × g for 6 min. Larger organisms or
tissues of dissected organisms, such as muscle or gonads, were
placed in a gentleMACSTM M tube (Miltenyl Biotec) containing
3 ml of sterile SM buffer. Samples were then homogenized
using a gentleMACS dissociator (Miltenyl Biotec) followed by
centrifugation at 6000 × g for 9 min. The supernatant from both
homogenization methods was filtered through a 0.45µmSterivex
filter (Millipore) and nucleic acids were extracted from 200 µl of
filtrate using the QIAmpMinElute Virus Spin Kit (Qiagen).

DNA extracts were amplified through RCA using the illustra
TempliPhi Amplification kit (GE Healthcare) to enrich for
small circular templates (Kim et al., 2008; Kim and Bae, 2011).
RCA-amplified DNA was digested with a suite of FastDigest
restriction enzymes (Life Technologies; BamHI, EcoRV, PdmI,
HindIII, KpnI, PstI, XhoI, SmaI, BgiII, EcoRI, XbaI, and NcoI)
following manufacturer’s instructions in separate reactions to
obtain complete, unit-length genomes for downstream cloning
and sequencing. Restriction enzyme digested products were
resolved on an agarose gel and bands ranging in size from
1000 to 4000 bp were excised and cleaned using the Zymoclean
Gel DNA Recovery Kit (Zymo Research). Products resulting
from blunt-cutting enzyme digestions were cloned using the
CloneJET PCRCloning kit (Life Technologies), whereas products
containing sticky ends were cloned using pGEM-3Zf(+) vectors
(Promega) pre-digested with the appropriate enzyme. All clones
were commercially Sanger sequenced using vector primers and
genomes exhibiting significant similarities to eukaryotic CRESS-
DNA viruses were completed through primer walking.

Genome Annotation
Genomes were assembled using Sequencher 4.1.4 (Gene Codes
Corporation). Putative ORFs >100 amino acids were identified
and annotated using SeqBuilder version 11.2.1 (Lasergene).
Partial genes or genes that seemed interrupted were analyzed
for potential introns using GENSCAN (Burge and Karlin,

1997). The potential origin of replication (ori) for each genome
was identified by locating a canonical nonanucleotide motif
(NANTATTAC; Rosario et al., 2012a) and confirming predicted
stem-loop structures using Mfold with constraints applied to
prevent hairpin formation within the nonanucleotide motif and a
folding temperature set at 17◦C (Zuker, 2003). Final annotated
genomes have been deposited to GenBank with accession
numbers KR528543–KR528569.

Database Sequences and Sequence Analysis
To conduct sequence comparisons, members of the Circovirus
genus, as well as complete eukaryotic CRESS-DNA viral genomes
obtained from environmental samples or individual organisms
through either metagenomic sequencing or degenerate PCR
(herein referred to as “metagenomic CRESS-DNA viruses”) were
retrieved from GenBank. Since the Rep is the only conserved
protein among CRESS-DNA viruses (Ilyina and Koonin, 1992;
Rosario et al., 2012a) this protein was used to compare the
different genomes. Rep pairwise identities were calculated using
SDT v1.2 (Muhire et al., 2014) and summarized using heat maps
generated in R (R Core Team, 2014). A maximum likelihood
(ML) phylogenetic tree based on Rep amino acid sequences was
also constructed. For this purpose, alignments were performed in
MEGA 6.06 (Tamura et al., 2013) using the MUSCLE algorithm
(Edgar, 2004) and manually edited. Sequences were inspected
for the presence of conserved amino acid motifs that have
been shown to play a role in rolling circle replication (RCR)
of eukaryotic CRESS-DNA viruses, including three RCR and
three superfamily 3 (SF3) helicase motifs (Gorbalenya et al.,
1990; Ilyina and Koonin, 1992; Gorbalenya and Koonin, 1993;
Rosario et al., 2012a). Although all the recently reported CRESS-
DNA viruses are included in the heatmap, only sequences
exhibiting all six motifs are included in the phylogenetic analysis.
In addition, divergent regions that were poorly aligned, as
shown by a high percentage of gaps, were removed from the
alignment (Supplementary Data Sheet 1). Since the Nanoviridae
and Geminiviridae are also CRESS-DNA viral families that are
evolutionarily related to the Circoviridae (Ilyina and Koonin,
1992; Rosario et al., 2012a), select representatives of these
families were included in the phylogenetic analysis. The ML
phylogenetic tree was inferred using PHYML (Guindon et al.,
2010) implementing the best substitution model (rtRev+I+G+F;
Dimmic et al., 2002) according to ProtTest (Abascal et al., 2005).
Branch support was assessed using the approximate likelihood
ratio test (aLRT) SH-likemethod (Anisimova and Gascuel, 2006).

Intrinsically Disordered Region (IDR) Analysis
of Putative Capsid Proteins
To determine if the non-Rep-encoding ORFs from the CRESS-
DNA viral genomes presented here (n = 25), circoviruses
(n = 15), and metagenomic CRESS-DNA viruses (n = 259;
including 37 cycloviruses) represent putative Caps, these proteins
were evaluated for IDRs. Disordered protein regions were
predicted using the DisProt VL3 disorder predictor (Obradovic
et al., 2003; Sickmeier et al., 2007). This artificial neural network
utilizes an ensemble of feed forward neural networks with
20 attributes (18 amino acid frequencies, average flexibility,
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TABLE 1 | CRESS-DNA genomes identified in this study, the organism they were obtained from, and genome details (acronym, genome length,
nonanucleotide motif, genome type, and ORFs identified).

Genome1 Organism Tissue type Genome
(bp)

Genomic
architecture

Nonanucleotide2 Cap3 Rep

P. diogenes Giant Hermit Crab
aCV(I0004A)

Petrochirus diogenes Abdomen 1815 Type V TAGTATTAC X∗ X

Palaemonete sp. Common Grass
Shrimp aCV (I0006H)

Palaemonete sp. Hepatopancreas 2257 Type II TAGTATTAC X∗ X

Aiptasia sp. Sea Anemone aCV
(I0007C2)

Aiptasia sp. Whole organism 1901 Type I CATTATTAC X X

Aiptasia sp. Sea Anemone aCV
(I0007C3)

Aiptasia sp. Whole organism 1942 Type I CATTATTAC X X

L. variegatus Variable Sea Urchin
aCV (I0021)

Lytechinus variegatus Gonads 2167 Type III GACTATTAC∗ X∗ X

Didemnum sp. Sea Squirt aCV
(I0026A4)

Didemnum sp. Whole organism 2061 Type IV CAGTATTAC X X

Didemnum sp. Sea Squirt aCV
(I0026A7)

Didemnum sp. Whole organism 2143 Type I CAGTATTAC X∗ X

Littorina sp. Snail aCV (I0041) Littorina sp. Whole organism 2237 Type II CAGTATTAC X X

C. ornatus Ornate Blue Crab aCV
(I0054)

Callinectes ornatus Gonads 1241 Type I CAGTATTAC X X

C. sapidus Atlantic Blue Crab aCV
(I0056)

Callinectes sapidus Gonads 1876 Type I CAGTATTAC X X

P. intermedius Brackish Grass
Shrimp aCV (I0059)

Palaemonetes intermedius Whole organism 2293 Type I CAGTATTAC X∗ X

F. duorarum Pink Shrimp aCV
(I0066)

Farfantepenaeus duorarum Whole organism 1799 Type I CAGTATTAC X X

F. duorarum Pink Shrimp aCV
(I0069)

Farfantepenaeus duorarum Whole organism 1966 Type I CAGTATTAC X∗ X

Marine Snail aCV (I0084) Marine Snail Whole organism 2305 Type I TAGTATTAC X∗ X

Hermit Crab aCV (I0085A4) Hermit Crab Abdomen 2291 Type I TAGTATTAC X∗ X

Hermit Crab aCV (I0085A5) Hermit Crab Abdomen 2291 Type I TAGTATTAC X∗ X

Hermit Crab aCG (I0085b) Hermit Crab Abdomen 1063 Type VII CAGTATTAC X

Fiddler Crab aCV (I0086a) Fiddler Crab Gonads and claw muscle 1635 Type II GATTATTAC X X

Fiddler Crab aCV (I0086b) Fiddler Crab Gonads and claw muscle 1511 Type V AAGTATTAC X X

P. kadiakensis Mississippi Grass
Shrimp aCV (I0099)

Palaemonetes kadiakensis Whole organism 1895 N/A None X∗ X

Gammarus sp. Amphipod aCV
(I0153)

Gammarus sp. Whole organism 1999 Type I TAGTATTAC X∗ X

Mytilus sp. Clam aCV (I0169) Mytilus sp. Whole organism 1894 Type I TAGTATTAC X X

Calanoida sp. Copepod aCV
(I0298)

Calanoida sp. Whole organism 2469 Type II TAGTATTAC X X

A. melana Sponge aCG (I0307) Artemia melana Tissue segment 1826 Type VII TAGTATTAC X

P. pacifica Coral aCV (I0345) Primnoa pacifica Polyps 1240 N/A None X∗ X

P. placomus Coral aCV (I0351) Paramuricea placomus Polyps 2292 Type II TAGTATTAC X∗ X

S. brevirostris Brown Rock Shrimp
aCV (I0722)

Sicyonia brevirostris Gonads 1600 Type V TAATATTAC∗ X X

1Genome names contain abbreviation aCV for associated circular virus or aCG for associated circular genome. ID within parentheses corresponds to ID used throughout
the paper.
2Nonanucleotide motif sequences that were not identified within a stem-loop structure are denoted with an asterisk (∗).
3Non-Rep encoding ORFs were identified as putative capsid proteins based on BLAST results. However, many non-Rep-encoding ORFs did not exhibit any significant
matches (marked with an asterisk∗ ).

and sequence complexity; Obradovic et al., 2003). Disorder
disposition scores above a 0.5 threshold indicate intrinsic
disorder. Counts and statistical analysis for the fraction
of disorder- and order-promoting amino acid residues was
conducted using R with the “seqinr” package (Charif and Lobry,
2007).

Results

A total of 27 CRESS-DNA genomes were recovered from 21
marine invertebrates (Table 1). Most of the recovered genomes
(66.7%) were identified from Crustacea, mainly from the order
Decapoda. Recovered genomes ranged in size from 1063 to
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2469 nt and exhibited a variety of genome architectures. Of
the 27 genomes identified, 23 exhibited a common putative ori
marked by a conserved nonanucleotide motif (NANTATTAC)
at the apex of a predicted stem-loop structure (Table 1). The
remaining four genomes lacked a stem-loop structure (n = 2)
or a stem-loop structure and a nonanucleotide motif (n = 2).
Genomes lacking the canonical nonanucleotide motif could not
be assigned to any genome type; therefore only 25 genomes were
assigned to genomic architecture types previously described by
Rosario et al. (2012a) (Figure 1). The predominant genomic
architecture observed was Type I (n = 13), which is typical
of members of the Circovirus genus. However, other genomic
architectures were observed including Types II (n = 5), III
(n = 1), IV (n = 1), V (n = 3), and VII (n = 2) (Figure 1).
It is important to note that genomes exhibiting a Type VII
genome architecture only exhibit a single major ORF encoding
a Rep. This type of architecture is observed in genomic
components of multipartite viruses from the Nanoviridae family
and satellite DNA molecules that require helper viruses for
encapsidation (Gronenborn, 2004; Briddon and Stanley, 2006).
Therefore genomes exhibiting only a single major ORF may

represent partial genomes of multipartite viruses or non-viral
mobile genetic elements such as plasmids (Rosario et al.,
2012a).

The majority of the CRESS-DNA viruses detected in
marine invertebrates were most similar to viral sequences
identified through metagenomic surveys of marine samples
(Supplementary Table S1). However, one of genomes, Lytechinus
variegatus variable sea urchin associated circular virus_I0021,
was most similar to plant viruses from the Geminiviridae family.
Most of the viral genomes had database similarities for the Rep;
except for Sicyonia brevirostris brown rock shrimp associated
circular virus_I0722, which only had similarities for the putative
Cap (Supplementary Table S1). Similar to several previously
described CRESS-DNA viruses (Li et al., 2010a; Rosario et al.,
2012b; van den Brand et al., 2012; Sikorski et al., 2013b; Du et al.,
2014; Ng et al., 2014; Dayaram et al., 2015a,b; Kraberger et al.,
2015), three viral genomes (Artemia melana sponge associated
circular virus_I0307, Didemnum sp. sea squirt associated circular
virus_I0026_A7, and Palaemonetes kadiakensis Mississippi
grass shrimp associated circular virus_I0099) exhibited Reps
interrupted by introns (Supplementary Table S1).

FIGURE 1 | Genome types of novel CRESS-DNA genomes identified in this study (Rosario et al., 2012a). Genome schematics illustrate a major ORF
encoding the replication initiator protein (Rep), putative origin of replication (ori) marked by stem-loop structure, and a second major ORF.
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Pairwise identities indicate that the CRESS-DNA viruses
detected in marine invertebrates share less than 60.1% sequence
identity (average sequence identity = 26.04%) with previously
identified Reps fromCRESS-DNA viruses inGenBank, indicating

that these viruses represent novel species (Figure 2). Twenty-one
of the 27 recovered Reps contained all six conserved RCR and
helicase motifs (see Materials and Methods) and were used for
phylogenetic analysis. Analysis of these Reps with representative

FIGURE 2 | Graphical representation of pairwise amino acid
identities of the replication initiator proteins (Rep) from
CRESS-DNA genomes from this study, metagenomic CRESS-DNA
viruses, cycloviruses, circoviruses, and select members of the

Nanoviridae and Geminiviridae families. Reps identified from this
study within the Marine Clade 1 are in red font. Description of
acronyms and the matrix used to generate the heatmap can be found
in Supplementary Tables S2 and S3, respectively.
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CRESS-DNA viral Reps from GenBank, including available
metagenomic CRESS-DNA viral Reps, show that most of the
sequences from marine invertebrate associated viruses detected
here are more closely related to circo-like viruses recovered
through metagenomic surveys of the marine environment than

to previously defined CRESS-DNA viral groups (Figure 3).
Eleven of the 21 Reps from marine invertebrate associated
viruses do not form distinct clusters with each other or any
known sequences (Figure 3). However, ten of the Reps form
a well-supported clade that also includes sequences detected

FIGURE 3 | Multifurcation maximum likelihood phylogenetic
reconstruction based on the Reps of CRESS-DNA genomes
recovered here, metagenomic CRESS-DNA viruses, cycloviruses,
circoviruses, and representative members of the Nanoviridae and
Geminiviridae families. Reps obtained from CRESS-DNA genomes
obtained in this study are highlighted in blue font. Branches are
colored for the different CRESS-DNA viral groups including the Marine

Clade 1 (red), circoviruses (purple), cycloviruses (pink), nanoviruses
(orange), and geminiviruses (green). Representative nanoviruses (n = 4)
and geminiviruses (n = 15) have been condensed into their family
names. Reps from genomes exhibiting a single ORF are highlighted
using an asterisk (∗ ). Branches with less than 60% aLRT branch
support have been collapsed. Description of acronyms used can be
found in Supplementary Table S4.
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in the Gulf of Mexico (GOM00443; JX904231.1), Straight of
Georgia (JX904106.1), McMurdo Ice Shelf (YP_009047125.1;
YP_009047137.1), and a semi-enclosed shallow estuary (Avon-
Heathcote Estuary associated circular virus 24; AJP36460.1).
Pairwise identity scores indicate that all members of this clade,
named Marine Clade 1 for the purposes of this study, share more
than 32.7% identity, with an average pairwise identity score of
47.2% (Figure 2). Members of the Marine Clade 1 seem to be
more closely related to members of the Nanoviridae (31.95%
average pairwise identity) than any other known CRESS-DNA
viral group; however, members of this clade exhibit different
genomic architectures compared to these plant viruses. CRESS-
DNA viral genomes from the Marine Clade 1 encode two major
ORFs in an ambisense organization (i.e., Type I architecture),
which is similar to members of the Circoviridae, rather than the
single ORF, Type VII genome organization observed in genomic
components from the Nanoviridae.

Capsid Analysis
Only half of the CRESS-DNA viral genomes described here
contained an ORF that had significant BLASTX matches
(e-value < 0.001; amino acid identities ranging from 26–54%)
to proteins annotated as putative Caps in GenBank (Table 1).
Furthermore, most of the matches in the database were to
putative CRESS-DNA viral Caps detected through metagenomic
surveys, which are not supported by biochemical data and
have not necessarily been well curated. Therefore, alternative
methods were explored to investigate non-Rep-encoding ORFs
(i.e., putative Caps) found in CRESS-DNA viral genomes.

The majority of metagenomic CRESS-DNA viruses reported
from marine invertebrates in this study and in GenBank are
most similar to previously described circoviruses. Therefore, the
predicted IDP profiles of well-characterized members of the
Circovirus genus were examined in an effort to identify conserved
patterns in structural proteins encoded by these viruses. These
circovirus IDP profiles were then compared against profiles
observed in cycloviruses (the proposed sister group to the
circoviruses, which exhibit conserved features and share high
identities with circoviruses) and other metagenomic CRESS-
DNA viruses.

The DisProt VL3 disorder prediction analysis revealed that
Caps encoded by members of the Circovirus genus (n = 15)
exhibit one of two protein disorder profiles, distinguished here
as Type A or Type B, based on the first 125 amino acids of
these proteins (Figure 4A). Type A Caps exhibit IDP profiles
that are predicted to have the highest degree of disorder closest
to the N-terminus (i.e., amino acid residues 1–50) before the
profile tapers to a structured region with variable predicted
disorder. Type A Caps exhibit significant enrichment for amino
acid residues that promote disorder (R, K, E, P, S, Q, and A)
within the first 50 residues relative to amino acid residues 51–
125 (ANOVA with post hoc Tukey’s HSD; p < 0.05) and a
depletion of order promoting amino acid residues (W, C, F, I, Y,
V, L, and N) within the first 25 residues relative to amino acid
residues 26–125 (ANOVA with post hoc Tukey’s HSD; p < 0.05;
Figure 4B). On the other hand, Type B Caps exhibit IDP profiles
that peak in predicted disorder between amino acid residues

26–75. Type B Caps show an enrichment of disorder promoting
residues between residue positions 26 through 75, whereas there
is a depletion of predicted order promoting residues in this region
compared to residues 1–25 and 76–125 (Figure 4B). Beyond 125
amino acids, IDP profiles exhibited more structured regions for
both Types A and B Caps, with no distinguishable predicted
disorder pattern (Figure 4A).

The overwhelming majority of Caps from the Circovirus
genus (86.7%) exhibited Type A IDP profiles; however, two
avian circoviruses, Finch circovirus (YP_803551.1) and Beak
and feather disease virus (NP_047277.1), had Type B IDP
profiles (Table 2 and Supplementary Table S5). Similarly, 97.3%
of cyclovirus putative Caps (n = 37) exhibited Type A IDP
profiles. Comparison of IDP profiles showed that a majority of
metagenomic CRESS-DNA viruses also contained patterns of
increased predicted disorder at the N-terminus of the putative
Cap, consistent with the Circoviridae. Interestingly, Type B
IDP profiles were more prevalent among putative Caps from
metagenomic CRESS-DNA viral genomes in GenBank (10.8%;
n = 222) and the novel genomes reported in this study (56%;
n = 25). Notably, 7 of the 10 viruses found in the Marine Clade 1
described here exhibit Type B Caps. Among the total 299 CRESS-
DNA genome sequences analyzed, most putative Caps exhibit
Type A IDP profiles (69.9%), followed by Type B (13%). Notably,
most of the putative Caps lacking a significant match in the
database exhibited one these profiles.

Discussion

Metagenomic studies have revealed a prodigious amount of
diversity in eukaryotic CRESS-DNA viruses in the marine
environment (Rosario et al., 2009a; Rosario and Breitbart, 2011;
Labonte and Suttle, 2013; McDaniel et al., 2014). However,
few studies have isolated these viruses directly from organisms.
Building upon recent studies suggesting that CRESS-DNAviruses
are associated with marine invertebrates (Dunlap et al., 2013;
Hewson et al., 2013a,b; Ng et al., 2013; Pham et al., 2014; Soffer
et al., 2014; Dayaram et al., 2015a), this study investigated a
variety of marine invertebrates, including under sampled taxa,
for the presence of these viruses. Viral genomes presented here
were primarily recovered from Crustacea, suggesting that this
subphylum harbors a rich diversity of CRESS-DNA viruses. This
is consistent with previous research that identified CRESS-DNA
viruses in copepods (Dunlap et al., 2013), which are the most
abundant members of mesozooplankton (Kleppel et al., 1996),
as well as different species of shrimp (Ng et al., 2013; Pham
et al., 2014), which comprise some of the world’s most important
food sources (Goss et al., 2000; Paezosuna, 2003). In addition,
this is the first study to report viruses associated with marine
snails, anemones, sea squirts, and several crab species. Although
a definitive host for these viruses cannot be assigned with the
present data, this study reveals the need for further examination
of viruses associated with common marine invertebrates and
experiments to determine their potential impact, if any, on the
ecology of these organisms. The grouping of the invertebrate-
associated CRESS-DNA viruses reported here with metagenomic
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FIGURE 4 | (A) Representative IDP prediction profiles for Type A and Type B
capsid proteins (Caps) from the Disprot VL3 predictor. Type A and Type B
IDP prediction profiles are based on the Porcine circovirus 2 Cap
(NP_937957.1) and the Beak and feather disease virus Cap (NP_047277.1),
respectively. The grey shaded area represents the amino acid residue interval
used in (B). (B) Graphs showing the fraction of predicted disordered (red
bars) and ordered (blue bars) residues within discrete amino acid intervals for
Type A and Type B Caps identified from all CRESS-DNA viral genomes

analyzed in this study. Significantly different amino acid intervals for each Cap
type are distinguished using letters (“A”, “B”, “C”, “D” for statistics based on
percentage of predicted disordered residues) or numbers (“1”, “2”, “3”, “4”
for statistics based on percentage of predicted ordered residues; ANOVA
with post hoc Tukey’s HSD; p < 0.05). Note that the percentage of
predicted disordered and ordered residues does not add to 100% due to
the presence of residues that are not considered either disordered or
ordered (i.e., H, M, T, and D).

CRESS-DNA viruses implies that marine invertebrates may serve
as hosts for many of the sequences obtained from marine
environments.

The marine invertebrate associated CRESS-DNA viruses
identified here are only distantly related to knownmembers of the
Circoviridae andmay represent novel groups. Approximately one
third of the novel sequences reported here belong to the Marine
Clade 1, whose members share an average pairwise identity of
47.2%. Members of this viral clade share an average pairwise

identity score of 27.5% with members of the Circoviridae, whose
members (genus Circovirus and proposed genus Cyclovirus)
share 48.9% average pairwise identity. Although members of the
Marine Clade 1 share slightly higher average pairwise identity
with the Nanoviridae (31.2%), their genome architecture is
clearly distinct from these plant-infecting viruses. Therefore,
genomic architectures and comparative Rep analyses suggest that
members of the Marine Clade 1 may represent a novel CRESS-
DNA viral family.
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TABLE 2 | Intrinsically disordered protein (IDP) profile types identified in
non-Rep encoding ORFs of CRESS-DNA viruses.

Group Total sequences IDP Cap type

Type A Type B No type

Circoviruses 15 86.7% 13.3% 0.0%

Cycloviruses 37 97.3% 0.0% 2.7%

Metagenomic
CRESS-DNA
viruses

222 67.6% 10.8% 21.6%

This study 25 40.0% 56.0% 4.0%

Total 299 69.9% 13.0% 17.1%

The highly conserved Rep enables its straightforward
identification through similarity-based searches; however, there is
currently no reliable method for characterizing highly divergent
putative Caps for metagenomic CRESS-DNA viruses. Since many
of the novel metagenomic CRESS-DNA viruses are most similar
to members of the Circoviridae, which only contain two major
ORFs encoding a Rep and Cap, the putative Cap is often assigned
simply based on the conserved genome architectures exhibited by
this group.

This study investigated the IDP profiles of all available circo-
like CRESS-DNA viruses to evaluate if putative Caps exhibit
conserved patterns that could be used to identify this structural
protein even in the absence of significant similarities in the
database. The Cap of Porcine circovirus 2 represents a Type A
IDP profile and that of Beak and feather disease virus represents a
Type B IDP profile. Since the non-Rep-encoding ORF for both of
these circoviruses have been shown to be structural (Nawagitgul
et al., 2000; Patterson et al., 2013), this provides evidence that
both the Type A and Type B IDP profiles represent a Cap.
These Cap IDP profiles may be driven by the arginine and/or
lysine rich region at the N-terminus of the Cap (Niagro et al.,
1998), as both of these amino acids are considered disorder-
promoting residues by the DisProt VL3 neural network. In
addition to characterizing IDP profiles of circo-like CRESS-DNA
viruses, analysis of select Geminiviridae and Nanoviridae Caps
demonstrated that these viruses also exhibit Type A and Type B
IDP profiles (Supplementary Table S5). Although further research
into these plant virus families is needed, these findings suggest
that the IDP patterns identified here may be conserved across
Caps from the different families of eukaryotic CRESS-DNA
viruses.

Thirteen of the eukaryotic CRESS-DNAviruses presented here
had a non-Rep-encoding ORF without any database similarities,
which were characterized as a putative Cap based on IDP
profiles. Likewise, hypothetical proteins from 32 metagenomic
CRESS-DNA viruses were identified as putative Caps using
this method (Supplementary Table S5). While the Caps in
the database were dominated by Type A IDP profiles, the
majority of the new marine invertebrate associated genomes
presented here exhibited Type B IDP profiles. In addition, 50
of the CRESS-DNA genomes analyzed here (17.1%; n = 299),
including the Primnoa pacifica coral associated circular virus
I0345 identified here, contained a non-Rep-encoding ORF

that did not exhibit either the Type A or Type B profile.
While it is possible that other IDP profiles representative
of novel Caps exist, caution should be used in annotating
these ORFs as putative Caps without supporting evidence.
Finally, while examining metagenomic sequences annotated as
CRESS-DNA viruses in GenBank, numerous genomes were
identified that only contained a single ORF, which encoded
a Rep. These sequences (Supplementary Table S5), along with
the two Type VII genomes found in this study, most likely
represent partial viral genomes [i.e., a single component of
a multipartite virus (Gutierrez, 1999; Gronenborn, 2004)],
satellite DNA molecules (Briddon and Stanley, 2006), or
non-viral mobile genetic elements (Rosario et al., 2012a).
Genomes exhibiting a single ORF cannot be distinguished
phylogenetically from complete viral genomes based on the
Rep (Figure 3). Therefore, it is important to investigate
complete genomes of CRESS-DNA viruses rather than partial
sequences.

The IDP analysis has interesting implications for
understanding the evolutionary pressures acting upon the
Rep and Cap of CRESS-DNA viruses, which include the smallest
known eukaryotic viral pathogens. Small viruses exhibit a higher
proportion of predicted disordered residues than larger viruses
and may exploit IDRs to encode multifunctional proteins (Xue
et al., 2012, 2014; Pushker et al., 2013). Rep proteins encoded
by CRESS-DNA viruses exhibited low disposition for predicted
disorder promoting amino acid residues or an inconsistency
in predicted disorder patterns (data not shown), while the
Caps consistently exhibited profiles with increased predicted
disorder at the N-terminus, suggesting that the high proportion
of predicted disordered regions in these small viruses may be
driven by the Cap. IDRs have a tendency to evolve more rapidly
than structured regions (Brown et al., 2002, 2011; Chen et al.,
2006; Bellay et al., 2011; Nilsson et al., 2011; van der Lee et al.,
2014); consequently, IDRs may hinder our ability to perform
phylogenetic reconstructions based on the Cap. Although we
are unable to perform reliable Cap alignments, the ability to
classify these proteins within CRESS-DNA virus genomes due to
conserved predicted disorder profiles reveals that these viruses
exhibit regions in which disorder is conserved despite rapidly
evolving amino acids (i.e., flexible disorder; van der Lee et al.,
2014).

Although the functional significance of predicted IDP profiles
detected in this study has yet to be determined, the identification
of conserved IDP profiles may prove useful to identify divergent
structural proteins encoded by CRESS-DNA viruses. The
identification of a given IDP profile (Type A or B) for a
putative ORF in a genomic context may allow the recognition
of novel CRESS-DNA viral structural proteins that cannot be
identified by standard BLAST searches. The IDP profile analysis
needs to be complemented by other genomic features that are
characteristic of CRESS-DNA viruses, including the presence of a
Rep exhibiting RCR and helicasemotifs and a putative orimarked
by a conserved nonanucleotide motif (NANTATTAC) at the apex
of a stem-loop structure. Future work needs to evaluate if the
high proportion of IDRs observed in CRESS-DNA viruses and
other small viruses is indeedmainly driven by structural proteins.
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If this observation is validated, IDP profile analysis of
hypothetical proteins may provide a reliable tool to identify
structural proteins encoded by small viruses.
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