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Abstract

Background/Objectives—The extent to which alterations in energy expenditure (EE) in 

response to sleep restriction contribute to the short sleep-obesity relationship is not clearly 

defined. Short sleep may induce changes in resting metabolic rate (RMR), thermic effect of food 

(TEF), and postprandial substrate oxidation.

Subjects/Methods—Ten females (age and BMI: 22-43 y and 23.4-28 kg/m2) completed a 

randomized, crossover study assessing the effects of short (4 h/night) and habitual (8 h/night) 

sleep duration on fasting and postprandial RMR and respiratory quotient (RQ). Measurements 

were taken after 3 nights using whole-room indirect calorimetry. The TEF was assessed over a 6-h 

period following consumption of a high-fat liquid meal.

Results—Short vs. habitual sleep did not affect RMR (1.01 ± 0.05 and 0.97 ± 0.04 kcal/min; 

p=0.23). Fasting RQ was significantly lower after short vs. habitual sleep (0.84 ± 0.01 and 0.88 ± 

0.01; p=0.028). Postprandial EE (short: 1.13 ± 0.04 and habitual: 1.10 ± 0.04, p=0.09) and RQ 

(short: 0.88 ± 0.01 and habitual: 0.88 ± 0.01, p=0.50) after the high-fat meal were not different 

between conditions. TEF was similar between conditions (0.24 ± 0.02 kcal/min in both; p=0.98), 

as was the ~6-h incremental area under the curve (1.16 ± 0.10 and 1.17 ± 0.09 kcal/min x 356 min 

after short and habitual sleep, respectively; p=0.92).

Conclusions—Current findings observed in non-obese healthy premenopausal women do not 

support the hypothesis that alterations in TEF and postprandial substrate oxidation are major 

contributors to the higher rate of obesity observed in short sleepers. In exploring a role of sleep 

duration on EE, research should focus on potential alterations in physical activity to explain the 

increased obesity risk in short sleepers.
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INTRODUCTION

It has been postulated that a central physiological role of sleep is the conservation of energy 

(ref. 1), and that the energy costs associated with sleep restriction may lead to a 

compensatory decline in next-day resting metabolic rate (RMR) (ref. 2). This was 

demonstrated in a study which reported that compared to a night of habitual sleep, a night of 

total sleep deprivation resulted in reduced next-day RMR (0745-0815 h), that was not 

accompanied by reduced core body temperature during this time (ref. 2). This observation is 

important since RMR is the biggest contributor to overall energy expenditure (EE), and 

decreases in this component, especially in conjunction with increased food intake, can 

contribute to positive energy balance and weight gain. Indeed, increased food intake after 

experimental sleep restriction is frequently reported (ref. 3, 4, 5, 6, 7). Furthermore, it was 

recently found that a night of acute sleep deprivation compared to habitual sleep is 

associated with purchasing significantly more calories and grams of food in an in-lab mock 

supermarket scenario (ref. 8). The hyperphagia observed in response to sleep restriction may 

be a physiological adaptation to ensure sufficient energy supplies in light of the increased 

energy demands associated with extended wakefulness (ref. 6).

Despite the suggestion of a reduction in RMR as a physiological adaptation to insufficient 

sleep (ref. 9), most studies have demonstrated that restricting sleep duration to 4-5.5 h/night 

does not alter RMR (ref. 4, 5, 10, 11, 12). In these studies, laboratory measures of RMR 

were typically done using ventilated-hood indirect calorimetry (ref. 4, 5, 10, 12). To our 

knowledge, only one study, conducted exclusively in adolescent males, examined RMR 

using whole-room indirect calorimetry (ref. 11). Measures of respiratory gas exchange via 

indirect calorimetry allow for the assessment of respiratory quotient (RQ, the ratio of carbon 

dioxide produced to oxygen consumed) and substrate utilization. RQ indicates nutrient 

utilization, such that a higher RQ corresponds to greater reliance on carbohydrates as the 

primary energy source whereas a lower RQ indicates greater fat oxidation. With a few 

exceptions (ref. 4, 11), RQ under fasting conditions in response to sleep curtailment has not 

been reported. Another aspect of EE which has not been extensively studied in response to 

experimental sleep restriction is the thermic effect of food (TEF). Contributing 

approximately 10% to overall EE, TEF is the EE associated with the digestion, absorption, 

metabolism, and storage of food. In prior studies, partial sleep restriction was found to have 

no effect on overall TEF (ref. 5) or reduce the TEF area under the curve (AUC) (ref. 11). 

Measures in the former study, however, may have been influenced by the ad libitum access 

to food during the 14-d sleep restriction period (ref. 5). The Klingenberg et al. study was 

conducted exclusively in adolescent males (ref. 11), and may not be applicable to adults or 

females. Moreover, to our knowledge, postprandial RQ in response to sleep restriction under 

a controlled weight-maintenance diet has never been examined.

The aim of the current study was to investigate the effects of short sleep (4 h time in bed 

[TIB]) compared to habitual sleep (8 h TIB) on fasting RMR and TEF using whole-room 

indirect calorimetry in a group of healthy women. Whole-room calorimetry may be 

preferable to the ventilated-hood method as it reduces participant discomfort and stress 

allowing for prolonged measurement periods. Furthermore, this investigation of TEF and 
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substrate oxidation in response to a high-fat test meal, as opposed to a standard meal, is 

innovative and highly relevant since women in particular were found to increase their 

intakes of fat in response to sleep restriction (ref. 4).

SUBJECTS AND METHODS

Participants

Twelve healthy female participants, age 21-45 y and body mass index (BMI) 22-29.9 kg/m2, 

were enrolled in the study. Prior to entry into the study, participants confirmed a history of 

habitual sleep duration between 7-9 h/night via wrist-worn actigraphy (Actiwatch, Actilife 

LLC, Pensacola, FL) and sleep diary for a 2-wk period. Inclusion in this study required a 

mean sleep duration during the 2-wk screening period of 7-9 h/night, ≥10 nights of sleep 

with a duration ≥7 h and less than 4 nights of sleep with a duration <6 h. Exclusion criteria 

included the presence of type 1 or 2 diabetes (assessed by medical history), cigarette 

smoking, history of alcohol or substance abuse, excessive daily caffeine intake (>300 mg/d), 

night shift work, trans-meridian travel within the last 4 wk, and extreme morning or evening 

chronotype (ref. 13). Pregnant women and women <1 year postpartum were also excluded 

from participation. None of the participants in the study were currently taking hormonal 

contraceptives. Other exclusion criteria included the presence of any eating, sleeping, or 

neurological disorder and use of anti-depressant medications. While we did not exclude 

based on physical activity, all participants had sedentary or light habitual physical activity 

according to the 2-wk actigraphic screening (ref. 14). All experimental procedures were 

approved by the Institutional Review Board of St. Luke's-Roosevelt Hospital Center (New 

York, NY). Participants were given the opportunity to ask questions about the study protocol 

prior to providing informed consent.

Experimental Design

The overall study design, including participant enrollment and characteristics, has been 

previously reported (ref. 14). Briefly, this was a two-phase laboratory-based randomized, 

crossover study. Experimental phases included a short (4 h/night; 0100-0500 h) and a 

habitual (8 h/night; 2300-0700 h) sleep duration condition (Figure 1). Experimental phases 

lasted 4 d, and were scheduled to start approximately 4 wk apart. This washout period was 

included to limit carry-over effects of sleep restriction, and also to study women during a 

similar menstrual phase in both sleep conditions. Women reported the timing of their last 

menstrual period before phase 1; phase 2 was scheduled at the same relative time in the next 

menstrual cycle. During the first 3 d of each experimental phase, participants consumed a 

weight-maintenance diet with fixed meal times. The macronutrient composition of the diet 

was 55% of energy from carbohydrate, 30% from fat, and 15% from protein. Throughout the 

study, daytime naps were prohibited. Study personnel were instructed to monitor 

participants to ensure wakefulness throughout all scheduled wake episodes. Participants 

were prohibited from engaging in exercise or strenuous physical activity for the duration of 

the study. During day 2 of the experiment, participants were allowed to leave the laboratory 

under research personnel supervision. All of day 3 was spent inside the larger metabolic 

chamber (dimensions 330 × 279 × 241 cm) of the New York Obesity Nutrition Research 

Center, which limited physical activity levels (ref. 14). On day 3, participants engaged in 
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two 15-min bouts of stationary bicycle riding at 50 W to induce some light physical activity 

while restricted to the confines of the metabolic chamber. During days 2 and 3, participants 

spent most of their waking episodes watching movies, using the computer, or talking on the 

telephone. Physical activity throughout the entire experimental period was monitored with 

wrist-actigraphy. As described previously (ref. 14), in-lab actigraphy data were lost due to 

technical issues for 3 participants in the short sleep condition and 1 participant in the 

habitual sleep condition. Analysis of metabolic equivalents (METs) indicated that all 

participants were in sedentary physical activity (i.e. 1-1.5 METs) during the laboratory 

protocol in the short and habitual sleep conditions (mean ± SEM: 1.24 ± 0.03 METs for 

both).

At 0715 h on day 4, participants entered a small whole-room indirect calorimeter with a 

cooler bag containing the test breakfast. This room is distinct from the better known larger 

metabolic chamber at the New York Obesity Nutrition Research Center (ref. 14) in that it is 

designed specifically for the measurement of RMR and TEF. This small whole-room 

indirect calorimetry chamber is an air-tight, climate-controlled room, with an internal 

volume of 4,597 liters (dimensions 198 × 122 × 241 cm). The room is equipped with a 

standard size hospital bed (91 × 203 × 20 cm) and a small stereo for music entertainment. 

There is a large window and an intercom system to allow investigators to observe and 

communicate with the participant during study measurements. This chamber eliminates the 

need for the ventilated hood/canopy of the metabolic cart, making the measurements of 

RMR and TEF more comfortable for participants, especially for the extended measurement 

periods required to capture the full TEF.

Participants remained in this room in a semi-recumbent position from 0730-1420 h (Figure 

1). RMR was measured in the fasting state from 0730-0815 h. At 0815 h, participants 

consumed a high-fat test breakfast shake in ≤ 5 min (325 mL Original Rich Chocolate 

BOOST nutritional drink [Nestle USA, Glendale, CA] to which 19.5 g Bertolli Extra Light 

Tasting Olive Oil [Bertolli, Unilever, USA] was added). The breakfast shake provided 500 

kcal with 50% of energy from fat. Postprandial EE and RQ were recorded continuously for 6 

h after breakfast consumption. Trained research personnel ensured that participants did not 

fall asleep during the entire time spent in the small whole-room calorimetry chamber for 

measurements of RMR and postprandial EE, by regular visual inspection of participants 

through the chamber window and also with communication with the participant via an 

intercom system. Throughout the recording period, participants were instructed to minimize 

all physical activity and body movements, and spent most of their time listening to music, 

reading, or watching movies on a laptop computer.

Measures

Details of the metabolic chamber recording procedures have been previously reported (ref. 

14). Briefly, the Promethion (model GA-6 and FG-1) Whole-Room Indirect Calorimeter 

system (Sable Systems Intl, Las Vegas, NV) was used to measure air mass flow, as well as 

oxygen and carbon dioxide concentrations 1x/sec. Prior to metabolic calculations, these data 

were corrected for the presence of water vapor pressure in kilopascals to standard-pressure 

dry conditions (ref. 15). Corrected data were amortized per minute, and the Weir Equation 
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was used to calculate EE (ref. 16). The ratio of the corrected ventilation rates of carbon 

dioxide production to oxygen consumption was used to calculate RQ, as an indicator of 

nutrient utilization (ref. 17). The accuracy and precision of the whole-room indirect 

calorimetry chamber has been validated in the larger metabolic chamber (ref. 18). The same 

recording system was utilized for both the large metabolic chamber and the smaller whole-

room calorimetry chamber used in the current study. A valve is switched to open air flow to 

either of the two chambers.

Statistical analyses

The first 15 min of the fasting RMR measurement taken from 0730-0815 h were considered 

the equilibration period and were removed from analyses. To calculate TEF, the mean RMR 

during the 30 min prior to consumption of the test shake (i.e. 0745-0815 h) was averaged 

and utilized as the baseline. TEF was then calculated by taking the difference between 

minute-by-minute postprandial EE and mean RMR. This included all data above baseline 

from the time after breakfast consumption until the end of the recording. Some participants 

had missing data from the final few minutes of the 6-h postprandial assessment. In order to 

have all participants contribute fully to postprandial and TEF assessments, analyses were 

done on postprandial data collected from 0815-1410 h. TEF throughout the 0815-1410 h 

period was also expressed as incremental AUC (iAUC), calculated using the trapezoidal 

rule.

Paired-sample t-tests were used to compare mean EE and RQ during the fasting (0745-0815 

h) and postprandial (0815-1410 h) states, as well as mean calculated TEF during the 

0815-1410 h span and iAUC of TEF, between short and habitual sleep conditions. Two-way 

within subjects ANOVA for repeated measures (factors: sleep condition x time) was used to 

compare minute-by-minute measures of EE and RQ throughout the last 30 min of the fasting 

period (0745-0815 h) and 1-h binned measures of TEF throughout the postprandial period 

(0815-1410 h) between short and habitual sleep conditions. Significant interactions were 

further analyzed by simple main effects tests. Statistical analyses were carried out with the 

statistical software program DATASIM (version 1.1, Drake Bradley, Bates College, 

Lewiston, ME) (ref. 19). Data are expressed as mean ± SEM.

RESULTS

Participant characteristics

A total of 12 women were initially enrolled in the study. One participant studied first during 

the short sleep phase failed to return for the second visit (habitual sleep) for unknown 

reasons. A second participant studied first during the habitual sleep phase failed to return for 

the subsequent short sleep because of a scheduling conflict. Ten women completed both 

phases of the study. After randomization, half of the participants underwent the habitual 

sleep duration condition first, whereas the other half underwent the short sleep duration first. 

The mean age and BMI for the ten complete participants were 28.0 ± 2.3 y (range: 22-43 y) 

and 26.0 ± 0.47 kg/m2 (range: 23.4-28 kg/m2) (ref. 14). Five of the women studied were 

Black and five were White. Based on wrist-actigraphy worn during the laboratory sleep 

episodes, the total amount of sleep obtained during the habitual sleep condition was 7.35 ± 
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0.09 h and the total amount of sleep obtained during the short sleep condition was 3.73 ± 

0.04 h (ref. 14). Mean in-lab sleep efficiency (i.e. total sleep duration / total time in bed) was 

>90% for both sleep phase conditions (ref. 14).

Fasting energy expenditure and respiratory quotient

Mean values of RMR after 3 nights of short compared to habitual sleep duration did not 

differ between conditions (Table 1). Specifically, mean RMR from 0745-0815 h was 1.01 ± 

0.05 kcal/min and 0.97 ± 0.04 kcal/min in the short and habitual sleep conditions, 

respectively (t9=1.285, p=0.23). When EE was examined minute-by-minute throughout the 

fasting period, a significant sleep condition x time interaction (F29,261=1.61, p=0.03) was 

observed, with significantly increased EE found in the short sleep condition compared to the 

habitual sleep condition at 0753-0756 h (p<0.03, by simple main effects tests) (Figure 2). 

No main effect of sleep condition (F1,9=1.65, p=0.23) or time (F29,261=0.57, p=0.96) was 

seen for EE (Figure 2). Mean fasting RQ was 0.84 ± 0.01 and 0.88 ± 0.01 in the short and 

habitual sleep conditions, respectively (t9=-2.625, p=0.028) (Table 1). When RQ was 

examined minute-by-minute throughout the fasting period, a significant main effect of sleep 

condition (F1,9=6.89, p=0.03) was observed, but no main effect of time (F29,261=0.25, 

p=1.00) and no sleep condition x time interaction (F29,261=0.80, p=0.76) was observed 

(Figure 2).

Postprandial energy expenditure and respiratory quotient

Postprandial EE and RQ in response to a high-fat breakfast after 3 nights of short vs. 

habitual sleep did not differ significantly between sleep conditions (Table 1). Mean 

postprandial EE from 0815-1410 h was 1.13 ± 0.04 kcal/min in short sleep and 1.10 ± 0.04 

kcal/min in habitual sleep (t9=1.87, p=0.09). Mean postprandial RQ from 0815-1410 h was 

0.88 ± 0.01 kcal/min in both short and habitual sleep (t9=-0.70, p=0.50).

Thermic effect of food

Mean TEF throughout the ~6-h postprandial period was not different between short and 

habitual sleep (t9=-0.03, p=0.98) (Table 1). Incremental AUC of the ~6-h TEF was 1.16 ± 

0.10 kcal/min x 356 min in short sleep and 1.17 ± 0.09 kcal/min x 356 min in habitual sleep 

(t9=-0.11, p=0.92). When TEF was examined at hourly intervals throughout the postprandial 

period, a significant main effect of time was seen (F5,45=8.54, p<0.01), although a main 

effect of sleep condition (F1,9=0.00, p=0.96) and a time x sleep condition interaction effect 

(F5,45=0.62, p=0.68) were not observed (Figure 3).

DISCUSSION

The current study did not find an effect of three nights of sleep restriction on components of 

EE, including mean RMR, as well as TEF and substrate utilization in response to a high-fat 

meal, in a group of healthy young women. These findings are consistent with various prior 

ventilated-hood indirect calorimetry studies (ref. 4, 5, 10, 12), as well as the single study in a 

metabolic chamber (ref. 11) which reported that partial sleep restriction has no effect on 

subsequent RMR. However, our relatively small sample size, combined with the obtained p-

value of 0.23 for sleep condition difference in RMR, could be interpreted as indicative of a 
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possible type 2 error. To increase sample size, we combined data from the present study 

with data from women who underwent a separate study which tested the effects of sleep 

restriction on energy balance. Specifically, in the prior study, RMR was measured via 

ventilated-hood in 12 women after 4 d of short (4 h TIB) and habitual (9 h TIB) sleep in a 

randomized crossover design. Of relevance is that although TIB was 9 h in the previous 

study, versus 8 h in the present study, average sleep duration during the habitual sleep phase 

was similar between studies. When we combined the two datasets (n=22), the lack of effect 

of sleep duration on mean RMR remained (short: 0.98 ± 0.03 and habitual: 0.97 ± 0.02 kcal/

min; p=0.64). Although this expanded sample includes whole-room and ventilated-hood 

calorimetry, data were obtained in the context of a within-subject design for both and were 

similar between studies.

In the current study, EE was increased in short vs. habitual sleep for 4 consecutive minutes 

during the 30-min RMR period. This is unlikely to represent a meaningful physiological 

change associated with sleep restriction, and these marginal increases did not result in an 

overall increase in mean RMR. Taken together, accumulating evidence suggests that 

changes in RMR after sleep curtailment are not likely to contribute to the increased obesity 

and weight gain associated with short sleep. Moreover, despite some inconsistent findings in 

the literature (ref. 20), early studies have not found low RMR to be a major predisposing 

factor to subsequent weight gain (ref. 21, 22).

Interestingly, similar to present findings, a study in adolescent males described a lower 

fasting RQ after short vs. habitual sleep (ref. 11). The authors suggested that the prolonged 

wakefulness in the short sleep condition induced a temporal difference in energy balance, 

which would account for the between-condition RQ effect and suggest that this does not 

represent a change in substrate use after sleep restriction (ref. 11). We agree with their 

interpretation that the difference in fasting RQ between sleep conditions in the current study 

likely arises from the increased hours spent awake in a fasted state and therefore does not 

reflect an inherent difference in substrate utilization induced by sleep restriction. Fasting RQ 

in response to sleep restriction is not commonly reported, but a prior randomized crossover 

study from our laboratory found no difference between short or habitual sleep duration when 

measured in the morning with ventilated-hood calorimetry (ref. 4).

We observed that TEF after a high-fat test meal was not affected by sleep duration. In the 

Klingenberg et al. study, TEF over 3 h after a standard meal was not different between short 

and habitual sleep (ref. 11). However, when expressed as iAUC, TEF was significantly 

lower after short vs. habitual sleep (ref. 11). Our results are consistent with a study by 

Nedeltcheva and colleagues which found no difference in overall 4-h TEF after a standard 

breakfast when subjecting adult men and women to 5.5 h TIB or 8.5 h TIB for 14 d (ref. 5).

Our use of a high-fat test meal for measures of TEF is innovative and pertinent since intake 

of fat is selectively increased after short vs. habitual sleep under ad libitum eating conditions 

(ref. 3, 4, 23). Furthermore, investigating these effects in women is relevant since, compared 

to men, women were particularly likely to increase fat intake in response to sleep 

curtailment (ref. 4). Since women may be at higher risk for both sleep disruption (ref. 24) 
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and obesity (ref. 25) than men, there is a need for intervention studies on the sleep-obesity 

relationship in females.

Some limitations within the study are worth noting. We did not restrict our intervention to a 

single phase of the menstrual cycle and did not measure sex hormones. This may be relevant 

since a menstrual cycle variation has been observed for RMR (ref. 26), RQ (ref. 27), and 

TEF (ref. 28), although null findings for RMR (ref. 28), RQ (ref. 29), and TEF (ref. 29) have 

also been reported. This was minimized by testing on the same post-menstruation day for 

both phases for each participant. Thus, utilizing a crossover design while studying each 

participant in the same relative menstrual cycle phase for each visit should reduce 

confounding associated with menstrual cycle factors. The 3-d sleep curtailment exposure 

may be considered too short to produce meaningful changes in outcomes. However, results 

are consistent with another study which restricted sleep for 14 d (ref. 5). It is possible that 

even more prolonged exposure to restricted sleep, as would be expected in real-life 

conditions in chronic short sleepers, is necessary to induce pronounced metabolic effects not 

generated in shorter term interventions.

Another limitation is the lack of polysomnographic (PSG) sleep recordings. While we did 

track sleep with wrist-actigraphy, allowing for objective measures of sleep duration and 

efficiency, we are unable to describe sleep architecture. This is important, since recent 

findings from our laboratory (ref. 30) described how changes in sleep architecture in the 

context of experimental sleep curtailment can influence energy balance parameters. 

Specifically, we observed that in a similarly designed sleep curtailment protocol (short sleep 

episode from 0100-0500 h and habitual sleep episode from 2200-0700 h), reductions in slow 

wave sleep (SWS) and rapid eye movement (REM) sleep were associated with increased 

intake of fat and carbohydrate. Moreover, duration of stage 2 sleep was positively associated 

with next day RMR (ref. 30). Interestingly, it was reported that whereas the duration of 

nocturnal SWS is conserved during recurrent partial sleep deprivation, the amount of slow-

wave activity (i.e. power within the 0.5-4.5 Hz range as determined by a spectral analysis of 

the EEG signal) is elevated in response to this type of sleep manipulation (ref. 31). It will 

therefore be important to determine how both polysomnographically defined sleep 

macrostructure and more subtle changes in quantitative sleep EEG are related to other 

components of EE, including TEF.

Finally, since the current observations were made in healthy non-obese, premenopausal 

women, the findings may not necessarily be generalized to other unique populations. Both 

lean (n=3) and overweight (n=7) women were included in the study. However, a comparison 

of EE values from the habitual sleep condition between the lean and overweight women 

indicates that none of the EE values differed between sub-groups. A relatively large age 

range was included in the study, however all but one participant were between 22-36 y 

(n=9). Since aging is known to influence sleep duration, quality, and architecture (ref. 32), it 

is possible that the age range influenced the observed effects of short sleep on EE 

parameters (ref. 33). However, all women in the study were premenopausal which may 

reduce this possibility.
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Whereas most prior studies utilized a metabolic cart, the current study measured RMR and 

TEF using whole-room indirect calorimetry. To our knowledge, no sleep restriction study 

measured TEF with whole-room calorimetry. We believe current methods are preferable to 

the ventilated-hood, which may cause claustrophobia, discomfort, and stress during 

prolonged use. We were able to obtain continuous recordings for 6 h, whereas prior sleep 

restriction studies obtained 3-4 h of postprandial EE recordings, usually in segments of 

20-25 min of active measurement per hour of testing (ref. 2, 11).

In conclusion, this laboratory-based intervention study quantified the effects of restricting 

sleep duration to 4 h/night on fasting and postprandial measures of EE and RQ, as well as 

TEF, using whole-room indirect calorimetry. We observed that experimental sleep 

curtailment was not associated with substantial changes in RMR, substrate utilization, or 

dietary-induced thermogenesis in response to a high-fat meal. Our findings, together with 

prior studies which have consistently documented increased energy consumption after 

experimental sleep restriction (ref. 3, 4, 5, 6), lend support to the hypothesis that the major 

contributor to the increased prevalence of obesity in individuals experiencing short sleep is 

most likely greater food intake, as opposed to physiological alterations in energy metabolism 

and substrate utilization. However, additional work is necessary to clarify the role of sleep 

duration on other components of EE, such as physical activity level or non-exercise activity 

thermogenesis, which were not assessed in the context of this inpatient study.
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RMR resting metabolic rate

EE energy expenditure

RQ respiratory quotient

TEF thermic effect of food
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TIB time in bed

REFERENCES

1. Jung CM, Melanson EL, Frydendall EJ, Perreault L, Eckel RH, Wright KP. Energy expenditure 
during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol. 
2011; 589:235–244. [PubMed: 21059762] 

Shechter et al. Page 9

Int J Obes (Lond). Author manuscript; available in PMC 2015 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Benedict C, Hallschmid M, Lassen A, Mahnke C, Schultes B, Schioth HB, et al. Acute sleep 
deprivation reduces energy expenditure in healthy men. Am J Clin Nutr. 2011; 93:1229–1236. 
[PubMed: 21471283] 

3. Brondel L, Romer MA, Nougues PM, Touyarou P, Davenne D. Acute partial sleep deprivation 
increases food intake in healthy men. Am J Clin Nutr. 2010; 91:1550–1559. [PubMed: 20357041] 

4. St-Onge MP, Roberts AL, Chen J, Kelleman M, O'Keeffe M, RoyChoudhury A, et al. Short sleep 
duration increases energy intakes but does not change energy expenditure in normal-weight 
individuals. Am J Clin Nutr. 2011; 94:410–416. [PubMed: 21715510] 

5. Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD. Sleep curtailment is 
accompanied by increased intake of calories from snacks. Am J Clin Nutr. 2009; 89:126–133. 
[PubMed: 19056602] 

6. Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, et al. Impact of 
insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad 
Sci U S A. 2013; 110:5695–5700. [PubMed: 23479616] 

7. Hogenkamp PS, Nilsson E, Nilsson VC, Chapman CD, Vogel H, Lundberg LS, et al. Acute sleep 
deprivation increases portion size and affects food choice in young men. 
Psychoneuroendocrinology. 2013; 38:1668–1674. [PubMed: 23428257] 

8. Chapman CD, Nilsson EK, Nilsson VC, Cedernaes J, Rangtell FH, Vogel H, et al. Acute sleep 
deprivation increases food purchasing in men. Obesity (Silver Spring). 2013

9. Penev PD. Update on energy homeostasis and insufficient sleep. J Clin Endocrinol Metab. 2012; 
97:1792–1801. [PubMed: 22442266] 

10. Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK. Sleep restriction for 1 
week reduces insulin sensitivity in healthy men. Diabetes. 2010; 59:2126–2133. [PubMed: 
20585000] 

11. Klingenberg L, Chaput JP, Holmback U, Jennum P, Astrup A, Sjodin A. Sleep restriction is not 
associated with a positive energy balance in adolescent boys. Am J Clin Nutr. 2012; 96:240–248. 
[PubMed: 22760574] 

12. Bosy-Westphal A, Hinrichs S, Jauch-Chara K, Hitze B, Later W, Wilms B, et al. Influence of 
partial sleep deprivation on energy balance and insulin sensitivity in healthy women. Obes Facts. 
2008; 1:266–273. [PubMed: 20054188] 

13. Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness eveningness in 
human circadian rhythms. Int J Chronobiol. 1976; 4:97–110. [PubMed: 1027738] 

14. Shechter A, Rising R, Albu JB, St-Onge MP. Experimental sleep curtailment causes wake-
dependent increases in 24-hour energy expenditure as measured by whole-room indirect 
calorimetry. Am J Clin Nutr. 2013 In press. 

15. Melanson EL, Ingebrigtsen JP, Bergouignan A, Ohkawara K, Kohrt WM, Lighton JR. A new 
approach for flow-through respirometry measurements in humans. Am J Physiol Regul Integr 
Comp Physiol. 2010; 298:R1571–1579. [PubMed: 20200135] 

16. Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. 
J Physiol. 1949; 109:1–9. [PubMed: 15394301] 

17. Lusk, G. The elements of the science of nutrition. W.B. Saunders Company; Philadelphia: 1928. 

18. Whyte KJ, Rising R, Albu JB, Pi-Sunyer X. Evaluation of a new whole room indirect calorimeter 
for measurement of resting metabolic rate. The FASEB Journal. 2013; 27:854–859.

19. Bradley DL. Computer simulation with DATASIM. Behavior Research Methods, Instruments, & 
Computers. 1989; 21:99–112.

20. Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG, et al. Reduced rate of 
energy expenditure as a risk factor for body-weight gain. N Engl J Med. 1988; 318:467–472. 
[PubMed: 3340128] 

21. Weinsier RL, Nelson KM, Hensrud DD, Darnell BE, Hunter GR, Schutz Y. Metabolic predictors 
of obesity. Contribution of resting energy expenditure, thermic effect of food, and fuel utilization 
to four-year weight gain of post-obese and never-obese women. J Clin Invest. 1995; 95:980–985. 
[PubMed: 7883999] 

Shechter et al. Page 10

Int J Obes (Lond). Author manuscript; available in PMC 2015 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Seidell JC, Muller DC, Sorkin JD, Andres R. Fasting respiratory exchange ratio and resting 
metabolic rate as predictors of weight gain: the Baltimore Longitudinal Study on Aging. Int J Obes 
Relat Metab Disord. 1992; 16:667–674. [PubMed: 1328091] 

23. Schmid SM, Hallschmid M, Jauch-Chara K, Wilms B, Benedict C, Lehnert H, et al. Short-term 
sleep loss decreases physical activity under free-living conditions but does not increase food intake 
under time-deprived laboratory conditions in healthy men. Am J Clin Nutr. 2009; 90:1476–1482. 
[PubMed: 19846546] 

24. Soares CN. Insomnia in women: an overlooked epidemic? Arch Womens Ment Health. 2005; 
8:205–213. [PubMed: 16195781] 

25. Paeratakul S, White MA, Williamson DA, Ryan DH, Bray GA. Sex, race/ethnicity, socioeconomic 
status, and BMI in relation to self-perception of overweight. Obes Res. 2002; 10:345–350. 
[PubMed: 12006633] 

26. Solomon SJ, Kurzer MS, Calloway DH. Menstrual cycle and basal metabolic rate in women. Am J 
Clin Nutr. 1982; 36:611–616. [PubMed: 7124662] 

27. Isacco L, Duche P, Boisseau N. Influence of hormonal status on substrate utilization at rest and 
during exercise in the female population. Sports Med. 2012; 42:327–342. [PubMed: 22380007] 

28. Piers LS, Diggavi SN, Rijskamp J, van Raaij JM, Shetty PS, Hautvast JG. Resting metabolic rate 
and thermic effect of a meal in the follicular and luteal phases of the menstrual cycle in well-
nourished Indian women. Am J Clin Nutr. 1995; 61:296–302. [PubMed: 7840066] 

29. Melanson KJ, Saltzman E, Russell R, Roberts SB. Postabsorptive and postprandial energy 
expenditure and substrate oxidation do not change during the menstrual cycle in young women. J 
Nutr. 1996; 126:2531–2538. [PubMed: 8857514] 

30. Shechter A, O'Keeffe M, Roberts AL, Zammit GK, RoyChoudhury A, St-Onge MP. Alterations in 
sleep architecture in response to experimental sleep curtailment are associated with signs of 
positive energy balance. Am J Physiol Regul Integr Comp Physiol. 2012; 303:R883–889. 
[PubMed: 22972835] 

31. Van Dongen HP, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional 
wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from 
chronic sleep restriction and total sleep deprivation. Sleep. 2003; 26:117–126. [PubMed: 
12683469] 

32. Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. Meta-analysis of quantitative sleep 
parameters from childhood to old age in healthy individuals: developing normative sleep values 
across the human lifespan. Sleep. 2004; 27:1255–1273. [PubMed: 15586779] 

33. Benedict C. Link between short sleep and obesity in humans: a matter of age? Chest. 2013; 
144:711. [PubMed: 23918122] 

Shechter et al. Page 11

Int J Obes (Lond). Author manuscript; available in PMC 2015 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Illustration of the 4-d randomized, crossover research design. In-lab sleep conditions 

included short sleep duration (4 h/night time in bed, from 0100-0500 h) and habitual sleep 

duration (8 h/night time in bed, from 2300-0700 h) and. Black bars represent sleep 

opportunities. Grey bars represent time spent in the small, whole-room indirect calorimeter 

for measures of energy expenditure in a semi-recumbent position. RMR, resting metabolic 

rate as measured in the fasting state from 0730-0815 h. TEF, thermic effect of food from 

0815-1420 h, as calculated by subtracting RMR from values of postprandial energy 

expenditure following a high-fat breakfast shake served at 0815 h. B, breakfast; L, lunch; S, 

snack; D, dinner.
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Figure 2. 
Energy expenditure (EE) and respiratory quotient (RQ) in the fasting state from 0745-0815 h 

after 3 nights of habitual (8 h/night) and short (4 h/night) sleep duration measured with 

whole-room indirect calorimetry. Two-way ANOVA for repeated measures demonstrated 

that EE (illustrated with triangles) showed a significant sleep condition x time interaction 

(p=0.03), but no main effect of sleep condition (p=0.23) or time (p=0.96) was seen. Two-

way ANOVA for repeated measures demonstrated that RQ (illustrated with circles) showed 

a significant main effect of sleep condition (p=0.03), but no main effect of time (p=1.00) and 

no sleep condition x time interaction (p=0.76) was seen. Open symbols represent the short 

sleep condition and filled symbols represent the habitual sleep condition. * denotes 

significant difference between short and habitual sleep duration conditions. Plotted values 

are mean ± SEM. n = 10.
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Figure 3. 
Thermic effect of food (TEF) in response to a high-fat breakfast shake after 3 nights of 

habitual (8 h/night) and short (4 h/night) sleep duration measured with whole-room indirect 

calorimetry. TEF showed a significant main effect of time (p<0.01), but no effect of sleep 

condition (p=0.96) and no significant time x condition interaction effect (p=0.68). Open 

circles represent short sleep condition and filled circles represent habitual sleep condition. 

Plotted values are mean TEF ± SEM over the preceding hour shown on the x-axis. n = 10.
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Table 1

Effect of 3 nights of habitual (8 h/night) and short (4 h/night) sleep duration on fasting and postprandial 

energy expenditure, respiratory quotient, and thermic effect of food measured with whole-room indirect 

calorimetry.

Habitual sleep Short sleep P-value

Resting metabolic rate, kcal/min 0.97 ± 0.04 1.01 ± 0.05 0.23

Postprandial energy expenditure, kcal/min 1.10 ± 0.04 1.13 ± 0.04 0.09

Fasting respiratory quotient 0.88 ± 0.01 0.84 ± 0.01 0.03

Postprandial respiratory quotient 0.88 ± 0.01 0.88 ± 0.01 0.50

Mean thermic effect of food, kcal/min 0.24 ± 0.02 0.24 ± 0.02 0.98

iAUC for thermic effect of food, kcal/min × 356 min 1.17 ± 0.09 1.16 ± 0.10 0.92

Fasting values were obtained from 0730-0815 h; Postprandial denotes mean values from 0815-1410 h following consumption of a high-fat shake at 
0815 h. iAUC is the incremental area under the curve of the thermic effect of food. Data were analyzed using paired-samples t-tests and are 
expressed as means ± SEM. n = 10.
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