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Thrombosis is a leading cause of death worldwide [1]. Recombinant
tissue-type plasminogen activator (tPA) is the FDA-approved throm-
bolytic drug for ischemic strokes, myocardial infarction and pul-
monary embolism. tPA is a multi-domain serine protease of the
trypsin-family [2] and catalyses the critical step in fibrinolysis [3],
converting the zymogen plasminogen to the active serine protease
plasmin, which degrades the fibrin network of thrombi and blood
clots. tPA is rapidly inactivated by endogenous plasminogen activa-
tors inhibitor-1 (PAI-1) [4] (Fig. 1). Engineering on tPA to reduce its
inhibition by PAI-1 without compromising its thrombolytic effect is a
continuous effort [5]. Tenecteplase (TNK-tPA) is a newer generation of
tPA variant showing slower inhibition by PAI-1 [6]. Extensive studies
to understand the molecular interactions between tPA and PAI-1
have been carried out [7–18], however, the precise details at atomic
resolution remain unknown. We report the crystal structure of
tPA �PAI-1 complex here. The methods required to achieve these data
include: (1) recombinant expression and purification of a PAI-1 var-
iant (14-1B) containing four mutations (N150H, K154T, Q319L, and
M354I), and a tPA serine protease domain (tPA-SPD) variant with
three mutations (C122A, N173Q, and S195A, in the chymotrypsin
numbering) [19]; (2) formation of a tPA-SPD �PAI-1 Michaëlis
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complex in vitro [19]; and (3) solving the three-dimensional structure
for this complex by X-ray crystallography [deposited in the PDB
database as 5BRR]. The data explain the specificity of PAI-1 for tPA
and uPA [19,20], and provide structural basis to design newer gen-
eration of PAI-1-resistant tPA variants as thrombolytic agents [19].
& 2016 Elsevier Inc.. Published by Elsevier Inc. This is an open access

article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Specifications table
ubject area
 Biology

ore specific sub-
ject area
Protein structure and biochemistry
ype of data
 X-ray crystal structure, Mass spectrometry

ow data was
acquired
X-ray diffraction data were collected at Shanghai Synchrotron Radiation Facility.
Mass spectra of MALDI-TOF-MS were obtained on a Bruker REFLEX III MALDI-
TOF-MS (Bruker-Franzen, Bremen, Germany).
ata format
 Processed

xperimental
factors
Recombinant proteins were purified to high homogeneity before use.
xperimental
features
The structure of the tPA � PAI-1 complex was determined by X-ray
crystallography.
ata source
location
City, Country and/or Latitude & Longitude (& GPS coordinates) for collected
samples/data if applicable
ata accessibility
 The data is available from the related publication by Gong et al. (http://www.
ncbi.nlm.nih.gov/pubmed/26324706), and the structure deposited in the Protein
Data Bank (entry 5BRR).
Value of the data
� Determines the crystal structure of the Michaëlis complex between tPA and PAI-1.
� Provides insight on the specificity of PAI-1 for tPA and uPA.
� Identifies key residues of tPA for binding to PAI-1.
� Explains the PAI-1-resisting property of Tenecteplase.
� Offers important clues to design newer generation of PAI-1-resistant tPA variants.

1. Data, experimental design, materials and methods

1.1. Data and experimental design

We have determined the structure of tPA � PAI-1 Michaëlis complex and identified key residues of
tPA for binding to PAI-1 by X-ray crystallography, and the data are summarized in the original
publication [19].

We expressed the recombinant PAI-1 variant 14-1B (N150H, K154T, Q319L, and M354I) [21], using
the expression vector pT7-PL and BL21 cells as soluble protein [22]. The choice of this particular
variant is to obtain PAI-1 in active form, advantageous for crystallization, because the wild type PAI-1

http://(www.ncbi.nlm.nih.gov/pubmed/26324706)
http://(www.ncbi.nlm.nih.gov/pubmed/26324706)


Fig. 1. A structural basis to design newer thrombolytics. Recombinant tPA (surface) is the FDA-approved thrombolytic drug.
High dose of recombinant tPA is typically needed to lyse clot in stroke patients, partly due to its rapid inactivation by endo-
genous inhibitor (PAI-1, in ribbon). Such high dosage leads to dangerous side effects, including intracranial hemorrhage and
neurotoxicity. Here, the crystal structure of tPA�PAI-1 Michaëlis complex was determined. This structure offers important clues
to design newer generation of tPA thrombolytics with reduced PAI-1 inactivation.
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has a half life of only 2 h and has propensity to spontaneously convert into an inactive, so-called
latent form, and to aggregate at high concentration [23,24].

PAI-1 inhibits tPA by a suicide-substrate mechanism common to all SERPIN members [23,25] – see
Fig. 1A in the original publication [19]. In this SERPIN mechanism, a long flexible loop of PAI-1
(reaction center loop, or RCL) inserts into the active site of tPA to form a transient Michaëlis complex.
The RCL is cleaved by tPA through the classical serine proteolytic mechanism. tPA forms a covalent
acyl-enzyme intermediate with PAI-1 by cleaving the scissible bond of PAI-1 RCL, following the
Michaëlis complex. Before the hydrolysis of this acyl-enzyme intermediate, the PAI-1 RCL undergoes
major conformational changes and inserts itself into the PAI-1 β-sheet A. At the same time, the tPA in
the intermediate is pulled to the other side of PAI-1, distorted, and deactivated before the hydrolysis
of the acyl-enzyme intermediate can take place.

Human tPA contains a fibronectin type II domain (amino acids 1–50), a growth factor domain
(amino acids 51–91), two kringle domains (amino acids 92–261), an interdomain linker (amino acids
262–275) and a serine protease domain (SPD, amino acids 276–527) [2] – see Fig. 1B in the original
publication [19]. The tPA-SPD is the catalytic domain responsible for the plasminogen activation and
is inhibited by PAI-1. Thus, we used only the recombinant tPA-SPD domain to form the Michaëlis
complex with PAI-1. We generated three mutations in tPA-SPD: S478A (or S195A in the chymotrypsin
numbering) to render the tPA-SPD catalytically inactive, so the Michaëlis complex does not proceed to
a stable, covalent complex; N448Q (or N173Q in the chymotrypsin numbering) to remove the gly-
cosylation on tPA-SPD, increasing the homogeneity of the recombinant protein and facilitating



Table 1
Trypsin digested fragments of recombinant tPA-SPD SPD from MALDI-TOF-MS and the expected fragment mass.

Mr observed (Da) Mr calculated (Da) Peptide sequence

1387.1 1386.8004 53FPPHHLTVILGR64

1335.8 1335.6328 142HEALSPFYSER152

1179.4 1179.6157 239VTNYLDWIR247

878.8 878.4618 231DVPGVYTK238

722.4 722.3831 160LYPSSR165
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protein crystallization; and C395A (or C122A in the chymotrypsin numbering that will be used
throughout the rest of text) mutation to remove the disulfide bond linked to K2 domain – see Fig. 1B
in the original publication [19]. The recombinant tPA-SPD mutant was expressed in P. pastoris and
confirmed by SDS-PAGE and mass spectrometry after trypsin digestion (Table 1).

The recombinant PAI-1 14-1B and tPA-SPD were respectively dialysed into a high-concentration
salt (1 M NaCl) and low pH (20 mM Mes pH 6.1) buffer before the Michaëlis complex formation. This
condition is required to stabilize PAI-1 at its active form. Subsequently, these two proteins in high salt
concentrations and low pH buffer were mixed in a 1:1 M ratio, followed by a dialysis into a low-
concentration salt (150 mM NaCl) and neutral pH (20 mM Tris–HCl pH 7.4) buffer. This dialysing step
ensures the complex formation similar to that in physiologic condition. A further gel filtration
chromatography purification yielded a complex of greater than 99% purity.
2. Materials and methods

2.1. Recombinant protein production

The recombinant PAI-1 mutant 14-1B [21] containing four point mutations (N150H, K154T, Q319L,
and M354I), and a hexa-His-tag was expressed in E. coli, using the expression vector pT7-PL and BL21
cells as previously described [22]. The recombinant tPA-SPD was expressed in P. pastoris X-33. This
strain facilitates the formation of five disulfide bonds (C42-C58, C50-C111, C100-C182, C136-C201,
C168-C182 in chymotrypsin numbering) in tPA-SPD with a high yield about 50 mg recombinant
protein per liter medium – see in the original publication [19].

2.2. The peptide mass fingerprinting of tPA-SPD by MALDI-TOF mass spectrometry

The SDS-PAGE was performed using 15% polyacrylamide gels. Following SDS-PAGE, the gels were
stainedwith 0.1% (w/v) Coomassie brilliant blue R-250 in 25% (v/v) ethanol and 10% (v/v) acetic acid. The gel
digestion was performed using a modified version of previously published protocol [26]. Briefly, the gel
band containing 100 ng tPA-SPD was excised from the 15% two-dimensional SDS-PAGE gel, cut in pieces,
and destained by washing with 50% (v/v) acetonitrile in 100 μl of 25 mM NH4HCO3 for 30 min at room
temperature. The gel pieces were then dried in a SpeedVac Vacuum (Savant Instruments, Holbrook, NY,
USA) and rehydrated at 4 °C for 15 min in 3–5 μl digestion solution (25 mM NH4HCO3 and 12.5 ng/μl
modified sequence-grade trypsin). Then 3–5 μl of digestion solution without trypsin was added to keep the
gel pieces wet during the digestion. After overnight incubation at 37 °C, the digestion was stopped with 5%
trifluoroacetic acid (TFA) for 20 min. The peptides were extracted by 20 μl of 5% TFA for 1 h at 37 °C and
then by 20 μl of 2.5% TFA/50% acetonitrile for 1 h at 37 °C. The combined supernatants were evaporated in
the SpeedVac Vacuum and dissolved in 4 μl 0.5% aqueous TFA for MS analysis.

All mass spectra of MALDI-TOF-MS were obtained on a Bruker REFLEX III MALDI-TOF-MS (Bruker–
Franzen, Bremen, Germany) in positive ion mode at an accelerating voltage of 20 kV with the matrix
of α-cyano-4-hydroxy cinnamic acid. The spectra were internally calibrated using trypsin autolysis
products. The peptide mass fingerprinting obtained was used to search through the SWISS-PROT and
NCBI database by the Mascot search engine (http://mascot.proteomics.com.cn/) with a tolerance of
�þ0.3 D and one missed cleavage site.

http://(mascot.proteomics.com.cn/)
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2.3. X-ray crystallography

The tPA-SPD � PAI-1 Michaëlis complex was formed by mixing tPA-SPD and PAI-1 in a 1:1 M ratio at
low concentration (� 0.5 mg/ml), followed by dialysis into 20 mM Tris–HCl pH 7.4, and 150 mM NaCl,
concentration to 0.5 ml volume for a further gel filtration chromatography purification, which yielded
to a complex of greater than 99% purity. The purified complex was then concentrated to 10 mg/mL
before setting up crystallization trials. Crystals of the tPA-SPD � PAI-1 Michaëlis complex were grown
at 20 °C with the sitting drop method by mixing equal volumes of protein solution and precipitant
solution (8% PEG-6000 and 0.1 M Tris pH 7.4), and appeared quickly within one day. However, the
crystals always appeared as very thin plates, and decayed rapidly in the X-ray beam, posing great

difficulty for X-ray data collection. Most crystals diffracted to only 4–5
Â
e at Shanghai Synchrotron

Radiation Facility (SSRF) BL-17U beam line, and the diffracting spots often appeared as elongated or

splitted shapes. After many crystallization and data collection trials for one and half years, one 3.16
Â
e

data set was finally obtained at SSRF beam line BL17U using 25% glycerol as cryoprotectant at a

wavelength of 0.979
Â
e. The data were processed and scaled using the HKL2000 program package [27].

The crystal belongs to P212121 space group with one complex in the crystallographic asymmetric unit.
The structure of the tPA-SPD � PAI-1 Michaëlis complex was solved by molecular replacement method
using MolRep program [28], which gave very strong and unambiguous solutions. A tPA-SPD molecule
was first positioned inside the crystal lattice using the structure of the tPA-SPD catalytic domain (PDB

code 1A5H) [29] as a searching model and all the X-ray data up to 3.3
Â
e. The molecular replacement

using MolRep gave a contrast of 12.33, a signal to sigma ratio for translational function of 16.02, and a
correlation coefficient of 0.365. Next, the position of PAI-1 was searched using the model of active
stable variant of PAI-1 (Protein Data Bank code 1DVM) [30] while fixing the already positioned tPA-
SPD model, giving only one translational function with a signal to sigma ratio of 19.4, and a corre-
lation coefficient of 0.538. The molecular replacement model was subjected to iterative refinement
and manual model rebuilding using Refmac [31] and Coot [32], respectively, giving a final R factor and
Rfree factor of 0.20 and 0.27, respectively. The structure was validated with PROCHECK [33] and
analyzed by PyMOL [34] and PISA [35]. The final refined crystal structure of tPA-SPD � PAI-1 Michaëlis
complex was deposited in PDB with the code 5BRR.
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