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Abstract

Whether HIV-1 evolution in infected individuals is dominated by deterministic or stochastic effects remains unclear because
current estimates of the effective population size of HIV-1 in vivo, Ne, are widely varying. Models assuming HIV-1 evolution
to be neutral estimate Ne,102–104, smaller than the inverse mutation rate of HIV-1 (,105), implying the predominance of
stochastic forces. In contrast, a model that includes selection estimates Ne.105, suggesting that deterministic forces would
hold sway. The consequent uncertainty in the nature of HIV-1 evolution compromises our ability to describe disease
progression and outcomes of therapy. We perform detailed bit-string simulations of viral evolution that consider large
genome lengths and incorporate the key evolutionary processes underlying the genomic diversification of HIV-1 in infected
individuals, namely, mutation, multiple infections of cells, recombination, selection, and epistatic interactions between
multiple loci. Our simulations describe quantitatively the evolution of HIV-1 diversity and divergence in patients. From
comparisons of our simulations with patient data, we estimate Ne,103–104, implying predominantly stochastic evolution.
Interestingly, we find that Ne and the viral generation time are correlated with the disease progression time, presenting a
route to a priori prediction of disease progression in patients. Further, we show that the previous estimate of Ne.105

reduces as the frequencies of multiple infections of cells and recombination assumed increase. Our simulations with
Ne,103–104 may be employed to estimate markers of disease progression and outcomes of therapy that depend on the
evolution of viral diversity and divergence.
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Introduction

The within-host genomic evolution of HIV-1 is driven by both

deterministic forces such as selection and stochastic forces such as

random genetic drift. The large census population of HIV-1

infected cells, ,107–108 in a typical patient [1], suggests the

predominance of deterministic forces underlying HIV-1 evolution.

Yet, inter-patient variations in the duration of the asymptomatic

phase of infection, in the set point viral load, and in the rates and

patterns of the emergence of drug resistant and immune escape

mutants are large [2]. For instance, genotypic resistance to the

protease inhibitor ritonavir arose at widely different times and

through distinct combinations of mutations in different patients

[3]. One reason for these inter-patient variations may be variations

in host-genetic factors [2,4]. Recently, variation in the copy

number of the CCL3L1 gene, a potent suppressor of HIV-1, was

shown to be associated with the variation in the susceptibility of

individuals to HIV-1 [5]. Inter-patient variations may also arise if

stochastic forces underlying HIV-1 evolution dominate determin-

istic forces. The relative influence of stochastic forces is determined

by the within-host effective population size, Ne: despite the large

census population, stochastic forces may dominate if Ne is small

[6]. Current estimates of Ne are widely varying, ranging from a few

hundred to .105 cells, which leaves unclear the nature of HIV-1

evolution in vivo and limits our ability to describe disease

progression and outcomes of therapy [7].

Ne is defined as the size of an idealized population that has the

same population genetic properties as that of the natural

population [7,8]. To estimate Ne, a calibration quantity that is

measurable in the natural population, such as genomic diversity, is

predicted using a model of the evolution of an idealized

population, such as the Wright-Fisher model. The calibration

quantity is a function of the population size, C, in the idealized

model. Ne is then identified as that value of C at which the

predicted value of the calibration quantity matches the value

measured in the natural population. Accurate estimation of Ne

relies on an idealized model that closely mimics the evolution of

the calibration quantity in the natural population [7]. The

idealized model with C = Ne may then be employed to predict

other quantities that describe the behaviour of the natural

population but are difficult to measure so long as the evolutionary

forces that govern the latter quantities are the same as those

underlying the calibration quantity and incorporated in the

idealized model [7].

To estimate Ne for HIV-1 in vivo, several studies have employed

idealized models that assume HIV-1 evolution to be neutral [3,9–
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13]; i.e., that genomic variations do not lead to variation in fitness

and therefore selective forces are inconsequential. By comparisons

of model predictions with data on polymorphisms in the env or the

gag-pol region of HIV-1, the latter studies obtained Ne,102–104.

These latter studies employed several tests to ascertain the

predominant neutrality of HIV-1 evolution. More recent evidence,

however, points to significant selective pressures on both the env

and the gag-pol regions [7,12,14], rendering uncertain the estimates

of Ne obtained by neutral models. Rouzine and Coffin considered

HIV-1 evolution with selection and predicted the frequency of the

least abundant haplotype in a two-locus/two-allele model [15]. By

comparison with data from env and pro regions, the latter model

yielded Ne.105. The latter model, however, did not include

recombination. Growing evidence [16,17], including the observa-

tion of circulating recombinant forms of HIV-1 as well as

recombinant forms unique to individuals [18], points to the

significance of recombination in the evolution of HIV-1.

Recombination alters the association of mutations and influences

the prevalence of haplotypes [19-22], which in turn may affect the

estimate of Ne obtained by Rouzine and Coffin. It is of importance

therefore to estimate Ne using a model of HIV-1 evolution that

incorporates both selection and recombination.

Substantial efforts are ongoing to describe HIV-1 evolution in

the presence of recombination [23-35]. Recent advances in

mathematical modelling and stochastic simulations have provided

valuable insights into the role of recombination in the genomic

diversification of HIV-1 in vivo, particularly in the context of the

development of resistance to antiretroviral therapy (reviewed in

[22]). Specifically, the influence of recombination is predicted to

depend sensitively on Ne and on the nature of fitness interactions

between loci, characterized by epistasis: When Ne is small,

recombination tends to lower viral genomic diversity independent

of epistasis, whereas when Ne is large, recombination lowers

(enhances) diversity if epistasis is positive (negative). Further,

recombination is also predicted to lower the waiting time for the

emergence of viral genomes carrying new, potentially favourable

combinations of mutations.

Our aim is to employ a model of HIV-1 evolution that

accurately mimics viral genomic diversification in infected

individuals as a function of the population size and estimate Ne

from comparisons of model predictions with patient data.

Analytical models of HIV-1 evolution with recombination allow

description of viral evolution not only at the extremes of very small

and very large Ne, where drift and selection, respectively,

dominate, but also at intermediate values of Ne where both

selection and drift remain important simultaneously [24,27,28,

31,33-35]. The models, however, are restricted to a small number

of loci and/or to simple (multiplicative) fitness landscapes.

Experimental data on viral diversification, in contrast, is available

over genomic regions that are up to several hundred nucleotides

long (e.g., see [36]). Besides, the best available description of the

HIV-1 fitness landscape [37] points to significant deviations from a

simple multiplicative fitness profile. To overcome these limitations

of analytical models, we have recently developed bit-string

simulations of the within-host genomic diversification of HIV-1

[32]. Our simulations consider large genome lengths and

incorporate mutation, infection of cells by multiple virions,

recombination, fitness selection, and epistatic interactions between

multiple loci, thereby presenting a detailed description of the

evolution of viral diversity and divergence in infected individuals

[32]. In particular, our simulations elucidate the role of

recombination in HIV-1 diversification as a function of Ne and

with the experimentally determined fitness landscape. Here, we

apply the simulations to describe patient data and obtain estimates

of Ne. We examine the dependence of our estimates of Ne on the

frequency of multiple infections of cells and on the nature of the

fitness landscape, which remain to be established in vivo. Finally,

we revisit the large estimate of Ne obtained by Rouzine and Coffin

[15] by incorporating multiple infections of cells and recombina-

tion in their two-locus/two-allele model.

Results

Simulations of the within-host genomic diversification of
HIV-1

We perform simulations to predict the evolution of viral

diversity, dG, and divergence, dS, in an HIV-1 infected individual

(Methods). Diversity is a measure of the genomic variation in the

viral population at any given time, whereas divergence is a

measure of the deviation of the viral genomes from the founder

strain. Simulations begin with the synchronous infection of a fixed

population, C, of cells by identical homozygous virions. Following

infection, viral RNA are reverse transcribed to proviral DNA,

during which process mutation and recombination introduce

genomic variation. Proviral DNA are then transcribed into viral

RNA, which are randomly assorted into pairs and released as new

virions. New virions are chosen according to their fitness to infect

the next generation of uninfected cells, and the cycle is repeated.

We employ parameter values representative of HIV-1 infection

in vivo. We consider a viral genome length of L = 100 nucleotides,

which spans the experimental fitness landscape [37] (Methods) and

captures expected epistatic interactions between multiple loci and

is also similar to the genome lengths examined in the experiments

we consider [36] (see below). We assume that mutations occur

independently at each of the L sites at the rate m = 361025

substitutions per site per replication [38]. Because a majority of

HIV mutations are transitions [38], we ignore transversions,

insertions and deletions. Following recent estimates, we choose the

recombination rate r = 8.361024 crossovers per site per replica-

tion [17,31]. The relative fitness of the founder strain, determined

by j (Methods), remains unknown. Recent studies show that the

founder strain evolves under selective forces and is distinct from

the strain(s) dominant in the chronic infection phase [39–41]. In a

previous study, we found that j,0.05–0.1 provides best fits to the

evolution of divergence and diversity in the two patients examined

[32]. This is in accordance with the maximum divergence of ,0.1

in the patient data we consider [36]. Here, we therefore set j= 0.1.

We let selection follow the fitness landscape determined experi-

mentally [37] (Methods). We also examine the effects of alternative

(multiplicative) fitness landscapes on our estimates of Ne. The

frequency of multiple infections of cells in vivo remains uncertain.

Infections of individual cells by multiple virions allow the

formation of heterozygous progeny virions and set the stage for

recombination to introduce genomic variation [42]. Jung et al.

[16] found that infected splenocytes in the two patients they

examined harbored between 1 and 8 proviruses with a mean of 3–

4 proviruses per cell. In contrast, Josefsson et al. [43] recently

observed that a vast majority of the peripheral blood mononuclear

cells in four patients harbored single proviruses. Here, we

therefore perform simulations with both these patterns of multiple

infections of cells: We first follow Jung et al. [16] and let each cell

be infected by M = 3 virions. We then repeat our simulations with

M drawn from a distribution that follows from a model of viral

dynamics (Methods) and that mimics the observations of Josefsson

et al. [43]. Although the viral burst size is large, ,102–104

[1,44,45] only a few (2–3 per cell [46]) of the virions produced may

be infectious [46–48]. More recent estimates of the basic

reproductive ratio of HIV-1 in vivo suggest the production of 6–8

Within-Host Effective Population Size of HIV-1

PLoS ONE | www.plosone.org 2 January 2011 | Volume 6 | Issue 1 | e14531



infectious virions per cell [49]. Here, we let each cell produce P = 5

infectious progeny virions [32]. We let simulations proceed to

4000 generations (,10–12 years).

Time-evolution of viral diversity and divergence
In Fig. 1, we present the evolution of dG and dS, and of the mean

viral fitness, f, with the number of generations for different values

of the population size, C. We employ M = 3 and the experimental

fitness landscape (Methods). Initially, dG and dS are zero because

infection begins with identical genomes. As infection progresses,

mutations accumulate and both dG and dS rise. Recombination

may also accelerate the accumulation of mutations and enhance

viral diversification (see below) [32]. Mutations typically incur a

fitness penalty. Mutant genomes may thus be lost due to selection.

Selection drives evolution towards the fittest sequence. f conse-

quently rises. At the same time, genomes may be lost due to

random genetic drift. Eventually, a balance between mutation and

recombination, which enhance viral diversification, and selection

and drift, which constrain viral diversification, is reached;

accordingly, dG, dS, and f attain equilibrium values.

In a previous study, we have examined in detail the influence of

variations in parameter values on the evolution of dG, dS, and f

[32]. We found that mutations alone result in an equilibrium with

dG = dS = 0.5, which follows from a balance between forward and

back mutations, both assumed to be equally likely. An increase in

the frequency of multiple infections of cells, M, resulted in an

increase in dG because more diverse genomes formed proviruses as

M increased, effectively lowering drift. dS, however, was unaffected

by variations in M. Selection lowered dG as genomes close to the

fittest sequence were increasingly favored. Further, when the fittest

sequence was also the founder sequence, selection also lowered dS,

as selection then limited diversification from the founder sequence.

The influence of recombination was dependent on the nature of

epistatic interactions between loci and on the population size, C.

When C was small, recombination increased dG, whereas when C

was large, recombination lowered dG. In both cases, however,

recombination enhanced f. This influence of recombination is

consistent with current population genetics theories [19–21]:

When C is small, random genetic drift creates negative linkage

disequilibrium according to the Hill-Robertson effect [50].

Recombination then lowers the magnitude of this linkage

disequilibrium and enhances viral diversity. When C is large,

linkage disequilibrium has the same sign as that of epistasis [51].

The fitness landscape we considered has a mean positive epistasis

[37]. Recombination is then expected to lower the magnitude of

the resulting positive linkage disequilibrium and cause a decrease

of viral diversity. We recognize though that the influence of

recombination depends not only on the mean but also the

distribution of epistasis values [52].

Of importance here is that dG and dS are sensitive to C. We find

that dG, dS, and f increase with C (Fig. 1). As C increases, the

influence of drift diminishes allowing greater viral diversification.

Accordingly, dG increases with C. At the same time, the influence

of selection increases resulting in higher values of f. Stronger

selection results in greater evolution towards the fittest sequence

and, in this case, away from the founder sequence. Consequently,

dS also increases with C. This sensitivity of dG and dS to C allows

estimation of Ne by comparison of our simulations with data from

patients.

Estimation of Ne from comparisons with patient data
In one of the most comprehensive longitudinal studies,

Shankarappa et al. determined the evolution of diversity and

divergence of the C2-V5 region of the env gene over a period of 6–

12 years post seroconversion in nine patients [36]. We compare

our predictions with their data reported as the mean pairwise

distance between viral DNA sequences determined using either a

Kimura 2-parameter model or a general time-reversible model

with site-to-site variation in substitution rates, both methods

yielding similar results. The Kimura 2-parameter distance reduces

to the Hamming distance when distances are small [53], as is

observed with the data here, allowing us to make direct

comparisons of our simulation results with the data.

With data from each patient, we compare our predictions of dG

and dS for different values of C, viz., 200, 400, 500, 1000, 1500,

5000, 10000, and 20000 cells, and a range of values of the viral

generation time, t, viz., 0.6 to 2.0 days per replication [10,11,

54,55] in increments of 0.1 days per replication. t may vary

substantially across patients [10,11,14,54,55]. For each patient, we

find the sum of squares of the errors (SSE) between experimental

data and our predictions of dG and dS for different values of C and t

Figure 1. Simulations of viral genomic diversification. The
evolution of (A) viral diversity, dG, (B) divergence, dS, and (C) average
fitness, f, with generations predicted by our simulations for different
population sizes, C. Each cell is assumed to be infected with M = 3
virions. Error bars represent standard deviations.
doi:10.1371/journal.pone.0014531.g001

Within-Host Effective Population Size of HIV-1
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(Fig. 2). The combination of C and t that results in the lowest SSE

for a patient yields the best fit of our predictions to data from that

patient. The best-fit predictions are shown in Fig. 3. Our

simulations provide good fits to data from each of the nine

patients. The best fit values of C yield Ne (Table 1). We thus find

that the mean Ne is ,2400 (range 400–10000) for these patients.

The mean t is 1.1 day (range 0.7–1.7 day).

Correlation with disease progression
Remarkably, we find that both Ne and t are strongly correlated

with the disease progression time, i.e., the time it takes following

seroconversion for the CD4+ T cell count to drop below 200 cells/

mL (Fig. 4). (Pearson correlation coefficients are 0.91 and 0.88,

respectively.) Thus, a small Ne and/or a small t would imply rapid

disease progression. Of the nine patients considered here, seven

were typical progressors and two (Patients 9 and 11) were initial

non-progressors [36]. Indeed, we find that both Ne and t are the

highest for the latter two patients (Table 1). A small t would imply

fast replication and hence rapid disease progression. The origin of

the correlation between Ne and the progression time remains

unclear. Nonetheless, the strong correlations we observe present a

route to a priori estimation of the disease progression time in

patients.

Influence of the frequency of multiple infections of cells
We next examine the effect of a smaller frequency of multiple

infections, where M is drawn from a distribution based on a model

of viral dynamics (Methods) and that is similar to the observations

of Josefsson et al. [43]. Thus, ,77% of the cells are singly infected,

,19% are doubly infected, and ,4% are triply infected. In Fig. 5,

we present the resulting evolution of dG, dS, and f for different

values of C. We find the trends to be similar to those in Fig. 1,

except that both dG and dS are smaller for any given value of C

compared to those in Fig. 1. Accordingly, we expect Ne to be

higher. In Fig. 6, we present the sum of squares of the errors (SSE)

between patient data and our predictions of dG and dS for different

values of C and t, where we vary C from 200 to 100000 cells and t
from 0.6 to 2.0 days per replication. The resulting best-fits are

presented in Fig. 7 and estimates of Ne and t in Table 1. We find

that the mean Ne is ,15500 (range 1500–100000), higher than the

value obtained with M = 3. The mean t is 1.2 day (range 0.7–1.8

day), close to the value obtained with M = 3. We note that

although Ne is higher for each patient compared to the

corresponding estimates obtained with M = 3, the values of Ne

are all in the range 103–104 except for one patient (Patient 11) for

whom Ne = 105, indicating the predominance of stochastic forces

underlying HIV-1 evolution. Again, we find that both Ne and t are

Figure 2. Estimation of Ne from comparisons with data from patients. Sum of squares of the errors (SSE) between data from patients [36]
and our predictions of viral diversity, dG, and divergence, dS, for different values of the population size, C, (Fig. 1) and the viral generation time, t,
shown for each of the nine patients. C and t that yield the lowest SSE provide the best fit to the data. The best-fit value of C yields Ne (Table 1).
doi:10.1371/journal.pone.0014531.g002

Within-Host Effective Population Size of HIV-1
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correlated with the disease progression time, although the

correlations are weaker than with M = 3 (Fig. 4).

Influence of the fitness landscape
We examine next whether the nature of the fitness landscape

has any influence on our estimates of Ne. In the absence of

information on the fitness landscape in vivo, a multiplicative fitness

landscape, which assumes that fi = exp(-sdiFL), has been employed

in recent studies [28,30,35], where diF is the normalized Hamming

distance of sequence i from the fittest sequence and s is the fitness

penalty per mutation. Here, we perform calculations with the

latter landscape for two values of s, viz., 0.01 and 0.001 (see [35]).

M is drawn from a distribution based on a model of viral dynamics

mentioned above. We find that with s = 0.01, both dG and dS

assume equilibrium values of ,0.01 over a wide range of values of

C, which is inconsistent with patient data (Fig. 8). With s = 0.001,

the evolution of dG and dS is consistent with patient data over the

range C = 200–10000 (Fig. 8). Thus, the resulting values of Ne

Figure 3. Fits of our simulations to data from patients. Best-fit predictions of our simulations (solid lines) presented with experimental data
(symbols) of the evolution of viral diversity, dG, (cyan) and divergence, dS, (purple) for each patient. Each cell is assumed to be infected with M = 3
virions in our simulations. The values of Ne (cells) and t (days) employed for the predictions are indicated.
doi:10.1371/journal.pone.0014531.g003

Table 1. Best-fit parameter estimates and the disease progression time.

Patient
Effective population
size, Ne (cells) (Fig. 3)

Viral generation
time, t (days) (Fig. 3)

Effective population
size, Ne (cells) (Fig. 7)

Viral generation
time, t (days) (Fig. 7)

Disease progression
time (months) [36]

1 400 0.8 1500 1.0 78

2 1000 1.0 5000 1.2 96

3 1000 1.1 5000 1.3 84

5 500 0.7 1500 0.7 72

6 400 0.7 1500 0.9 60

7 1500 1.0 5000 1.0 78

8 1500 1.2 10000 1.4 72

9 5000 1.4 10000 1.3 132

11 10000 1.7 100000 1.8 144

Mean 2367 1.1 15500 1.2 91

Best-fit estimates of Ne and t obtained by comparison of our simulations with data of viral diversity and divergence from different patients [36] (Figs. 3 and 7). Also listed
are the disease progression times determined experimentally [36].
doi:10.1371/journal.pone.0014531.t001

Within-Host Effective Population Size of HIV-1
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again lie in the range of 200–10000. The nature of the fitness

landscape thus does not appear to influence our estimates of Ne

substantially.

Estimation of Ne using the linkage disequilibrium test:
the two-locus/two-allele model

Our estimates of Ne above are consistently smaller than those

obtained by Rouzine and Coffin [15]. Here, we examine whether

including multiple infections of cells and recombination in the

simulations of Rouzine and Coffin alters the resulting estimates of

Ne.

Rouzine and Coffin argue that deep in the stochastic regime,

one of the four haplotypes in a two-locus/two-allele model is

expected to be underrepresented because of the strong influence of

drift. As C increases, the influence of drift weakens and the

frequency of the least abundant haplotype (lhf) increases.

Comparison of model predictions of lhf versus C with experimental

observations then yields an estimate of Ne. We apply our

simulations to predict lhf in a two-locus/two-allele model, akin

to the model of Rouzine and Coffin, and obtain estimates of Ne by

comparison with the data on pro and env regions employed by

Rouzine and Coffin [15].

To validate our results against those of Rouzine and Coffin, we

first perform simulations under the conditions they employ. We let

L = 2 (two-locus/two-allele model). The fitness landscape is

altered: the two single mutants have a fitness 1-s and the double

mutant (1-s)2 relative to the wild-type. We let the founder sequence

be the double mutant. Each cell is infected with a single virion

(M = 1). Mutations occur with a probability m. A cell infected by a

provirus with fitness (1-s) is assumed to produce P = 20(1-s)

progeny virions. Virions are then chosen randomly for infection.

In each generation, the frequency of the least abundant haplotype

is determined along with the frequencies of each of the alleles at

Figure 4. Correlations with disease progression. Correlation of
(A) Ne and (B) t with the disease progression time, or the time from
seroconversion for the CD4+ T cell count to fall to 200 cells/mL [36].
Symbols represent data obtained from our simulations with the
frequency of multiple infections, M, = 3 (circles) and drawn from a
distribution based on a viral dynamics model (triangles) (see text).
Linear fits (lines) to the data yield Pearson correlation coefficients of (A)
0.91 (circles) and 0.74 (triangles) and (B) 0.88 (circles) and 0.75
(triangles). Note that the x-axis in (A) is plotted on a logarithmic scale.
doi:10.1371/journal.pone.0014531.g004

Figure 5. Simulations of viral genomic diversification with a
low frequency of multiple infections. The evolution of (A) viral
diversity, dG, (B) divergence, dS, and (C) average fitness, f, with
generations predicted by our simulations for different population sizes,
C. Each cell is assumed to be infected with M virions drawn from a
distribution based on a viral dynamics model (see text). Error bars
represent standard deviations.
doi:10.1371/journal.pone.0014531.g005

Within-Host Effective Population Size of HIV-1
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the individual loci. The frequency of the least abundant haplotype

is then averaged over those generations where the frequency of

each allele is .25%. Several realizations are averaged to obtain

the expected frequency of the least abundant haplotype (lhf).

Following Rouzine and Coffin, we perform simulations over a

range of values of m while keeping C fixed at 50 cells for neutral

evolution (s = 0) and 5000 cells for evolution with selection

(s = 0.1). For each m, Cm/(361025) yields an equivalent population

size corresponding to the HIV mutation rate of 361025

substitutions per site per replication. Ne is then obtained as that

value of the equivalent population size at which predictions from

simulations agree with experimental estimates of lhf. We find that

our simulations are in excellent agreement with the results of

Rouzine and Coffin both for neutral evolution and for evolution

with selection (Fig. 9). These simulations yield Ne,105 for

evolution with selection, as deduced by Rouzine and Coffin. We

note, as recognized by Rouzine and Coffin, that the mean

experimental lhf<0.09 yields Ne,105, whereas the 95% confi-

dence limit on the experimental data extends up to lhf<0.14.

Consequently, Ne,105 is a lower bound and Ne may even be

,106.

Recombination can increase lhf by inducing the association of

mutations and therefore lower Ne. We therefore include multiple

infections of cells and recombination next in our simulations. We

first let each cell be infected with M = 3 virions. In addition to

mutation, recombination occurs at rl crossovers per replication,

where l = 71 nucleotides is the mean separation between the two

loci [15], and r = 8.361024 crossovers per position per replication

is the recombination rate. A cell infected by proviruses with mean

fitness (1{�ss) is assumed to produce P = 20(1{�ss) progeny virions.

We perform simulations with a fixed m = 361025 substitutions per

site per replication over a range of values of C and estimate Ne as

that value of C at which predictions agree with experimental

estimates of lhf. We find that now Ne,102–104 (corresponding to

the 95% confidence interval on lhf) (Fig. 9), consistent with our

estimates of Ne above (Fig. 3).

Next, we let M follow a distribution determined by a viral

dynamics model (Methods). Here, we first assume that ki, the rate

constant of the infection of a cell already infected with i proviruses,

is equal to k0, the rate constant of the infection of uninfected cells,

so that ,70% of the cells are singly infected, ,21% are doubly

infected, and so on. Then, we find that Ne,104 cells, higher than

the estimate with M = 3 above. Next, following earlier studies

[31,33], we let ki = 0.7ki-1, which reduces the frequency of multiple

infections even further, so that ,77% of the cells are singly

infected, ,19% are doubly infected, and so on. With this

distribution, we find Ne,105, consistent with the estimate of

Rouzine and Coffin. Note that when we ignore multiple infections

of cells (M = 1), our simulations agree with those of Rouzine and

Coffin. Thus greater the prevalence of multiple infections of cells

Figure 6. Estimation of Ne from comparisons with data from patients. Sum of squares of the errors (SSE) between data from patients [36]
and our predictions of viral diversity, dG, and divergence, dS, for different values of the population size, C, (Fig. 5) and the viral generation time, t,
shown for each of the nine patients. C and t that yield the lowest SSE provide the best fit to the data. The best-fit value of C yields Ne (Table 1).
doi:10.1371/journal.pone.0014531.g006
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and recombination, smaller is the estimate of Ne obtained by the

linkage disequilibrium test employed by Rouzine and Coffin.

Discussion

The widely varying prevalent estimates of Ne have been the

subject of an ongoing debate [7] and have confounded

descriptions of HIV-1 evolution, disease progression, and

outcomes of therapy. We perform detailed bit-string simulations

that closely mimic the evolution of HIV-1 diversity and divergence

in patients. With parameter values representative of HIV-1

infection in vivo, our simulations provide good fits to longitudinal

data of viral diversity and divergence over several years from nine

patients [36] and yield estimates of Ne. We find that Ne,103–104,

substantially smaller than the inverse mutation rate of HIV-1,

implying the predominance of stochastic forces underlying HIV-1

evolution in vivo. The small value of Ne we estimate appears robust

to variations in the frequency of multiple infections of cells and the

fitness landscape.

The best-fit values of the viral generation time, t, we obtain are

in good agreement with prevalent estimates. We find that for the

nine patients we consider the mean t is 1.1–1.2 days (range 0.7–

1.8 days). Previous studies estimate t to be ,1.2 days (range 0.65–

2.97 days) using a coalescent approach [10], in the range 0.73–

2.43 days using a pseudo-maximum likelihood approach [11], and

,2 days from viral dynamics modeling [54,55].

We find remarkably that Ne and t are correlated with disease

progression. Smaller values of Ne and t correspond to smaller

disease progression times, i.e., the time for the CD4+ T cell count

to drop below 200 copies/mL, and thus to faster disease progre-

ssion. A small t implies fast viral replication and hence rapid

Figure 7. Fits of our simulations to data from patients. Best-fit predictions of our simulations (solid lines) presented with experimental data
(symbols) of the evolution of viral diversity, dG, (cyan) and divergence, dS, (purple) for each patient. Each cell is assumed to be infected with M virions
drawn from a distribution based on a viral dynamics model (see text). The values of Ne (cells) and t (days) employed for the predictions are indicated.
doi:10.1371/journal.pone.0014531.g007

Figure 8. Simulations of viral genomic diversification with a
multiplicative fitness landscape and comparisons with patient
data. The evolution of viral diversity, dG, with generations predicted by
our simulations (lines) for different population sizes C = 200 (solid) and
10000 (dashed) with a multiplicative fitness landscape (see text) with
s = 0.01 (pink) and 0.001 (cyan). Each cell is assumed to be infected with
M virions drawn from a distribution based on a viral dynamics model
(see text). Different symbols are data from nine different patients [36]
shown also in Figs. 3 and 7.
doi:10.1371/journal.pone.0014531.g008
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disease progression. The origins of the correlation between Ne and

the progression time remain to be elucidated. Nonetheless, the

strong correlations between Ne and t and the progression time

imply that estimation of Ne or t, either through data of viral

diversity and divergence as employed here or through independent

techniques [10,11,54,55], may allow a priori estimation of the

disease progression time. Whether the correlations we observe are

applicable over a larger number of patients remains to be

ascertained.

Our simulations present an explanation of the wide variation in

the prevalent estimates of Ne. Whereas most studies estimate

Ne,102–104 [3,9–13], the study by Rouzine and Coffin obtains

Ne.105 [15]. Previously, the large latter estimate has been

suggested to arise from a bias introduced by restriction to data

on polymorphic loci [13]: Rouzine and Coffin only consider loci

where each allele is present in frequencies between 25% and 75%.

Kouyos et al. [7] point out, however, that Rouzine and Coffin also

restrict their simulations to similar polymorphic loci, thus

eliminating any bias. Our simulations indicate that inclusion of

multiple infections and recombination in the model of Rouzine

and Coffin lowers Ne. The multiplicative fitness profile employed

in the latter model corresponds to vanishing epistasis. Thus, at any

population size, random genetic drift produces negative linkage

disequilibrium according to the Hill-Robertson effect [50].

Recombination lowers the absolute value of this linkage

disequilibrium and results in an increase in viral diversity [21,22,

32]. In effect, the frequency of the least abundant haplotype

increases at any population size and results in lower Ne. Thus, as

the frequency of multiple infections increased from ,80% cells

being singly infected (M drawn from a distribution based on a viral

dynamics model) to all cells triply infected (M = 3), Ne decreased

from ,105, in agreement with Rouzine and Coffin, to ,102

(Fig. 9).

We note that with the same frequency of multiple infections (M

drawn from a distribution based on a viral dynamics model) and

recombination, our simulations with the multi-locus model

(L = 100) and comparisons with patient data of viral diversity

yield Ne,104 (Figs. 7 and 8), smaller than the value obtained by

Rouzine and Coffin. We employ the same simulations to predict

viral diversity and divergence (dG and dS) as well as the frequency of

the least abundant haplotype (lhf), the latter quantity employed by

Rouzine and Coffin. Thus, the difference in the resulting estimates

of Ne may be due to variations in model parameter values or due to

the different calibration quantities employed. The differences in

the model parameters we employ are in the genome length L, the

fitness penalty s, and the virion production rate, P. Model

predictions are weakly sensitive to variations in P (not shown). We

employ L = 100 and s = 0.001 in our simulations of dG and dS and

L = 2 and s = 0.1 for predicting lhf. The parameter values are

chosen to match experimental observations. For instance, with

s = 0.1, our simulations are unable to capture experimental

observations of dG and dS (see Fig. 8). It is thus possible that

mutations at the sites considered by Rouzine and Coffin may

correspond to s = 0.1, whereas those in the patient data of

Shankarappa et al. may be described by s = 0.001. If the latter

possibility were true, then the difference in the estimate of Ne may

be attributed to the different calibration quantities employed; lhf

may tend to yield higher values of Ne than dG and dS with the

present model of HIV-1 evolution.

Several factors may underlie the small values of Ne we estimate

compared to the census population of HIV-1 in vivo, e.g.,

bottlenecks introduced by the immune system [3,7,9–13],

asynchronous infections of cells [56], pseudohitchhiking [57],

metapopulation structure [58], and variations in the progeny

number across cells, the effects of which are yet to be fully

elucidated.

Our study has limitations. First, the fitness landscape employed

in our simulations (Fig. 10) has been determined for the reverse

transcriptase and protease regions of HIV-1, whereas our

simulations concern the env region. The fitness landscape has

been determined experimentally by considering interactions

between large numbers of mutations (up to ,100) [37], and is

thus the most detailed description of HIV-1 fitness available.

Remarkably, the landscape indicates that the average fitness of

genomes depends on the number of mutations (Hamming

distance) and not on specific mutations, emphasizing the general

nature of the fitness interactions. Thus, although individual

mutations and fitness interactions between specific sites may be

different for different regions of HIV-1, the generic interactions

between loci are expected to be similar and captured by the

experimental fitness landscape, allowing us to employ the

landscape to describe the evolution of the env region of HIV-1.

Second, in some of the nine patients we consider, viral diversity

rises to a peak and then drops to a plateau, whereas our

simulations yield best-fits that predict a monotonic rise of the

diversity to the plateau (Fig. 3). Our simulations do predict the

non-monotonic evolution of diversity as the result of an interplay

between mutation and fitness selection but only over certain

ranges of mutation rates and fitness penalties (s = 0.01 in Fig. 8;

also see [32]). For the parameter values that yield the best-fits to

the patient data, our simulations predict a monotonic increase of

diversity. The non-monotonic evolution of diversity could also be

Figure 9. Estimation of Ne using the linkage disequilibrium test.
The frequency of the least abundant haplotype in a two-locus/two-
allele model determined from our simulations (solid symbols) and by
Rouzine and Coffin [15] (open symbols) as functions of the population
size, C, assuming neutral evolution (purple), evolution with selection
(cyan), and evolution with selection and recombination where the
number of infections per cell is constant at 3 (blue), or follows a
distribution determined from a viral dynamics model (see text) with
ki = k0 (green) or ki = 0.7ki-1 (orange). Error bars represent standard
deviations. Values of C at which predictions from simulations match
experimental estimates [15] of the least abundant haplotype frequency
(black line) yield Ne. 95% confidence limits on the experimental data are
also shown (dotted line).
doi:10.1371/journal.pone.0014531.g009
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the result of HIV mediated collapse of the immune system, i.e.,

immune relaxation [59], which our simulations ignore.

Nonetheless, our simulations incorporate the key evolutionary

forces that govern HIV-1 diversification in vivo and describe

quantitatively experimental observations of the time-evolution of

viral diversity and divergence in patients over extended durations.

Our simulations may thus be applied to predict determinants of

disease progression and outcomes of therapy that are functions of

viral diversity and divergence, such as the prevalence of drug-

resistant strains prior to the onset of therapy, the role of

recombination on the development of drug resistance, and the

time of emergence and growth of drug-resistant and immune

escape mutants [7,22,25,33,34,60], which have remained difficult

to determine experimentally.

The predominance of stochastic forces predicted by our estimates

of Ne has further implications for describing the within-host

evolution of HIV-1 [7]. For instance, variations in disease

progression may arise not only from host-genetic factors [4,5,61]

but also from stochastic effects. A recent study attributed 15% of the

inter-patient variation in the viral load in the chronic asymptomatic

phase of infection to polymorphisms in a few host genes [61]. It

would be of interest to identify the origins of the remaining 85% of

the variation. Stochastic viral evolution implies that not all of the

inter-patient variations may be attributable to variations in host-

genetic factors. For instance, two individuals with identical genetic

makeup may have distinct set point viral loads because viral

genomes with different fitness may get fixed in the two patients by

sheer chance. Accounting for stochastic variations in markers of

disease state, for which our simulations present a framework, would

lead to more robust associations between host-genetic factors and

disease progression and facilitate more accurate identification of

central players in HIV-1 pathogenesis.

Methods

Simulations of the within-host genomic diversification of
HIV

We consider a fixed population, C, of uninfected cells exposed to

a pool of V virions. Each virion consists of two RNA genomes

represented by bit-strings of length L each. Infection begins with a

pool of identical homozygous virions. We generate a sequence F of

L nucleotides chosen randomly from A, G, C, and U. We let F be

the fittest sequence and assign it the relative fitness of 1. We next

generate the founder sequence, H, by mutating F in a fraction j of

positions, chosen randomly. The founder sequence constitutes all

the viral genomes in the initial viral pool [39].

We let infections occur in discrete generations. In any

generation, each cell is infected by M virions drawn from the

viral pool. A virion is chosen for infection with a probability equal

to its relative fitness. Following infection, reverse transcription

converts the viral RNA in each virion to proviral DNA of length L.

Here, mutation and recombination introduce genomic variations.

Mutations occur at m substitutions per site per replication and

recombination occurs at r crossovers per site per replication. The

proviral DNA are then transcribed into viral RNA, which are

assorted randomly into pairs and released as new virions. Each cell

produces P progeny virions. The progeny virions form the viral

pool for infection of the next generation of uninfected cells.

In each generation, we compute the average diversity,

dG~2(
PQ{1

i~1

PQ
j~iz1

dij)

,
Q(Q{1), of the Q proviruses present in

that generation and their average divergence from the founder

sequence, dS~
PQ
i~1

diH

�
Q, where dij is the Hamming distance per

position between genomes i and j, and H represents the founder

sequence. The Hamming distance between two genomes is the

number of positions at which the two genomes differ. We also

compute the average fitness of the V virions in each generation,

f ~
PV

k~1

f (k)

�
V . The fitness f(k) of virion k containing genomes i

and j is assumed to be the average (fi+fj)/2, where fi is the fitness of

genome i (see below).

Several realizations of the infection process are averaged to

obtain the expected evolution of dG, dS and f. The simulations are

implemented using a computer program written in C++.

Fitness landscape
For selection, we employ the recently determined experimental

fitness landscape for HIV-1, which quantifies the fitness of a

genome, fi, as a function of the Hamming distance between the

amino acid sequence of that genome and that of the fittest

genome, F [37]. The average ratio of non-synonymous to

synonymous substitution rates in the env gene for the patient data

of our interest is estimated to be ,2.16 (Table 2) [14].

Consequently, we assume that a Hamming distance of 2.16

between amino acid sequences corresponds on average to a

Hamming distance of 3.16 between nucleotide sequences. The

resulting experimental fitness landscape in terms of the Hamm-

ing distance per position between nucleotide sequences is

shown in Fig. 10. The latter landscape is well described by

fi~1{ 1{fminð Þ diFð Þn

diFð Þnz d50ð Þn, where fi is the relative fitness of

genome i that has a normalized Hamming distance diF from the

fittest genome F, fmin = 0.24 is the minimum fitness of sequences

attained at arbitrarily large absolute Hamming distances from F,

d50L = 30 is that Hamming distance from F at which fi = 0.5(1+
fmin), i.e., the average of the fittest and the least fit sequences, and

Figure 10. Fitness landscape. The relative fitness, fi, of genomes as a
function of their Hamming distances from the fittest sequence, diFL,
obtained from experimental observations [37] (symbols) modified
to account for the ratio of synonymous and non-synonymous

substitutions (Methods) and predicted (black line) by the equa-

tion fi~1{ 1{fminð Þ diFð Þn

diFð Þnz d50ð Þn , with the best-fit parameters

fmin = 0.24, d50L = 30, and n = 3 obtained upon ignoring outliers (open

symbols). Multiplicative fitness landscapes, fi~exp({sdiF L), with
s = 0.001 (cyan) and 0.01 (pink) are also shown.
doi:10.1371/journal.pone.0014531.g010
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n = 3 is analogous to the Hill coefficient (Fig. 10). We also perform

simulations with a multiplicative fitness landscape, where

fi~exp({sdiF L) with s the fitness penalty per mutation.

Frequency of multiple infections of cells from viral
dynamics

To estimate the frequency of multiple infections of cells from

viral dynamics, we consider the following model:

dT

dt
~l{dT T{k0TV

dT1

dt
~k0TV{k1T1V{dT1

dTi

dt
~ki{1Ti{1V{kiTiV{dTi; i~2,:::,5

dT6

dt
~k5T5V{dT6

dV

dt
~Nd

X6

i~1

Ti{cV

Here, uninfected CD4+ cells, T, are produced from the thymus

at the rate l, die with first order rate constant dT, and are lost due

to infection by free virions with the second order rate constant k0.

The latter infections produce singly infected cells, T1, which in

turn are lost by further infections with the second order rate

constant k1, or by death at the rate d. Similarly, cells with two,

three, etc. infections (Ti, i = 2,3,…), are produced by successive

infections. We restrict our model to a maximum of 6 infections per

cell. (Including more infections does not alter our results

significantly.) All infected cells produce virions at the rate Nd,

where N is the viral burst size. Virions are cleared at the rate c.

We solve these equations using parameter values representative

of HIV-1 infection in vivo [55,62]. We let l = 105 cells/ml/day,

dT = 0.1/day, k0 = 2.461028 ml/day d= 1/day, N = 103 virions/

cell, and c = 23/day. The rates of infection of infected cells, ki, are

not known. Virus-induced CD4 down-modulation [63,64] would

lower ki with increasing i. We have developed models previously

that account for the continuous decrease of the susceptibility of

cells owing to CD4 down-modulation following viral infection

[31,65]. A simplification of the latter models allowing up to two

infections per cell found that k1 = 0.7k0 captured in vitro

observations of the frequencies of coinfection quantitatively [31].

The cells employed in the latter in vitro experiments were not

highly susceptible to infection. Other experiments found that

coinfections occur more frequently than expected from random,

independent infection events [66,67], implying that k1.k0. Cell-to-

cell transmission could also result in a high frequency of multiply

infected cells [66,68,69]. Here, we therefore employ either ki = k0

or ki = 0.7ki-1 for all i. (Note that M = 3 corresponds to k1.k0.)

At long-times following the onset of infection, the above

equations predict that infection reaches a steady state. The steady

state populations of Ti yield a distribution of the frequency of

multiple infections of cells. We find at that steady state that ,70%

of the infected cells are singly infected, ,21% are doubly infected,

,6% are triply infected, ,2% are quadruply infected, ,0.5% are

quintuply infected, and ,0.2% are hextuply infected when ki = k0.

Whereas, when ki = 0.7ki-1, at steady state ,77% of the infected

cells are singly infected, ,19% are doubly infected, ,3.4% are

triply infected, ,0.5% are quadruply infected, ,0.04% are

quintuply infected, and ,0.002% are hextuply infected.

Author Contributions

Conceived and designed the experiments: NMD. Performed the

experiments: RB VS ARS. Analyzed the data: RB NMD. Contributed

reagents/materials/analysis tools: RB VS ARS NMD. Wrote the paper:

NMD.

References

1. Haase AT, Henry K, Zupancic M, Sedgewick G, Faust RA, et al. (1996)

Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274:

985–989.

2. Telenti A, Goldstein DB (2006) Genomics meets HIV-1. Nat Rev Microbiol 4:

865–873.

3. Nijhuis M, Boucher CAB, Schipper P, Leitner T, Schuurman R, et al. (1998)

Stochastic processes strongly influence HIV-1 evolution during suboptimal

protease-inhibitor therapy. Proc Natl Acad Sci U S A 95: 14441–14446.

4. Telenti A, Carrington M (2008) Host factors associated with outcome from

primary human immunodeficiency virus-1 infection. Curr Opin HIV AIDS 3:

28–35.

5. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, et al. (2005) The

influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS

susceptibility. Science 307: 1434–1440.

6. Charlesworth B (2009) Effective population size and patterns of molecular

evolution and variation. Nat Rev Genet 10: 195–205.

Table 2. Estimates of synonymous and non-synonymous
substitution rates.

Patient

Synonymous substi-
tution rate (61024 per
site per month)

Non-synonymous
substitution rate (61024

per site per month)

1 3.5 5.4

2 3.1 8.7

3 3.7 14.1

5 7.9 8.5

6 4.5 5.2

7 2.2 9.5

8 3.7 9.2

9 1.6 5.3

Mean 3.8 8.2

The rates of synonymous and non-synonymous substitutions estimated by
Lemey et al. [14] in the patients we consider (except Patient 11) from
seroconversion until the CD4+ T cell count dropped to 200 cells/mL (mean 7
years). The ratio of the mean non-synonymous and synonymous substitution
rates is 2.16.
doi:10.1371/journal.pone.0014531.t002

Within-Host Effective Population Size of HIV-1

PLoS ONE | www.plosone.org 11 January 2011 | Volume 6 | Issue 1 | e14531



7. Kouyos RD, Althaus CL, Bonhoeffer S (2006) Stochastic or deterministic: what

is the effective population size of HIV-1? Trends Microbiol 14: 507–511.
8. Wright S (1931) Evolution in Mendelian populations. Genetics 16: 97–159.

9. Brown AL (1997) Analysis of HIV-1 env gene sequences reveals evidence for a

low effective number in the viral population. Proc Natl Acad Sci U S A 94:
1862–1865.

10. Rodrigo AG, Shpaer EG, Delwart EL, Iversen AKN, Gallo MV, et al. (1999)
Coalescent estimates of HIV-1 generation time in vivo. Proc Natl Acad Sci U S A

96: 2187–2191.

11. Seo TK, Thorne JL, Hasegawa M, Kishino H (2002) Estimation of effective
population size of HIV-1 within a host: A pseudomaximum-likelihood approach.

Genetics 160: 1283–1293.
12. Achaz G, Palmer S, Kearney M, Maldarelli F, Mellors JW, et al. (2004) A robust

measure of HIV-1 population turnover within chronically infected individuals.
Mol Biol Evol 21: 1902–1912.

13. Shriner D, Shankarappa R, Jensen MA, Nickle DC, Mittler JE, et al. (2004)

Influence of random genetic drift on human immunodeficiency virus type I env
evolution during chronic infection. Genetics 166: 1155–1164.

14. Lemey P, Kosakovsky Pond SL, Drummond AJ, Pybus OG, Shapiro B, et al.
(2007) Synonymous substitution rates predict HIV disease progression as a result

of underlying replication dynamics. PLoS Comput Biol 3: e29.

15. Rouzine IM, Coffin JM (1999) Linkage disequilibrium test implies a large
effective population number for HIV in vivo. Proc Natl Acad Sci U S A 96:

10758–10763.
16. Jung A, Maier R, Vartanian JP, Bocharov G, Jung V, et al. (2002) Multiply

infected spleen cells in HIV patients. Nature 418: 144–144.
17. Levy DN, Aldrovandi GM, Kutsch O, Shaw GM (2004) Dynamics of HIV-1

recombination in its natural target cells. Proc Natl Acad Sci U S A 101:

4204–4209.
18. McCutchan FE (2006) Global epidemiology of HIV. J Med Virol 78: S7–S12.

19. Otto SP, Lenormand T (2002) Resolving the paradox of sex and recombination.
Nat Rev Genet 3: 252–261.

20. Hartl DL, Clark AG (2007) Principles of Population Genetics. Sunderland:

Sinauer Associates, Inc.
21. Kouyos RD, Silander OK, Bonhoeffer S (2007) Epistasis between deleterious

mutations and the evolution of recombination. Trends Ecol Evol 22: 308–315.
22. Dixit NM (2008) Modelling HIV infection dynamics: The role of recombination

in the development of drug resistance. Future HIV Ther 2: 375–388.
23. Boerlijst MC, Bonhoeffer S, Nowak MA (1996) Viral quasi-species and

recombination. P R Soc Lond B Bio 263: 1577–1584.

24. Bretscher MT, Althaus CL, Muller V, Bonhoeffer S (2004) Recombination in
HIV and the evolution of drug resistance: for better or for worse? Bioessays 26:

180–188.
25. Althaus CL, Bonhoeffer S (2005) Stochastic interplay between mutation and

recombination during the acquisition of drug resistance mutations in human

immunodeficiency virus type 1. J Virol 79: 13572–13578.
26. Bocharov G, Ford NJ, Edwards J, Breinig T, Wain-Hobson S, et al. (2005) A

genetic-algorithm approach to simulating human immunodeficiency virus
evolution reveals the strong impact of multiply infected cells and recombination.

J Gen Virol 86: 3109–3118.
27. Fraser C (2005) HIV recombination: what is the impact on antiretroviral

therapy? J R Soc Interface 2: 489–503.

28. Rouzine IM, Coffin JM (2005) Evolution of human immunodeficiency virus
under selection and weak recombination. Genetics 170: 7–18.

29. Carvajal-Rodriguez A, Crandall KA, Posada D (2007) Recombination favors the
evolution of drug resistance in HIV-1 during antiretroviral therapy. Infect Genet

Evol 7: 476–483.

30. Gheorghiu-Svirschevski S, Rouzine IM, Coffin JM (2007) Increasing sequence
correlation limits the efficiency of recombination in a multisite evolution model.

Mol Biol Evol 24: 574–586.
31. Suryavanshi GW, Dixit NM (2007) Emergence of recombinant forms of HIV:

Dynamics and scaling. PLoS Comput Biol 3: e205.

32. Vijay NV, Vasantika, Ajmani R, Perelson AS, Dixit NM (2008) Recombination
increases human immunodeficiency virus fitness, but not necessarily diversity.

J Gen Virol 89: 1467–1477.
33. Arora P, Dixit NM (2009) Timing the emergence of resistance to anti-HIV drugs

with large genetic barriers. PLoS Comput Biol 5: e1000305.
34. Gadhamsetty S, Dixit NM (2010) Estimating frequencies of minority nevirapine-

resistant strains in chronically HIV-1-infected individuals naive to nevirapine by

using stochastic simulations and a mathematical model. J Virol 84: 10230–10240.
35. Rouzine IM, Coffin JM (2010) Multi-site adaptation in the presence of

infrequent recombination. Theor Popul Biol 77: 189–204.
36. Shankarappa R, Margolick JB, Gange SJ, Rodrigo AG, Upchurch D, et al.

(1999) Consistent viral evolutionary changes associated with the progression of

human immunodeficiency virus type 1 infection. J Virol 73: 10489–10502.
37. Bonhoeffer S, Chappey C, Parkin NT, Whitcomb JM, Petropoulos CJ (2004)

Evidence for positive epistasis in HIV-1. Science 306: 1547–1550.
38. Mansky LM, Temin HM (1995) Lower in-vivo mutation-rate of human-

immunodeficiency-virus type-1 than that predicted from the fidelity of purified
reverse-transcriptase. J Virol 69: 5087–5094.

39. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, et al. (2008)

Identification and characterisation of transmitted and early founder virus
envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A 105:

7552–7557.

40. Goonetilleke N, Liu MKP, Salazar-Gonzalez JF, Ferrari G, Giorgi E, et al.

(2009) The first T cell response to transmitted/founder virus contributes to the
control of acute viremia in HIV-1 infection. J Exp Med 206: 1253–1272.

41. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, et al. (2009)

Genetic identity, biological phenotype, and evolutionary pathways of transmit-
ted/founder viruses in acute and early HIV-1 infection. J Exp Med 206:

1273–1289.
42. Rhodes T, Wargo H, Hu W-S (2003) High rates of human immunodeficiency

virus type 1 recombination: near-random segregation of markers one kilobase

apart in one round of viral replication. J Virol 77: 11193–11200.
43. Josefsson L, Brannstrom J, Makilato B, Maldarelli F, Kearney M, et al. (2010)

Analysis of HIV DNA molecules in single infected cells from recently and
chronically infected patients, Abstract #289. San Francisco: 17th Conference on

Retroviruses and Opportunistic Infections.
44. Hockett RD, Michael Kilby J, Derdeyn CA, Saag MS, Sillers M, et al. (1999)

Constant mean viral copy number per infected cell in tissues regardless of high,

low, or undetectable plasma HIV RNA. J Exp Med 189: 1545–1554.
45. Chen HY, Di Mascio M, Perelson AS, Ho DD, Zhang L (2007) Determination

of virus burst size in vivo using a single-cycle SIV in rhesus macaques. Proc Natl
Acad Sci U S A 104: 19079–19084.

46. Dimitrov DS, Martin MA (1995) CD4+ cell turnover. Nature 375: 194–195.

47. Dimitrov DS, Willey RL, Sato H, Chang LJ, Blumenthal R, et al. (1993)
Quantitation of human-immunodeficiency-virus type-1 infection kinetics. J Virol

67: 2182–2190.
48. Piatak M, Saag MS, Yang LC, Clark SJ, Kappes JC, et al. (1993) High-levels of

HIV-1 in plasma during all stages of infection determined by competitive PCR.
Science 259: 1749–1754.

49. Ribeiro RM, Qin L, Chavez LL, Li D, Self SG, et al. (2010) Estimation of the

initial viral growth rate and basic reproductive number during acute HIV-1
infection. J Virol 84: 6096–6102.

50. Hill WG, Robertson A (1966) Effect of linkage on limits to artificial selection.
Genet Res 8: 269–294.

51. Eshel I, Feldman MW (1970) On the evolutionary effect of recombination.

Theor Popul Biol 1: 88–100.
52. Kouyos RD, Otto SP, Bonhoeffer S (2006) Effect of varying epistasis on the

evolution of recombination. Genetics 173: 589–597.
53. Kimura M (1980) A simple method for estimating evolutionary rates of base

substitutions through comparative studies of nucleotide sequences. J Mol Evol
16: 111–120.

54. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1

dynamics in vivo: Virion clearance rate, infected cell life-span, and viral
generation time. Science 271: 1582–1586.

55. Dixit NM, Markowitz M, Ho DD, Perelson AS (2004) Estimates of intracellular
delay and average drug efficacy from viral load data of HIV-infected individuals

under antiretroviral therapy. Antivir Ther 9: 237–246.

56. Voronin Y, Holte S, Overbaugh J, Emerman M (2009) Genetic drift of HIV
populations in culture. PloS Genet 5: e1000431.

57. Gillespie JH (2000) Genetic drift in an infinite population: The pseudohitchhik-
ing model. Genetics 155: 909–919.

58. Frost SDW, Dumaurier MJ, Wain-Hobson S, Brown AJL (2001) Genetic drift
and within-host metapopulation dynamics of HIV-1 infection. Proc Natl Acad

Sci U S A 98: 6975–6980.

59. Williamson S, Perry SM, Bustamante CD, Orive ME, Stearns MN, et al. (2005)
A statistical characterization of consistent patterns of human immunodeficiency

virus evolution within infected patients. Mol Biol Evol 22: 456–468.
60. Liu Y, Mullins JI, Mittler JE (2006) Waiting times for the appearance of

cytotoxic T-lymphocyte escape mutants in chronic HIV-1 infection. Virology

347: 140–146.
61. Fellay J, Shianna KV, Ge DL, Colombo S, Ledergerber B, et al. (2007) A whole-

genome association study of major determinants for host control of HIV-1.
Science 317: 944–947.

62. Perelson AS (2002) Modelling viral and immune system dynamics. Nat Rev

Immunol 2: 28–36.
63. Chen BK, Gandhi RT, Baltimore D (1996) CD4 down-modulation during

infection of human T cells with human immunodeficiency virus type 1 involves
independent activities of vpu, env, and nef. J Virol 70: 6044–6053.

64. Piguet V, Gu F, Foti M, Demaurex N, Gruenberg J, et al. (1999) Nef-induced
CD4 degradation: A diacidic-based motif in Nef functions as a lysosomal

targeting signal through the binding of beta-COP in endosomes. Cell 97: 63–73.

65. Dixit NM, Perelson AS (2005) HIV dynamics with multiple infections of target
cells. Proc Natl Acad Sci U S A 102: 8198–8203.

66. Dang Q, Chen JB, Unutmaz D, Coffin JM, Pathak VK, et al. (2004)
Nonrandom HIV-1 infection and double infection via direct and cell-mediated

pathways. Proc Natl Acad Sci U S A 101: 632–637.

67. Chen J, Dang Q, Unutmaz D, Pathak VK, Maldarelli F, et al. (2005)
Mechanisms of nonrandom human immunodeficiency virus type 1 infection and

double infection: preference in virus entry is important but is not the sole factor.
J Virol 79: 4140–4149.

68. Chen P, Hubner W, Spinelli MA, Chen BK (2007) Predominant Mode of
human immunodeficiency virus transfer between T cells is mediated by

sustained Env-dependent neutralization-resistant virological synapses. J Virol

81: 12582–12595.
69. Dixit NM, Perelson AS (2004) Multiplicity of human immunodeficiency virus

infections in lymphoid tissue. J Virol 78: 8942–8945.

Within-Host Effective Population Size of HIV-1

PLoS ONE | www.plosone.org 12 January 2011 | Volume 6 | Issue 1 | e14531


