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Tumor necrosis factor receptor 1 (TNFR1) is a membrane receptor able to bind TNF-α or TNF-β. TNFR1 can suppress apoptosis
by activating the NF-κB or JNK/SAPK signal transduction pathway, or it can induce apoptosis through a series of caspase cascade
reactions; the particular effect may depend on the cell line. In the present study, we first showed that TNFR1 is expressed at both the
gene and protein levels in the esophageal carcinoma cell line EC109. Then, by applying a specific siRNA, we silenced the expression
of TNFR1; this resulted in a significant time-dependent promotion of cell proliferation and downregulation of the apoptotic rate.
These results suggest that TNFR1 is strongly expressed in the EC109 cell line and that it may play an apoptosis-mediating role,
which may be suppressed by highly activated NF-κB.

Copyright © 2009 Ma Changhui et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Esophageal carcinoma is one of the six most common
malignant tumors in the world and is associated with
significant morbidity and mortality. With a high incidence
in the provinces of Hebei, Henan, and Guangdong, China,
esophageal carcinoma has become a serious public health
threat [1]. Both genetic and environmental factors have been
implicated in the development of esophageal carcinoma:
however, its etiology and pathogenesis are not well under-
stood [2–5]. At present, research into esophageal cancer is
concentrated on the isolation and identification of genes and
proteins involved in tumor development. Several biological
markers, including cyclin D1, surviving, p53, p21, Pax, Rb,
COX-2, Ras, c-Myc, Mdm2, and caveolin-1, have all been
found to be aberrantly expressed in esophageal adenocarci-
noma and squamous cell carcinoma [6–10]. Tumor necrosis
factor (TNF) is a cytokine that is produced by activated
macrophages as well as by several other cell types, including
lymphocytes, fibroblasts, and hepatocytes. The effects of
TNF are mediated by two distinct cell-surface receptors
that are expressed simultaneously on almost all cell types:
TNFR1 and TNFR2 [11]. TNFR1 seems to have a greater
role than TNFR2 in TNF signaling in most cell types.

TNFR1 can suppress apoptosis by activating the NF-κB and
JNK/SAPK signal transduction pathways, and can induce
apoptosis through a series of caspase cascade reactions [12,
13]. However, it is not yet clear what role TNFR1 expression
may play in human esophageal carcinoma.

RNA interference (RNAi) induces sequence-specific
posttranscriptional gene silencing in many eukaryotes, by
using 21- and 22-nt RNA fragments that are homologous
with sequences of the target gene [14]. This effect can also be
observed in mammalian cells when small interfering RNAs
(siRNAs) are used, and hence the method has been exploited
as a powerful tool for reverse genetics in the post-genome era
[15]. In the present study we detected expression of TNFR1 at
the gene and protein levels in the esophageal carcinoma cell
line EC109. Then, by applying a specific siRNA, we silenced
the expression of TNFR1 and recorded the changes in cell
proliferation and apoptosis.

2. Materials and Methods

2.1. Cell Culture. The human esophageal carcinoma cell
line EC109 was obtained from the State Key Laboratory of
Molecular Oncology, Chinese Academy of Medical Sciences,
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and grown in Dulbecco’s modified Eagle’s medium (DMEM,
Invitrogen) supplemented with 10% fetal bovine serum. The
cells were kept in culture at 37◦C under an atmosphere of 5%
carbon dioxide. To keep the cells under optimal proliferation
conditions, they were passaged at 80% confluence and seeded
at 20% confluence.

2.2. Transfection with siRNAs. The siRNA duplex oligonu-
cleotides used in this study were based on the human cDNA
coding for TNFR1, the efficacy of the oligonucleotides in
silencing having been confirmed in a prior publication [16].
TNFR1-specific siRNA duplexes and nonsilencing control
siRNA duplexes were obtained from GeneChem. The siRNA
sequences applied to target the TNFR1 mRNA were 5′-
GGAACCUACUUGUACAAUGACtt-3′(sense) and 5′-GUC-
AUUGUACAAGUAGGUUCCtt-3′(antisense). The siRNA
sequences employed as negative controls were 5′-UUCUCC-
GAACGUGUCACGUtt-3′(sense) and 5′-ACGUGACAC-
GUUCGGAGAAtt-3′(antisense). Twenty-four hours before
transfection, 5 × 104 cells were seeded in a 6-well plate.
The transfection was performed using Lipofectamine 2000
transfection reagent (Invitrogen) according to the manufac-
turer’s instructions. The EC109 cells were divided into three
groups: blank control group (without transfection reagent
or siRNA), negative control group (with transfection reagent
and negative control-siRNA) and experimental group (with
transfection reagent and TNFR1-siRNA).

2.3. RT-PCR Assays. Total RNA was extracted using RNAiso
Reagent (Takara) and reverse transcription was per-
formed using the ImProm-II Reverse Transcription System
(Promega) according to the manufacturer’s instructions.
The primer sequences for the genes and expected product
sizes were as follows: 5′-ACCAAGTGCCACAAAGGA-
ACC-3′(forward), 5′-TACACACGGTGTTCTGTTTCTCC-
3′(reverse) for TNFR1 (320 bp) and 5′-ATGGATGATGAT-
ATCGCCGCG-3′(forward), 5′-CTCCATGTCGTCCCA-
GTTGGT-3′(reverse) for β-actin (249 bp). The thermal
cycler conditions were as follows: 94◦C for 5 minutes,
followed by 30 cycles of 94◦C for 1 minute, 55◦C for 45
seconds, 72◦C for 1 minute, and then 72◦C for 10 minutes.
RT-PCR products were visualized by ethidium bromide-
stained agarose gels.

2.4. Western Blot Assays. The cells were washed twice with
cold phosphate-buffered saline (PBS) and then membrane
protein components containing TNFR1 were extracted from
EC109 cells using a ProteoExtract Subcellular Proteome
Extraction Kit (Merck) according to the manufacturer’s
instructions. The proteins were separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
then transferred to a nitrocellulose membrane (Huamei).
After blocking with 5% skim milk at room temperature for
1 hour, the nitrocellulose membrane was incubated with
monoclonal antibodies recognizing TNFR1 or actin (R &
D) at 37◦C for 2 hours and then with horseradish peroxi-
dase (HRP)-conjugated secondary antibodies (Jackson) for
1 hour at room temperature. The proteins were visualized

with chemiluminescence regents (Santa Cruz) and analyzed
with a FluorChem 8900 system.

2.5. MTT Assay. Twenty-four hours before transfection, 5×
103 cells were seeded in a 96-well plate. The transfection was
performed using Lipofectamine 2000 transfection reagent
according to the manufacturer’s instructions. Four duplicate
wells were set up for each group and after 8, 16, 24, and
32 hours of incubation, 10 μL MTT (5 mg/mL, Sigma) was
added to each well and incubated for 4 hour. The reaction
was stopped by the addition of 100 μL of dimethyl sulfoxide
(DMSO, Sigma). Absorbance of the samples was measured
at 570 nm and each assay was performed in triplicate. Cell
proliferation (mean absorbance ± standard deviation) was
plotted versus time.

2.6. Cell Count. For cell count analyses, cell suspensions were
diluted in PBS 8, 16, 24, 32 hours after transfection. Fifty
microliters of trypan blue (0.4%) were added into 50 μL
of cell suspension. The number of cells without stain was
counted using a hemocytometer under an inverted phase
contrast microscope.

2.7. Apoptosis Detected by Flow Cytometry. Apoptosis was
determined by using the Annexin V-FITC Apoptosis Detec-
tion Kit (Merck) according to the manufacturer’s instruc-
tions. In brief, cells were washed twice in cold PBS and
then resuspended in 1 × binding buffer at a concentration
of 1 × 106 cells/mL. A volume of 500 μL of the solution
(5 × 105 cells) was transferred to another tube, and 1.25 μL
Annexin V-FITC were added. The cells were gently agitated
and incubated in the dark for 15 minutes at room tem-
perature, and then 500 μL of cold 1 × binding buffer and
10 μL propidium iodide (PI) was added and the cells were
analyzed with a FACScalibur flow cytometer (BD) within
1 hour.

3. Results

3.1. TNFR1 mRNA and Protein Are Expressed in EC109. RT-
PCR analysis of TNFR1 mRNA in EC109 cells is shown in
Figure 1(a): the 320 bp bright band reflects high expression
of TNFR1 at the genetic level. A representative Western blot
analysis of TNFR1 in lysates of EC109 cells is shown in
Figure 1(b): specific antibodies detected TNFR1 as a distinct
band with a molecular weight of about 55 kDa.

3.2. Silencing of TNFR1 in EC109 Cells by siRNA. To confirm
the silencing of TNFR1 expression in EC109 cells, RT-PCR
and Western blot analysis were performed 24 hours after the
transfection (Figure 2). The expression intensities of TNFR1
mRNA in the blank control group (1), the experimental
group (2), and the negative control group (3) are shown
(Figure 2(a)). A representative Western blot analysis of cell
lysates from the blank control group (1), the experimental
group (2), and the negative control group (3) is shown in
Figure 2(b).
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Figure 1: TNFR1 expression in EC109 cells. (a) Expression of TNFR1 mRNA in EC109 detected by RT-PCR. (1) TNFR1; (2) DNA marker.
(b) Expression of TNFR1 at the protein level in EC109 cells detected by Western blot. Two bands with a molecular weight of 55 kDa are
expressed in EC109.
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Figure 2: Silencing of TNFR1 in EC109 cells by siRNA. (a) The levels of TNFR1 mRNAs were analyzed by RT-PCR: (1) blank control group;
(2) experimental group; (3) negative control group. (b) Expression of TNFR1 was analyzed by Western blot: (1) blank control group; (2)
experimental group; (3) negative control group. Results are from one representative experiment from a total of three performed.

3.3. Silencing of the TNFR1 Gene Increases Tumor Cell Growth.
To address whether siRNA directed against TNFR1 had a
promoting effect on EC109 cell growth, cell proliferation
was assessed by using the MTT assay (Figure 3(a)) and
by cell counting (Figure 3(b)). We found that treatment
of EC109 cells with TNFR1-siRNA was associated with a
time-dependent promotion of cell proliferation, with an
accelerated cell proliferation level (P < .05) observed 24
hours after transfection. No significant promotion effect was
observed in cells of the blank control group or the negative
control group (P > .05).

3.4. Silencing of TNFR1 Gene Expression Reduces Apoptosis.
Twenty-four hours after transfection, the Annexin V-FITC
Apoptosis Detection Kit was employed to assess levels of
apoptosis in the blank control, the negative control, and the
experimental groups. The rates of apoptosis were 8.93 ±
1.24% and 8.60 ± 2.75% in the blank control group and
the negative control group, respectively, with no statistically
significant difference (P > .05). In contrast, the rate of
apoptosis in the experimental group after transfection with
TNFR1-siRNA was 4.64±1.59%, which is significantly lower
than in the control groups (P < .05) (Figure 4).

4. Discussion

The EC109 cell line, derived from a surgically excised
squamous cell carcinoma specimen, was established in 1976
by researchers in the Department of Cell and Molecular
Biology, Cancer Institute, Chinese Academy of Medical
Sciences. Today, the cell line is widely used for esophageal
cancer-related disease research [17, 18]. We first detected
TNFR1 expression by RT-PCR and Western blot, and the
results show TNFR1 has a high expression in EC109 cells
compared with the immortalized esophageal epithelial cell
line SHEE (data not shown).

At present, siRNA has been adapted as a functional
genomics tool, although it also has the potential for ther-
apeutic application in cancer [19–21]. Here we employed
RNAi to inhibit the expression of TNFR1. We adopted
TNFR1-siRNA, following Saito et al. [16], to perform the
interference, and obtained data at 24 hours after transfection.
Treatment of EC109 cells with TNFR1-siRNA was associated
with a time-dependent promotion of cell proliferation, as
measured by the MTT assay and direct cell counts, and with
a significant reduction in the rate of apoptosis.

TNFR1 is known to mediate two signaling pathways: (1)
TNF receptor-associated death domain (TRADD) protein
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Figure 3: Silencing of the TNFR1 gene resulted in increased EC109 cell growth as determined by the MTT analysis (a) and cell count (b).
CTL-1: blank control group; CTL-2: negative control group; Si-TNFR1: experimental group. The results show that the levels of proliferation
between CTL-1 and CTL-2 were similar (P > .05); the levels of proliferation between CTL-1 and Si-TNFR1 were significantly different for
the 24-hour and 32-hour time points (P < .05). Data represent the mean ± SD values of three experiments.
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Figure 4: Silencing of the TNFR1 gene reduced the level of apoptosis: (1) blank control group; (2) negative control group; (3) experimental
group. The results show no statistically significant difference between the rate of apoptosis in the blank control group and the negative control
group. The rate of apoptosis in the experimental group was significantly lower after transfection with TNFR1-siRNA (P < .05). Apoptotic
cells were detected by flow cytometry. Results are from one representative experiment from a total of three performed.

binds to TNFR1 through its death domain (DD) sequence.
Then, TRADD recruits the downstream signaling adaptor
molecules Fas-associated death domain (FADD) and recep-
tor interacting molecule (RIP) to constitute complex II [22].
FADD interacts with caspase-8 or caspase-10 precursors
through a death effector domain (DED) sequence. Then
another DD-containing molecule, caspase-2, and RIPK1
domain containing adaptor with death domain (RAIDD) are
recruited to TNFR1 where they interact with RIP to activate

TNFR1 to initiate apoptotic signaling. (2) TNF receptor-
associating factor 2 (TRAF2) is recruited to TNFR1 indirectly
through a specific interaction with TRADD. TRAF2 is
capable of interacting with downstream signaling molecules,
resulting in the activation of NF-κB, p38MAPK, and c-Jun
N-terminal kinase (JNK) stress kinases [23]. These latter
signaling pathways all have anti-apoptotic effects.

Thus, TNFR1 plays different roles in different cells and
tissues; we are interested in the role that TNFR1 plays in the
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EC109 cell line as a model of esophageal cancer. The flow
cytometry results showed that TNFR1 may mediate apopto-
sis in EC109 cells, which is supported by the MTT results.
The reduction of apoptosis rate after silencing of TNFR1
may be due to inhibition of the FADD-dependent complex
II. Another report showed that NF-κB is highly expressed in
EC109, and that an activated NF-κB signaling pathway exists
and has an effect on the survival and proliferation of these
esophageal carcinoma cells [24]. The relationship between
the NF-κB signaling pathway and anti-tumor cell apoptosis
has been extensively studied. Initially, Beg et al. [25] observed
that the livers of nude mice lacking the NF-κB gene
showed degenerative changes because of excessive apoptosis.
It was presumed that the NF-κB pathway was involved in
suppressing apoptosis. Then a report showed that tumor
cells with high NF-κB expression had a higher tolerance to
ionizing radiation and anti-tumor drugs, and that inhibition
of NF-κB activity could significantly increase the therapeutic
sensitivity and induce apoptosis [26]. Therefore, the search
for the relationship between the NF-κB signaling pathway
and tumor-cell apoptosis has been intensive and includes the
study of many functional components, including CIAP1 and
2, FLIP, TRAF1 and 2, A1/BFL1, and BCL-XL. The genes
encoding these proteins, all of which have anti-apoptotic
effects mediated by TNF-α and similar positive regulatory
factors, are up-regulated by activated NF-κB. TNFR1 in
EC109 is apt to induce apoptosis and we speculate that this
may be suppressed by highly-activated NF-κB. Higher levels
of cell proliferation may reflect a reduction in cell apoptosis.
It was reported that the expression rate of TNFR1 in ten
different cell lines involving EC109 showed no significant
differences, but that administration of new recombinant
human TNF (nrhTNF) exerted significantly different effects
on the different cells [27]. As nrhTNF did not inhibit the
growth of five cell lines involving EC109, it was concluded
that there was no correlation between the inhibitory effect of
the drug and the expression of TNFR1, which supports our
theory [27]. However, more research is required to confirm
this.

Our results indicate that TNFR1 may mediate apoptosis
in EC109 cells but the details are still unclear. Regulation
of the numerous factors involved in the pathway, the
relationship between TNFR1 and other relevant factors, and
the specific mechanism of the pathway still need further
study.
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